numam-dpdk/drivers/net/mlx5/mlx5_rxq.c
Raslan Darawsheh 4827cbff60 net/mlx5: fix handling of small mbuf sizes
When mbufs are smaller than MRU, multi-segment support must be enabled to
default set when not in promiscuous or allmulticast modes.

Fixes: 9964b965ad ("net/mlx5: re-add Rx scatter support")

Signed-off-by: Raslan Darawsheh <rasland@mellanox.com>
Acked-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
2016-11-07 18:21:41 +01:00

1350 lines
38 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stddef.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <stdint.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/arch.h>
#include <infiniband/mlx5_hw.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
/* DPDK headers don't like -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ethdev.h>
#include <rte_common.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include "mlx5.h"
#include "mlx5_rxtx.h"
#include "mlx5_utils.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
/* Initialization data for hash RX queues. */
const struct hash_rxq_init hash_rxq_init[] = {
[HASH_RXQ_TCPV4] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV4 |
IBV_EXP_RX_HASH_DST_IPV4 |
IBV_EXP_RX_HASH_SRC_PORT_TCP |
IBV_EXP_RX_HASH_DST_PORT_TCP),
.dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_TCP,
.flow_priority = 0,
.flow_spec.tcp_udp = {
.type = IBV_EXP_FLOW_SPEC_TCP,
.size = sizeof(hash_rxq_init[0].flow_spec.tcp_udp),
},
.underlayer = &hash_rxq_init[HASH_RXQ_IPV4],
},
[HASH_RXQ_UDPV4] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV4 |
IBV_EXP_RX_HASH_DST_IPV4 |
IBV_EXP_RX_HASH_SRC_PORT_UDP |
IBV_EXP_RX_HASH_DST_PORT_UDP),
.dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_UDP,
.flow_priority = 0,
.flow_spec.tcp_udp = {
.type = IBV_EXP_FLOW_SPEC_UDP,
.size = sizeof(hash_rxq_init[0].flow_spec.tcp_udp),
},
.underlayer = &hash_rxq_init[HASH_RXQ_IPV4],
},
[HASH_RXQ_IPV4] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV4 |
IBV_EXP_RX_HASH_DST_IPV4),
.dpdk_rss_hf = (ETH_RSS_IPV4 |
ETH_RSS_FRAG_IPV4),
.flow_priority = 1,
.flow_spec.ipv4 = {
.type = IBV_EXP_FLOW_SPEC_IPV4,
.size = sizeof(hash_rxq_init[0].flow_spec.ipv4),
},
.underlayer = &hash_rxq_init[HASH_RXQ_ETH],
},
[HASH_RXQ_TCPV6] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV6 |
IBV_EXP_RX_HASH_DST_IPV6 |
IBV_EXP_RX_HASH_SRC_PORT_TCP |
IBV_EXP_RX_HASH_DST_PORT_TCP),
.dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_TCP,
.flow_priority = 0,
.flow_spec.tcp_udp = {
.type = IBV_EXP_FLOW_SPEC_TCP,
.size = sizeof(hash_rxq_init[0].flow_spec.tcp_udp),
},
.underlayer = &hash_rxq_init[HASH_RXQ_IPV6],
},
[HASH_RXQ_UDPV6] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV6 |
IBV_EXP_RX_HASH_DST_IPV6 |
IBV_EXP_RX_HASH_SRC_PORT_UDP |
IBV_EXP_RX_HASH_DST_PORT_UDP),
.dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_UDP,
.flow_priority = 0,
.flow_spec.tcp_udp = {
.type = IBV_EXP_FLOW_SPEC_UDP,
.size = sizeof(hash_rxq_init[0].flow_spec.tcp_udp),
},
.underlayer = &hash_rxq_init[HASH_RXQ_IPV6],
},
[HASH_RXQ_IPV6] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV6 |
IBV_EXP_RX_HASH_DST_IPV6),
.dpdk_rss_hf = (ETH_RSS_IPV6 |
ETH_RSS_FRAG_IPV6),
.flow_priority = 1,
.flow_spec.ipv6 = {
.type = IBV_EXP_FLOW_SPEC_IPV6,
.size = sizeof(hash_rxq_init[0].flow_spec.ipv6),
},
.underlayer = &hash_rxq_init[HASH_RXQ_ETH],
},
[HASH_RXQ_ETH] = {
.hash_fields = 0,
.dpdk_rss_hf = 0,
.flow_priority = 2,
.flow_spec.eth = {
.type = IBV_EXP_FLOW_SPEC_ETH,
.size = sizeof(hash_rxq_init[0].flow_spec.eth),
},
.underlayer = NULL,
},
};
/* Number of entries in hash_rxq_init[]. */
const unsigned int hash_rxq_init_n = RTE_DIM(hash_rxq_init);
/* Initialization data for hash RX queue indirection tables. */
static const struct ind_table_init ind_table_init[] = {
{
.max_size = -1u, /* Superseded by HW limitations. */
.hash_types =
1 << HASH_RXQ_TCPV4 |
1 << HASH_RXQ_UDPV4 |
1 << HASH_RXQ_IPV4 |
1 << HASH_RXQ_TCPV6 |
1 << HASH_RXQ_UDPV6 |
1 << HASH_RXQ_IPV6 |
0,
.hash_types_n = 6,
},
{
.max_size = 1,
.hash_types = 1 << HASH_RXQ_ETH,
.hash_types_n = 1,
},
};
#define IND_TABLE_INIT_N RTE_DIM(ind_table_init)
/* Default RSS hash key also used for ConnectX-3. */
uint8_t rss_hash_default_key[] = {
0x2c, 0xc6, 0x81, 0xd1,
0x5b, 0xdb, 0xf4, 0xf7,
0xfc, 0xa2, 0x83, 0x19,
0xdb, 0x1a, 0x3e, 0x94,
0x6b, 0x9e, 0x38, 0xd9,
0x2c, 0x9c, 0x03, 0xd1,
0xad, 0x99, 0x44, 0xa7,
0xd9, 0x56, 0x3d, 0x59,
0x06, 0x3c, 0x25, 0xf3,
0xfc, 0x1f, 0xdc, 0x2a,
};
/* Length of the default RSS hash key. */
const size_t rss_hash_default_key_len = sizeof(rss_hash_default_key);
/**
* Populate flow steering rule for a given hash RX queue type using
* information from hash_rxq_init[]. Nothing is written to flow_attr when
* flow_attr_size is not large enough, but the required size is still returned.
*
* @param priv
* Pointer to private structure.
* @param[out] flow_attr
* Pointer to flow attribute structure to fill. Note that the allocated
* area must be larger and large enough to hold all flow specifications.
* @param flow_attr_size
* Entire size of flow_attr and trailing room for flow specifications.
* @param type
* Hash RX queue type to use for flow steering rule.
*
* @return
* Total size of the flow attribute buffer. No errors are defined.
*/
size_t
priv_flow_attr(struct priv *priv, struct ibv_exp_flow_attr *flow_attr,
size_t flow_attr_size, enum hash_rxq_type type)
{
size_t offset = sizeof(*flow_attr);
const struct hash_rxq_init *init = &hash_rxq_init[type];
assert(priv != NULL);
assert((size_t)type < RTE_DIM(hash_rxq_init));
do {
offset += init->flow_spec.hdr.size;
init = init->underlayer;
} while (init != NULL);
if (offset > flow_attr_size)
return offset;
flow_attr_size = offset;
init = &hash_rxq_init[type];
*flow_attr = (struct ibv_exp_flow_attr){
.type = IBV_EXP_FLOW_ATTR_NORMAL,
/* Priorities < 3 are reserved for flow director. */
.priority = init->flow_priority + 3,
.num_of_specs = 0,
.port = priv->port,
.flags = 0,
};
do {
offset -= init->flow_spec.hdr.size;
memcpy((void *)((uintptr_t)flow_attr + offset),
&init->flow_spec,
init->flow_spec.hdr.size);
++flow_attr->num_of_specs;
init = init->underlayer;
} while (init != NULL);
return flow_attr_size;
}
/**
* Convert hash type position in indirection table initializer to
* hash RX queue type.
*
* @param table
* Indirection table initializer.
* @param pos
* Hash type position.
*
* @return
* Hash RX queue type.
*/
static enum hash_rxq_type
hash_rxq_type_from_pos(const struct ind_table_init *table, unsigned int pos)
{
enum hash_rxq_type type = HASH_RXQ_TCPV4;
assert(pos < table->hash_types_n);
do {
if ((table->hash_types & (1 << type)) && (pos-- == 0))
break;
++type;
} while (1);
return type;
}
/**
* Filter out disabled hash RX queue types from ind_table_init[].
*
* @param priv
* Pointer to private structure.
* @param[out] table
* Output table.
*
* @return
* Number of table entries.
*/
static unsigned int
priv_make_ind_table_init(struct priv *priv,
struct ind_table_init (*table)[IND_TABLE_INIT_N])
{
uint64_t rss_hf;
unsigned int i;
unsigned int j;
unsigned int table_n = 0;
/* Mandatory to receive frames not handled by normal hash RX queues. */
unsigned int hash_types_sup = 1 << HASH_RXQ_ETH;
rss_hf = priv->rss_hf;
/* Process other protocols only if more than one queue. */
if (priv->rxqs_n > 1)
for (i = 0; (i != hash_rxq_init_n); ++i)
if (rss_hf & hash_rxq_init[i].dpdk_rss_hf)
hash_types_sup |= (1 << i);
/* Filter out entries whose protocols are not in the set. */
for (i = 0, j = 0; (i != IND_TABLE_INIT_N); ++i) {
unsigned int nb;
unsigned int h;
/* j is increased only if the table has valid protocols. */
assert(j <= i);
(*table)[j] = ind_table_init[i];
(*table)[j].hash_types &= hash_types_sup;
for (h = 0, nb = 0; (h != hash_rxq_init_n); ++h)
if (((*table)[j].hash_types >> h) & 0x1)
++nb;
(*table)[i].hash_types_n = nb;
if (nb) {
++table_n;
++j;
}
}
return table_n;
}
/**
* Initialize hash RX queues and indirection table.
*
* @param priv
* Pointer to private structure.
*
* @return
* 0 on success, errno value on failure.
*/
int
priv_create_hash_rxqs(struct priv *priv)
{
struct ibv_exp_wq *wqs[priv->reta_idx_n];
struct ind_table_init ind_table_init[IND_TABLE_INIT_N];
unsigned int ind_tables_n =
priv_make_ind_table_init(priv, &ind_table_init);
unsigned int hash_rxqs_n = 0;
struct hash_rxq (*hash_rxqs)[] = NULL;
struct ibv_exp_rwq_ind_table *(*ind_tables)[] = NULL;
unsigned int i;
unsigned int j;
unsigned int k;
int err = 0;
assert(priv->ind_tables == NULL);
assert(priv->ind_tables_n == 0);
assert(priv->hash_rxqs == NULL);
assert(priv->hash_rxqs_n == 0);
assert(priv->pd != NULL);
assert(priv->ctx != NULL);
if (priv->rxqs_n == 0)
return EINVAL;
assert(priv->rxqs != NULL);
if (ind_tables_n == 0) {
ERROR("all hash RX queue types have been filtered out,"
" indirection table cannot be created");
return EINVAL;
}
if (priv->rxqs_n & (priv->rxqs_n - 1)) {
INFO("%u RX queues are configured, consider rounding this"
" number to the next power of two for better balancing",
priv->rxqs_n);
DEBUG("indirection table extended to assume %u WQs",
priv->reta_idx_n);
}
for (i = 0; (i != priv->reta_idx_n); ++i) {
struct rxq_ctrl *rxq_ctrl;
rxq_ctrl = container_of((*priv->rxqs)[(*priv->reta_idx)[i]],
struct rxq_ctrl, rxq);
wqs[i] = rxq_ctrl->wq;
}
/* Get number of hash RX queues to configure. */
for (i = 0, hash_rxqs_n = 0; (i != ind_tables_n); ++i)
hash_rxqs_n += ind_table_init[i].hash_types_n;
DEBUG("allocating %u hash RX queues for %u WQs, %u indirection tables",
hash_rxqs_n, priv->rxqs_n, ind_tables_n);
/* Create indirection tables. */
ind_tables = rte_calloc(__func__, ind_tables_n,
sizeof((*ind_tables)[0]), 0);
if (ind_tables == NULL) {
err = ENOMEM;
ERROR("cannot allocate indirection tables container: %s",
strerror(err));
goto error;
}
for (i = 0; (i != ind_tables_n); ++i) {
struct ibv_exp_rwq_ind_table_init_attr ind_init_attr = {
.pd = priv->pd,
.log_ind_tbl_size = 0, /* Set below. */
.ind_tbl = wqs,
.comp_mask = 0,
};
unsigned int ind_tbl_size = ind_table_init[i].max_size;
struct ibv_exp_rwq_ind_table *ind_table;
if (priv->reta_idx_n < ind_tbl_size)
ind_tbl_size = priv->reta_idx_n;
ind_init_attr.log_ind_tbl_size = log2above(ind_tbl_size);
errno = 0;
ind_table = ibv_exp_create_rwq_ind_table(priv->ctx,
&ind_init_attr);
if (ind_table != NULL) {
(*ind_tables)[i] = ind_table;
continue;
}
/* Not clear whether errno is set. */
err = (errno ? errno : EINVAL);
ERROR("RX indirection table creation failed with error %d: %s",
err, strerror(err));
goto error;
}
/* Allocate array that holds hash RX queues and related data. */
hash_rxqs = rte_calloc(__func__, hash_rxqs_n,
sizeof((*hash_rxqs)[0]), 0);
if (hash_rxqs == NULL) {
err = ENOMEM;
ERROR("cannot allocate hash RX queues container: %s",
strerror(err));
goto error;
}
for (i = 0, j = 0, k = 0;
((i != hash_rxqs_n) && (j != ind_tables_n));
++i) {
struct hash_rxq *hash_rxq = &(*hash_rxqs)[i];
enum hash_rxq_type type =
hash_rxq_type_from_pos(&ind_table_init[j], k);
struct rte_eth_rss_conf *priv_rss_conf =
(*priv->rss_conf)[type];
struct ibv_exp_rx_hash_conf hash_conf = {
.rx_hash_function = IBV_EXP_RX_HASH_FUNC_TOEPLITZ,
.rx_hash_key_len = (priv_rss_conf ?
priv_rss_conf->rss_key_len :
rss_hash_default_key_len),
.rx_hash_key = (priv_rss_conf ?
priv_rss_conf->rss_key :
rss_hash_default_key),
.rx_hash_fields_mask = hash_rxq_init[type].hash_fields,
.rwq_ind_tbl = (*ind_tables)[j],
};
struct ibv_exp_qp_init_attr qp_init_attr = {
.max_inl_recv = 0, /* Currently not supported. */
.qp_type = IBV_QPT_RAW_PACKET,
.comp_mask = (IBV_EXP_QP_INIT_ATTR_PD |
IBV_EXP_QP_INIT_ATTR_RX_HASH),
.pd = priv->pd,
.rx_hash_conf = &hash_conf,
.port_num = priv->port,
};
DEBUG("using indirection table %u for hash RX queue %u type %d",
j, i, type);
*hash_rxq = (struct hash_rxq){
.priv = priv,
.qp = ibv_exp_create_qp(priv->ctx, &qp_init_attr),
.type = type,
};
if (hash_rxq->qp == NULL) {
err = (errno ? errno : EINVAL);
ERROR("Hash RX QP creation failure: %s",
strerror(err));
goto error;
}
if (++k < ind_table_init[j].hash_types_n)
continue;
/* Switch to the next indirection table and reset hash RX
* queue type array index. */
++j;
k = 0;
}
priv->ind_tables = ind_tables;
priv->ind_tables_n = ind_tables_n;
priv->hash_rxqs = hash_rxqs;
priv->hash_rxqs_n = hash_rxqs_n;
assert(err == 0);
return 0;
error:
if (hash_rxqs != NULL) {
for (i = 0; (i != hash_rxqs_n); ++i) {
struct ibv_qp *qp = (*hash_rxqs)[i].qp;
if (qp == NULL)
continue;
claim_zero(ibv_destroy_qp(qp));
}
rte_free(hash_rxqs);
}
if (ind_tables != NULL) {
for (j = 0; (j != ind_tables_n); ++j) {
struct ibv_exp_rwq_ind_table *ind_table =
(*ind_tables)[j];
if (ind_table == NULL)
continue;
claim_zero(ibv_exp_destroy_rwq_ind_table(ind_table));
}
rte_free(ind_tables);
}
return err;
}
/**
* Clean up hash RX queues and indirection table.
*
* @param priv
* Pointer to private structure.
*/
void
priv_destroy_hash_rxqs(struct priv *priv)
{
unsigned int i;
DEBUG("destroying %u hash RX queues", priv->hash_rxqs_n);
if (priv->hash_rxqs_n == 0) {
assert(priv->hash_rxqs == NULL);
assert(priv->ind_tables == NULL);
return;
}
for (i = 0; (i != priv->hash_rxqs_n); ++i) {
struct hash_rxq *hash_rxq = &(*priv->hash_rxqs)[i];
unsigned int j, k;
assert(hash_rxq->priv == priv);
assert(hash_rxq->qp != NULL);
/* Also check that there are no remaining flows. */
for (j = 0; (j != RTE_DIM(hash_rxq->special_flow)); ++j)
for (k = 0;
(k != RTE_DIM(hash_rxq->special_flow[j]));
++k)
assert(hash_rxq->special_flow[j][k] == NULL);
for (j = 0; (j != RTE_DIM(hash_rxq->mac_flow)); ++j)
for (k = 0; (k != RTE_DIM(hash_rxq->mac_flow[j])); ++k)
assert(hash_rxq->mac_flow[j][k] == NULL);
claim_zero(ibv_destroy_qp(hash_rxq->qp));
}
priv->hash_rxqs_n = 0;
rte_free(priv->hash_rxqs);
priv->hash_rxqs = NULL;
for (i = 0; (i != priv->ind_tables_n); ++i) {
struct ibv_exp_rwq_ind_table *ind_table =
(*priv->ind_tables)[i];
assert(ind_table != NULL);
claim_zero(ibv_exp_destroy_rwq_ind_table(ind_table));
}
priv->ind_tables_n = 0;
rte_free(priv->ind_tables);
priv->ind_tables = NULL;
}
/**
* Check whether a given flow type is allowed.
*
* @param priv
* Pointer to private structure.
* @param type
* Flow type to check.
*
* @return
* Nonzero if the given flow type is allowed.
*/
int
priv_allow_flow_type(struct priv *priv, enum hash_rxq_flow_type type)
{
/* Only FLOW_TYPE_PROMISC is allowed when promiscuous mode
* has been requested. */
if (priv->promisc_req)
return type == HASH_RXQ_FLOW_TYPE_PROMISC;
switch (type) {
case HASH_RXQ_FLOW_TYPE_PROMISC:
return !!priv->promisc_req;
case HASH_RXQ_FLOW_TYPE_ALLMULTI:
return !!priv->allmulti_req;
case HASH_RXQ_FLOW_TYPE_BROADCAST:
case HASH_RXQ_FLOW_TYPE_IPV6MULTI:
/* If allmulti is enabled, broadcast and ipv6multi
* are unnecessary. */
return !priv->allmulti_req;
case HASH_RXQ_FLOW_TYPE_MAC:
return 1;
default:
/* Unsupported flow type is not allowed. */
return 0;
}
return 0;
}
/**
* Automatically enable/disable flows according to configuration.
*
* @param priv
* Private structure.
*
* @return
* 0 on success, errno value on failure.
*/
int
priv_rehash_flows(struct priv *priv)
{
enum hash_rxq_flow_type i;
for (i = HASH_RXQ_FLOW_TYPE_PROMISC;
i != RTE_DIM((*priv->hash_rxqs)[0].special_flow);
++i)
if (!priv_allow_flow_type(priv, i)) {
priv_special_flow_disable(priv, i);
} else {
int ret = priv_special_flow_enable(priv, i);
if (ret)
return ret;
}
if (priv_allow_flow_type(priv, HASH_RXQ_FLOW_TYPE_MAC))
return priv_mac_addrs_enable(priv);
priv_mac_addrs_disable(priv);
return 0;
}
/**
* Allocate RX queue elements.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
* @param elts_n
* Number of elements to allocate.
* @param[in] pool
* If not NULL, fetch buffers from this array instead of allocating them
* with rte_pktmbuf_alloc().
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_alloc_elts(struct rxq_ctrl *rxq_ctrl, unsigned int elts_n,
struct rte_mbuf *(*pool)[])
{
const unsigned int sges_n = 1 << rxq_ctrl->rxq.sges_n;
unsigned int i;
int ret = 0;
/* Iterate on segments. */
for (i = 0; (i != elts_n); ++i) {
struct rte_mbuf *buf;
volatile struct mlx5_wqe_data_seg *scat =
&(*rxq_ctrl->rxq.wqes)[i];
if (pool != NULL) {
buf = (*pool)[i];
assert(buf != NULL);
rte_pktmbuf_reset(buf);
rte_pktmbuf_refcnt_update(buf, 1);
} else
buf = rte_pktmbuf_alloc(rxq_ctrl->rxq.mp);
if (buf == NULL) {
assert(pool == NULL);
ERROR("%p: empty mbuf pool", (void *)rxq_ctrl);
ret = ENOMEM;
goto error;
}
/* Headroom is reserved by rte_pktmbuf_alloc(). */
assert(DATA_OFF(buf) == RTE_PKTMBUF_HEADROOM);
/* Buffer is supposed to be empty. */
assert(rte_pktmbuf_data_len(buf) == 0);
assert(rte_pktmbuf_pkt_len(buf) == 0);
assert(!buf->next);
/* Only the first segment keeps headroom. */
if (i % sges_n)
SET_DATA_OFF(buf, 0);
PORT(buf) = rxq_ctrl->rxq.port_id;
DATA_LEN(buf) = rte_pktmbuf_tailroom(buf);
PKT_LEN(buf) = DATA_LEN(buf);
NB_SEGS(buf) = 1;
/* scat->addr must be able to store a pointer. */
assert(sizeof(scat->addr) >= sizeof(uintptr_t));
*scat = (struct mlx5_wqe_data_seg){
.addr = htonll(rte_pktmbuf_mtod(buf, uintptr_t)),
.byte_count = htonl(DATA_LEN(buf)),
.lkey = htonl(rxq_ctrl->mr->lkey),
};
(*rxq_ctrl->rxq.elts)[i] = buf;
}
DEBUG("%p: allocated and configured %u segments (max %u packets)",
(void *)rxq_ctrl, elts_n, elts_n / (1 << rxq_ctrl->rxq.sges_n));
assert(ret == 0);
return 0;
error:
assert(pool == NULL);
elts_n = i;
for (i = 0; (i != elts_n); ++i) {
if ((*rxq_ctrl->rxq.elts)[i] != NULL)
rte_pktmbuf_free_seg((*rxq_ctrl->rxq.elts)[i]);
(*rxq_ctrl->rxq.elts)[i] = NULL;
}
DEBUG("%p: failed, freed everything", (void *)rxq_ctrl);
assert(ret > 0);
return ret;
}
/**
* Free RX queue elements.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*/
static void
rxq_free_elts(struct rxq_ctrl *rxq_ctrl)
{
unsigned int i;
DEBUG("%p: freeing WRs", (void *)rxq_ctrl);
if (rxq_ctrl->rxq.elts == NULL)
return;
for (i = 0; (i != (1u << rxq_ctrl->rxq.elts_n)); ++i) {
if ((*rxq_ctrl->rxq.elts)[i] != NULL)
rte_pktmbuf_free_seg((*rxq_ctrl->rxq.elts)[i]);
(*rxq_ctrl->rxq.elts)[i] = NULL;
}
}
/**
* Clean up a RX queue.
*
* Destroy objects, free allocated memory and reset the structure for reuse.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*/
void
rxq_cleanup(struct rxq_ctrl *rxq_ctrl)
{
struct ibv_exp_release_intf_params params;
DEBUG("cleaning up %p", (void *)rxq_ctrl);
rxq_free_elts(rxq_ctrl);
if (rxq_ctrl->fdir_queue != NULL)
priv_fdir_queue_destroy(rxq_ctrl->priv, rxq_ctrl->fdir_queue);
if (rxq_ctrl->if_wq != NULL) {
assert(rxq_ctrl->priv != NULL);
assert(rxq_ctrl->priv->ctx != NULL);
assert(rxq_ctrl->wq != NULL);
params = (struct ibv_exp_release_intf_params){
.comp_mask = 0,
};
claim_zero(ibv_exp_release_intf(rxq_ctrl->priv->ctx,
rxq_ctrl->if_wq,
&params));
}
if (rxq_ctrl->if_cq != NULL) {
assert(rxq_ctrl->priv != NULL);
assert(rxq_ctrl->priv->ctx != NULL);
assert(rxq_ctrl->cq != NULL);
params = (struct ibv_exp_release_intf_params){
.comp_mask = 0,
};
claim_zero(ibv_exp_release_intf(rxq_ctrl->priv->ctx,
rxq_ctrl->if_cq,
&params));
}
if (rxq_ctrl->wq != NULL)
claim_zero(ibv_exp_destroy_wq(rxq_ctrl->wq));
if (rxq_ctrl->cq != NULL)
claim_zero(ibv_destroy_cq(rxq_ctrl->cq));
if (rxq_ctrl->rd != NULL) {
struct ibv_exp_destroy_res_domain_attr attr = {
.comp_mask = 0,
};
assert(rxq_ctrl->priv != NULL);
assert(rxq_ctrl->priv->ctx != NULL);
claim_zero(ibv_exp_destroy_res_domain(rxq_ctrl->priv->ctx,
rxq_ctrl->rd,
&attr));
}
if (rxq_ctrl->mr != NULL)
claim_zero(ibv_dereg_mr(rxq_ctrl->mr));
memset(rxq_ctrl, 0, sizeof(*rxq_ctrl));
}
/**
* Reconfigure RX queue buffers.
*
* rxq_rehash() does not allocate mbufs, which, if not done from the right
* thread (such as a control thread), may corrupt the pool.
* In case of failure, the queue is left untouched.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rxq_ctrl
* RX queue pointer.
*
* @return
* 0 on success, errno value on failure.
*/
int
rxq_rehash(struct rte_eth_dev *dev, struct rxq_ctrl *rxq_ctrl)
{
unsigned int elts_n = 1 << rxq_ctrl->rxq.elts_n;
unsigned int i;
struct ibv_exp_wq_attr mod;
int err;
DEBUG("%p: rehashing queue %p with %u SGE(s) per packet",
(void *)dev, (void *)rxq_ctrl, 1 << rxq_ctrl->rxq.sges_n);
assert(!(elts_n % (1 << rxq_ctrl->rxq.sges_n)));
/* From now on, any failure will render the queue unusable.
* Reinitialize WQ. */
mod = (struct ibv_exp_wq_attr){
.attr_mask = IBV_EXP_WQ_ATTR_STATE,
.wq_state = IBV_EXP_WQS_RESET,
};
err = ibv_exp_modify_wq(rxq_ctrl->wq, &mod);
if (err) {
ERROR("%p: cannot reset WQ: %s", (void *)dev, strerror(err));
assert(err > 0);
return err;
}
/* Snatch mbufs from original queue. */
claim_zero(rxq_alloc_elts(rxq_ctrl, elts_n, rxq_ctrl->rxq.elts));
for (i = 0; i != elts_n; ++i) {
struct rte_mbuf *buf = (*rxq_ctrl->rxq.elts)[i];
assert(rte_mbuf_refcnt_read(buf) == 2);
rte_pktmbuf_free_seg(buf);
}
/* Change queue state to ready. */
mod = (struct ibv_exp_wq_attr){
.attr_mask = IBV_EXP_WQ_ATTR_STATE,
.wq_state = IBV_EXP_WQS_RDY,
};
err = ibv_exp_modify_wq(rxq_ctrl->wq, &mod);
if (err) {
ERROR("%p: WQ state to IBV_EXP_WQS_RDY failed: %s",
(void *)dev, strerror(err));
goto error;
}
/* Update doorbell counter. */
rxq_ctrl->rxq.rq_ci = elts_n >> rxq_ctrl->rxq.sges_n;
rte_wmb();
*rxq_ctrl->rxq.rq_db = htonl(rxq_ctrl->rxq.rq_ci);
error:
assert(err >= 0);
return err;
}
/**
* Initialize RX queue.
*
* @param tmpl
* Pointer to RX queue control template.
*
* @return
* 0 on success, errno value on failure.
*/
static inline int
rxq_setup(struct rxq_ctrl *tmpl)
{
struct ibv_cq *ibcq = tmpl->cq;
struct mlx5_cq *cq = to_mxxx(cq, cq);
struct mlx5_rwq *rwq = container_of(tmpl->wq, struct mlx5_rwq, wq);
struct rte_mbuf *(*elts)[1 << tmpl->rxq.elts_n] =
rte_calloc_socket("RXQ", 1, sizeof(*elts), 0, tmpl->socket);
if (cq->cqe_sz != RTE_CACHE_LINE_SIZE) {
ERROR("Wrong MLX5_CQE_SIZE environment variable value: "
"it should be set to %u", RTE_CACHE_LINE_SIZE);
return EINVAL;
}
if (elts == NULL)
return ENOMEM;
tmpl->rxq.rq_db = rwq->rq.db;
tmpl->rxq.cqe_n = log2above(ibcq->cqe);
tmpl->rxq.cq_ci = 0;
tmpl->rxq.rq_ci = 0;
tmpl->rxq.cq_db = cq->dbrec;
tmpl->rxq.wqes =
(volatile struct mlx5_wqe_data_seg (*)[])
(uintptr_t)rwq->rq.buff;
tmpl->rxq.cqes =
(volatile struct mlx5_cqe (*)[])
(uintptr_t)cq->active_buf->buf;
tmpl->rxq.elts = elts;
return 0;
}
/**
* Configure a RX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rxq_ctrl
* Pointer to RX queue structure.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, errno value on failure.
*/
int
rxq_ctrl_setup(struct rte_eth_dev *dev, struct rxq_ctrl *rxq_ctrl,
uint16_t desc, unsigned int socket,
const struct rte_eth_rxconf *conf, struct rte_mempool *mp)
{
struct priv *priv = dev->data->dev_private;
struct rxq_ctrl tmpl = {
.priv = priv,
.socket = socket,
.rxq = {
.elts_n = log2above(desc),
.mp = mp,
.rss_hash = priv->rxqs_n > 1,
},
};
struct ibv_exp_wq_attr mod;
union {
struct ibv_exp_query_intf_params params;
struct ibv_exp_cq_init_attr cq;
struct ibv_exp_res_domain_init_attr rd;
struct ibv_exp_wq_init_attr wq;
struct ibv_exp_cq_attr cq_attr;
} attr;
enum ibv_exp_query_intf_status status;
unsigned int mb_len = rte_pktmbuf_data_room_size(mp);
unsigned int cqe_n = desc - 1;
struct rte_mbuf *(*elts)[desc] = NULL;
int ret = 0;
(void)conf; /* Thresholds configuration (ignored). */
/* Enable scattered packets support for this queue if necessary. */
assert(mb_len >= RTE_PKTMBUF_HEADROOM);
/* If smaller than MRU, multi-segment support must be enabled. */
if (mb_len < (priv->mtu > dev->data->dev_conf.rxmode.max_rx_pkt_len ?
dev->data->dev_conf.rxmode.max_rx_pkt_len :
priv->mtu))
dev->data->dev_conf.rxmode.jumbo_frame = 1;
if ((dev->data->dev_conf.rxmode.jumbo_frame) &&
(dev->data->dev_conf.rxmode.max_rx_pkt_len >
(mb_len - RTE_PKTMBUF_HEADROOM))) {
unsigned int size =
RTE_PKTMBUF_HEADROOM +
dev->data->dev_conf.rxmode.max_rx_pkt_len;
unsigned int sges_n;
/*
* Determine the number of SGEs needed for a full packet
* and round it to the next power of two.
*/
sges_n = log2above((size / mb_len) + !!(size % mb_len));
tmpl.rxq.sges_n = sges_n;
/* Make sure rxq.sges_n did not overflow. */
size = mb_len * (1 << tmpl.rxq.sges_n);
size -= RTE_PKTMBUF_HEADROOM;
if (size < dev->data->dev_conf.rxmode.max_rx_pkt_len) {
ERROR("%p: too many SGEs (%u) needed to handle"
" requested maximum packet size %u",
(void *)dev,
1 << sges_n,
dev->data->dev_conf.rxmode.max_rx_pkt_len);
return EOVERFLOW;
}
}
DEBUG("%p: maximum number of segments per packet: %u",
(void *)dev, 1 << tmpl.rxq.sges_n);
if (desc % (1 << tmpl.rxq.sges_n)) {
ERROR("%p: number of RX queue descriptors (%u) is not a"
" multiple of SGEs per packet (%u)",
(void *)dev,
desc,
1 << tmpl.rxq.sges_n);
return EINVAL;
}
/* Toggle RX checksum offload if hardware supports it. */
if (priv->hw_csum)
tmpl.rxq.csum = !!dev->data->dev_conf.rxmode.hw_ip_checksum;
if (priv->hw_csum_l2tun)
tmpl.rxq.csum_l2tun =
!!dev->data->dev_conf.rxmode.hw_ip_checksum;
/* Use the entire RX mempool as the memory region. */
tmpl.mr = mlx5_mp2mr(priv->pd, mp);
if (tmpl.mr == NULL) {
ret = EINVAL;
ERROR("%p: MR creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
attr.rd = (struct ibv_exp_res_domain_init_attr){
.comp_mask = (IBV_EXP_RES_DOMAIN_THREAD_MODEL |
IBV_EXP_RES_DOMAIN_MSG_MODEL),
.thread_model = IBV_EXP_THREAD_SINGLE,
.msg_model = IBV_EXP_MSG_HIGH_BW,
};
tmpl.rd = ibv_exp_create_res_domain(priv->ctx, &attr.rd);
if (tmpl.rd == NULL) {
ret = ENOMEM;
ERROR("%p: RD creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
attr.cq = (struct ibv_exp_cq_init_attr){
.comp_mask = IBV_EXP_CQ_INIT_ATTR_RES_DOMAIN,
.res_domain = tmpl.rd,
};
if (priv->cqe_comp) {
attr.cq.comp_mask |= IBV_EXP_CQ_INIT_ATTR_FLAGS;
attr.cq.flags |= IBV_EXP_CQ_COMPRESSED_CQE;
cqe_n = (desc * 2) - 1; /* Double the number of CQEs. */
}
tmpl.cq = ibv_exp_create_cq(priv->ctx, cqe_n, NULL, NULL, 0,
&attr.cq);
if (tmpl.cq == NULL) {
ret = ENOMEM;
ERROR("%p: CQ creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
DEBUG("priv->device_attr.max_qp_wr is %d",
priv->device_attr.max_qp_wr);
DEBUG("priv->device_attr.max_sge is %d",
priv->device_attr.max_sge);
/* Configure VLAN stripping. */
tmpl.rxq.vlan_strip = (priv->hw_vlan_strip &&
!!dev->data->dev_conf.rxmode.hw_vlan_strip);
attr.wq = (struct ibv_exp_wq_init_attr){
.wq_context = NULL, /* Could be useful in the future. */
.wq_type = IBV_EXP_WQT_RQ,
/* Max number of outstanding WRs. */
.max_recv_wr = desc >> tmpl.rxq.sges_n,
/* Max number of scatter/gather elements in a WR. */
.max_recv_sge = 1 << tmpl.rxq.sges_n,
.pd = priv->pd,
.cq = tmpl.cq,
.comp_mask =
IBV_EXP_CREATE_WQ_RES_DOMAIN |
IBV_EXP_CREATE_WQ_VLAN_OFFLOADS |
0,
.res_domain = tmpl.rd,
.vlan_offloads = (tmpl.rxq.vlan_strip ?
IBV_EXP_RECEIVE_WQ_CVLAN_STRIP :
0),
};
/* By default, FCS (CRC) is stripped by hardware. */
if (dev->data->dev_conf.rxmode.hw_strip_crc) {
tmpl.rxq.crc_present = 0;
} else if (priv->hw_fcs_strip) {
/* Ask HW/Verbs to leave CRC in place when supported. */
attr.wq.flags |= IBV_EXP_CREATE_WQ_FLAG_SCATTER_FCS;
attr.wq.comp_mask |= IBV_EXP_CREATE_WQ_FLAGS;
tmpl.rxq.crc_present = 1;
} else {
WARN("%p: CRC stripping has been disabled but will still"
" be performed by hardware, make sure MLNX_OFED and"
" firmware are up to date",
(void *)dev);
tmpl.rxq.crc_present = 0;
}
DEBUG("%p: CRC stripping is %s, %u bytes will be subtracted from"
" incoming frames to hide it",
(void *)dev,
tmpl.rxq.crc_present ? "disabled" : "enabled",
tmpl.rxq.crc_present << 2);
if (!mlx5_getenv_int("MLX5_PMD_ENABLE_PADDING"))
; /* Nothing else to do. */
else if (priv->hw_padding) {
INFO("%p: enabling packet padding on queue %p",
(void *)dev, (void *)rxq_ctrl);
attr.wq.flags |= IBV_EXP_CREATE_WQ_FLAG_RX_END_PADDING;
attr.wq.comp_mask |= IBV_EXP_CREATE_WQ_FLAGS;
} else
WARN("%p: packet padding has been requested but is not"
" supported, make sure MLNX_OFED and firmware are"
" up to date",
(void *)dev);
tmpl.wq = ibv_exp_create_wq(priv->ctx, &attr.wq);
if (tmpl.wq == NULL) {
ret = (errno ? errno : EINVAL);
ERROR("%p: WQ creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
/*
* Make sure number of WRs*SGEs match expectations since a queue
* cannot allocate more than "desc" buffers.
*/
if (((int)attr.wq.max_recv_wr != (desc >> tmpl.rxq.sges_n)) ||
((int)attr.wq.max_recv_sge != (1 << tmpl.rxq.sges_n))) {
ERROR("%p: requested %u*%u but got %u*%u WRs*SGEs",
(void *)dev,
(desc >> tmpl.rxq.sges_n), (1 << tmpl.rxq.sges_n),
attr.wq.max_recv_wr, attr.wq.max_recv_sge);
ret = EINVAL;
goto error;
}
/* Save port ID. */
tmpl.rxq.port_id = dev->data->port_id;
DEBUG("%p: RTE port ID: %u", (void *)rxq_ctrl, tmpl.rxq.port_id);
attr.params = (struct ibv_exp_query_intf_params){
.intf_scope = IBV_EXP_INTF_GLOBAL,
.intf_version = 1,
.intf = IBV_EXP_INTF_CQ,
.obj = tmpl.cq,
};
tmpl.if_cq = ibv_exp_query_intf(priv->ctx, &attr.params, &status);
if (tmpl.if_cq == NULL) {
ERROR("%p: CQ interface family query failed with status %d",
(void *)dev, status);
goto error;
}
attr.params = (struct ibv_exp_query_intf_params){
.intf_scope = IBV_EXP_INTF_GLOBAL,
.intf = IBV_EXP_INTF_WQ,
.obj = tmpl.wq,
};
tmpl.if_wq = ibv_exp_query_intf(priv->ctx, &attr.params, &status);
if (tmpl.if_wq == NULL) {
ERROR("%p: WQ interface family query failed with status %d",
(void *)dev, status);
goto error;
}
/* Change queue state to ready. */
mod = (struct ibv_exp_wq_attr){
.attr_mask = IBV_EXP_WQ_ATTR_STATE,
.wq_state = IBV_EXP_WQS_RDY,
};
ret = ibv_exp_modify_wq(tmpl.wq, &mod);
if (ret) {
ERROR("%p: WQ state to IBV_EXP_WQS_RDY failed: %s",
(void *)dev, strerror(ret));
goto error;
}
ret = rxq_setup(&tmpl);
if (ret) {
ERROR("%p: cannot initialize RX queue structure: %s",
(void *)dev, strerror(ret));
goto error;
}
/* Reuse buffers from original queue if possible. */
if (rxq_ctrl->rxq.elts_n) {
assert(1 << rxq_ctrl->rxq.elts_n == desc);
assert(rxq_ctrl->rxq.elts != tmpl.rxq.elts);
ret = rxq_alloc_elts(&tmpl, desc, rxq_ctrl->rxq.elts);
} else
ret = rxq_alloc_elts(&tmpl, desc, NULL);
if (ret) {
ERROR("%p: RXQ allocation failed: %s",
(void *)dev, strerror(ret));
goto error;
}
/* Clean up rxq in case we're reinitializing it. */
DEBUG("%p: cleaning-up old rxq just in case", (void *)rxq_ctrl);
rxq_cleanup(rxq_ctrl);
/* Move mbuf pointers to dedicated storage area in RX queue. */
elts = (void *)(rxq_ctrl + 1);
rte_memcpy(elts, tmpl.rxq.elts, sizeof(*elts));
#ifndef NDEBUG
memset(tmpl.rxq.elts, 0x55, sizeof(*elts));
#endif
rte_free(tmpl.rxq.elts);
tmpl.rxq.elts = elts;
*rxq_ctrl = tmpl;
/* Update doorbell counter. */
rxq_ctrl->rxq.rq_ci = desc >> rxq_ctrl->rxq.sges_n;
rte_wmb();
*rxq_ctrl->rxq.rq_db = htonl(rxq_ctrl->rxq.rq_ci);
DEBUG("%p: rxq updated with %p", (void *)rxq_ctrl, (void *)&tmpl);
assert(ret == 0);
return 0;
error:
elts = tmpl.rxq.elts;
rxq_cleanup(&tmpl);
rte_free(elts);
assert(ret > 0);
return ret;
}
/**
* DPDK callback to configure a RX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, negative errno value on failure.
*/
int
mlx5_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct priv *priv = dev->data->dev_private;
struct rxq *rxq = (*priv->rxqs)[idx];
struct rxq_ctrl *rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
int ret;
if (mlx5_is_secondary())
return -E_RTE_SECONDARY;
priv_lock(priv);
if (!rte_is_power_of_2(desc)) {
desc = 1 << log2above(desc);
WARN("%p: increased number of descriptors in RX queue %u"
" to the next power of two (%d)",
(void *)dev, idx, desc);
}
DEBUG("%p: configuring queue %u for %u descriptors",
(void *)dev, idx, desc);
if (idx >= priv->rxqs_n) {
ERROR("%p: queue index out of range (%u >= %u)",
(void *)dev, idx, priv->rxqs_n);
priv_unlock(priv);
return -EOVERFLOW;
}
if (rxq != NULL) {
DEBUG("%p: reusing already allocated queue index %u (%p)",
(void *)dev, idx, (void *)rxq);
if (priv->started) {
priv_unlock(priv);
return -EEXIST;
}
(*priv->rxqs)[idx] = NULL;
rxq_cleanup(rxq_ctrl);
} else {
rxq_ctrl = rte_calloc_socket("RXQ", 1, sizeof(*rxq_ctrl) +
desc * sizeof(struct rte_mbuf *),
0, socket);
if (rxq_ctrl == NULL) {
ERROR("%p: unable to allocate queue index %u",
(void *)dev, idx);
priv_unlock(priv);
return -ENOMEM;
}
}
ret = rxq_ctrl_setup(dev, rxq_ctrl, desc, socket, conf, mp);
if (ret)
rte_free(rxq_ctrl);
else {
rxq_ctrl->rxq.stats.idx = idx;
DEBUG("%p: adding RX queue %p to list",
(void *)dev, (void *)rxq_ctrl);
(*priv->rxqs)[idx] = &rxq_ctrl->rxq;
/* Update receive callback. */
priv_select_rx_function(priv);
}
priv_unlock(priv);
return -ret;
}
/**
* DPDK callback to release a RX queue.
*
* @param dpdk_rxq
* Generic RX queue pointer.
*/
void
mlx5_rx_queue_release(void *dpdk_rxq)
{
struct rxq *rxq = (struct rxq *)dpdk_rxq;
struct rxq_ctrl *rxq_ctrl;
struct priv *priv;
unsigned int i;
if (mlx5_is_secondary())
return;
if (rxq == NULL)
return;
rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
priv = rxq_ctrl->priv;
priv_lock(priv);
for (i = 0; (i != priv->rxqs_n); ++i)
if ((*priv->rxqs)[i] == rxq) {
DEBUG("%p: removing RX queue %p from list",
(void *)priv->dev, (void *)rxq_ctrl);
(*priv->rxqs)[i] = NULL;
break;
}
rxq_cleanup(rxq_ctrl);
rte_free(rxq_ctrl);
priv_unlock(priv);
}
/**
* DPDK callback for RX in secondary processes.
*
* This function configures all queues from primary process information
* if necessary before reverting to the normal RX burst callback.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst_secondary_setup(void *dpdk_rxq, struct rte_mbuf **pkts,
uint16_t pkts_n)
{
struct rxq *rxq = dpdk_rxq;
struct rxq_ctrl *rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
struct priv *priv = mlx5_secondary_data_setup(rxq_ctrl->priv);
struct priv *primary_priv;
unsigned int index;
if (priv == NULL)
return 0;
primary_priv =
mlx5_secondary_data[priv->dev->data->port_id].primary_priv;
/* Look for queue index in both private structures. */
for (index = 0; index != priv->rxqs_n; ++index)
if (((*primary_priv->rxqs)[index] == rxq) ||
((*priv->rxqs)[index] == rxq))
break;
if (index == priv->rxqs_n)
return 0;
rxq = (*priv->rxqs)[index];
return priv->dev->rx_pkt_burst(rxq, pkts, pkts_n);
}