2a5106af13
IPSec application is using index 0 of SA table as error, with current value of IPSEC_SA_MAX_ENTRIES(128) it can not support SA with spi = 128, as it uses sa_idx = 0 in the SA table. With this patch, sa_idx = 0 can also be used. PS: spi = 0 is an invalid SPI and application throws error for it. Fixes: d299106e8e31 ("examples/ipsec-secgw: add IPsec sample application") Cc: stable@dpdk.org Signed-off-by: Akhil Goyal <akhil.goyal@nxp.com> Acked-by: Radu Nicolau <radu.nicolau@intel.com>
1003 lines
23 KiB
C
1003 lines
23 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2016-2017 Intel Corporation
|
|
*/
|
|
|
|
/*
|
|
* Security Associations
|
|
*/
|
|
#include <sys/types.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
|
|
#include <rte_memzone.h>
|
|
#include <rte_crypto.h>
|
|
#include <rte_security.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_random.h>
|
|
#include <rte_ethdev.h>
|
|
|
|
#include "ipsec.h"
|
|
#include "esp.h"
|
|
#include "parser.h"
|
|
|
|
#define IPDEFTTL 64
|
|
|
|
struct supported_cipher_algo {
|
|
const char *keyword;
|
|
enum rte_crypto_cipher_algorithm algo;
|
|
uint16_t iv_len;
|
|
uint16_t block_size;
|
|
uint16_t key_len;
|
|
};
|
|
|
|
struct supported_auth_algo {
|
|
const char *keyword;
|
|
enum rte_crypto_auth_algorithm algo;
|
|
uint16_t digest_len;
|
|
uint16_t key_len;
|
|
uint8_t key_not_req;
|
|
};
|
|
|
|
struct supported_aead_algo {
|
|
const char *keyword;
|
|
enum rte_crypto_aead_algorithm algo;
|
|
uint16_t iv_len;
|
|
uint16_t block_size;
|
|
uint16_t digest_len;
|
|
uint16_t key_len;
|
|
uint8_t aad_len;
|
|
};
|
|
|
|
|
|
const struct supported_cipher_algo cipher_algos[] = {
|
|
{
|
|
.keyword = "null",
|
|
.algo = RTE_CRYPTO_CIPHER_NULL,
|
|
.iv_len = 0,
|
|
.block_size = 4,
|
|
.key_len = 0
|
|
},
|
|
{
|
|
.keyword = "aes-128-cbc",
|
|
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
|
|
.iv_len = 16,
|
|
.block_size = 16,
|
|
.key_len = 16
|
|
},
|
|
{
|
|
.keyword = "aes-128-ctr",
|
|
.algo = RTE_CRYPTO_CIPHER_AES_CTR,
|
|
.iv_len = 8,
|
|
.block_size = 16, /* XXX AESNI MB limition, should be 4 */
|
|
.key_len = 20
|
|
}
|
|
};
|
|
|
|
const struct supported_auth_algo auth_algos[] = {
|
|
{
|
|
.keyword = "null",
|
|
.algo = RTE_CRYPTO_AUTH_NULL,
|
|
.digest_len = 0,
|
|
.key_len = 0,
|
|
.key_not_req = 1
|
|
},
|
|
{
|
|
.keyword = "sha1-hmac",
|
|
.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
|
|
.digest_len = 12,
|
|
.key_len = 20
|
|
},
|
|
{
|
|
.keyword = "sha256-hmac",
|
|
.algo = RTE_CRYPTO_AUTH_SHA256_HMAC,
|
|
.digest_len = 12,
|
|
.key_len = 32
|
|
}
|
|
};
|
|
|
|
const struct supported_aead_algo aead_algos[] = {
|
|
{
|
|
.keyword = "aes-128-gcm",
|
|
.algo = RTE_CRYPTO_AEAD_AES_GCM,
|
|
.iv_len = 8,
|
|
.block_size = 4,
|
|
.key_len = 20,
|
|
.digest_len = 16,
|
|
.aad_len = 8,
|
|
}
|
|
};
|
|
|
|
struct ipsec_sa sa_out[IPSEC_SA_MAX_ENTRIES];
|
|
uint32_t nb_sa_out;
|
|
|
|
struct ipsec_sa sa_in[IPSEC_SA_MAX_ENTRIES];
|
|
uint32_t nb_sa_in;
|
|
|
|
static const struct supported_cipher_algo *
|
|
find_match_cipher_algo(const char *cipher_keyword)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < RTE_DIM(cipher_algos); i++) {
|
|
const struct supported_cipher_algo *algo =
|
|
&cipher_algos[i];
|
|
|
|
if (strcmp(cipher_keyword, algo->keyword) == 0)
|
|
return algo;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const struct supported_auth_algo *
|
|
find_match_auth_algo(const char *auth_keyword)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < RTE_DIM(auth_algos); i++) {
|
|
const struct supported_auth_algo *algo =
|
|
&auth_algos[i];
|
|
|
|
if (strcmp(auth_keyword, algo->keyword) == 0)
|
|
return algo;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const struct supported_aead_algo *
|
|
find_match_aead_algo(const char *aead_keyword)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < RTE_DIM(aead_algos); i++) {
|
|
const struct supported_aead_algo *algo =
|
|
&aead_algos[i];
|
|
|
|
if (strcmp(aead_keyword, algo->keyword) == 0)
|
|
return algo;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/** parse_key_string
|
|
* parse x:x:x:x.... hex number key string into uint8_t *key
|
|
* return:
|
|
* > 0: number of bytes parsed
|
|
* 0: failed
|
|
*/
|
|
static uint32_t
|
|
parse_key_string(const char *key_str, uint8_t *key)
|
|
{
|
|
const char *pt_start = key_str, *pt_end = key_str;
|
|
uint32_t nb_bytes = 0;
|
|
|
|
while (pt_end != NULL) {
|
|
char sub_str[3] = {0};
|
|
|
|
pt_end = strchr(pt_start, ':');
|
|
|
|
if (pt_end == NULL) {
|
|
if (strlen(pt_start) > 2)
|
|
return 0;
|
|
strncpy(sub_str, pt_start, 2);
|
|
} else {
|
|
if (pt_end - pt_start > 2)
|
|
return 0;
|
|
|
|
strncpy(sub_str, pt_start, pt_end - pt_start);
|
|
pt_start = pt_end + 1;
|
|
}
|
|
|
|
key[nb_bytes++] = strtol(sub_str, NULL, 16);
|
|
}
|
|
|
|
return nb_bytes;
|
|
}
|
|
|
|
void
|
|
parse_sa_tokens(char **tokens, uint32_t n_tokens,
|
|
struct parse_status *status)
|
|
{
|
|
struct ipsec_sa *rule = NULL;
|
|
uint32_t ti; /*token index*/
|
|
uint32_t *ri /*rule index*/;
|
|
uint32_t cipher_algo_p = 0;
|
|
uint32_t auth_algo_p = 0;
|
|
uint32_t aead_algo_p = 0;
|
|
uint32_t src_p = 0;
|
|
uint32_t dst_p = 0;
|
|
uint32_t mode_p = 0;
|
|
uint32_t type_p = 0;
|
|
uint32_t portid_p = 0;
|
|
|
|
if (strcmp(tokens[0], "in") == 0) {
|
|
ri = &nb_sa_in;
|
|
|
|
APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
|
|
"too many sa rules, abort insertion\n");
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
rule = &sa_in[*ri];
|
|
} else {
|
|
ri = &nb_sa_out;
|
|
|
|
APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
|
|
"too many sa rules, abort insertion\n");
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
rule = &sa_out[*ri];
|
|
}
|
|
|
|
/* spi number */
|
|
APP_CHECK_TOKEN_IS_NUM(tokens, 1, status);
|
|
if (status->status < 0)
|
|
return;
|
|
if (atoi(tokens[1]) == INVALID_SPI)
|
|
return;
|
|
rule->spi = atoi(tokens[1]);
|
|
|
|
for (ti = 2; ti < n_tokens; ti++) {
|
|
if (strcmp(tokens[ti], "mode") == 0) {
|
|
APP_CHECK_PRESENCE(mode_p, tokens[ti], status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
if (strcmp(tokens[ti], "ipv4-tunnel") == 0)
|
|
rule->flags = IP4_TUNNEL;
|
|
else if (strcmp(tokens[ti], "ipv6-tunnel") == 0)
|
|
rule->flags = IP6_TUNNEL;
|
|
else if (strcmp(tokens[ti], "transport") == 0)
|
|
rule->flags = TRANSPORT;
|
|
else {
|
|
APP_CHECK(0, status, "unrecognized "
|
|
"input \"%s\"", tokens[ti]);
|
|
return;
|
|
}
|
|
|
|
mode_p = 1;
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(tokens[ti], "cipher_algo") == 0) {
|
|
const struct supported_cipher_algo *algo;
|
|
uint32_t key_len;
|
|
|
|
APP_CHECK_PRESENCE(cipher_algo_p, tokens[ti],
|
|
status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
algo = find_match_cipher_algo(tokens[ti]);
|
|
|
|
APP_CHECK(algo != NULL, status, "unrecognized "
|
|
"input \"%s\"", tokens[ti]);
|
|
|
|
rule->cipher_algo = algo->algo;
|
|
rule->block_size = algo->block_size;
|
|
rule->iv_len = algo->iv_len;
|
|
rule->cipher_key_len = algo->key_len;
|
|
|
|
/* for NULL algorithm, no cipher key required */
|
|
if (rule->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
|
|
cipher_algo_p = 1;
|
|
continue;
|
|
}
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
APP_CHECK(strcmp(tokens[ti], "cipher_key") == 0,
|
|
status, "unrecognized input \"%s\", "
|
|
"expect \"cipher_key\"", tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
key_len = parse_key_string(tokens[ti],
|
|
rule->cipher_key);
|
|
APP_CHECK(key_len == rule->cipher_key_len, status,
|
|
"unrecognized input \"%s\"", tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
if (algo->algo == RTE_CRYPTO_CIPHER_AES_CBC)
|
|
rule->salt = (uint32_t)rte_rand();
|
|
|
|
if (algo->algo == RTE_CRYPTO_CIPHER_AES_CTR) {
|
|
key_len -= 4;
|
|
rule->cipher_key_len = key_len;
|
|
memcpy(&rule->salt,
|
|
&rule->cipher_key[key_len], 4);
|
|
}
|
|
|
|
cipher_algo_p = 1;
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(tokens[ti], "auth_algo") == 0) {
|
|
const struct supported_auth_algo *algo;
|
|
uint32_t key_len;
|
|
|
|
APP_CHECK_PRESENCE(auth_algo_p, tokens[ti],
|
|
status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
algo = find_match_auth_algo(tokens[ti]);
|
|
APP_CHECK(algo != NULL, status, "unrecognized "
|
|
"input \"%s\"", tokens[ti]);
|
|
|
|
rule->auth_algo = algo->algo;
|
|
rule->auth_key_len = algo->key_len;
|
|
rule->digest_len = algo->digest_len;
|
|
|
|
/* NULL algorithm and combined algos do not
|
|
* require auth key
|
|
*/
|
|
if (algo->key_not_req) {
|
|
auth_algo_p = 1;
|
|
continue;
|
|
}
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
APP_CHECK(strcmp(tokens[ti], "auth_key") == 0,
|
|
status, "unrecognized input \"%s\", "
|
|
"expect \"auth_key\"", tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
key_len = parse_key_string(tokens[ti],
|
|
rule->auth_key);
|
|
APP_CHECK(key_len == rule->auth_key_len, status,
|
|
"unrecognized input \"%s\"", tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
auth_algo_p = 1;
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(tokens[ti], "aead_algo") == 0) {
|
|
const struct supported_aead_algo *algo;
|
|
uint32_t key_len;
|
|
|
|
APP_CHECK_PRESENCE(aead_algo_p, tokens[ti],
|
|
status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
algo = find_match_aead_algo(tokens[ti]);
|
|
|
|
APP_CHECK(algo != NULL, status, "unrecognized "
|
|
"input \"%s\"", tokens[ti]);
|
|
|
|
rule->aead_algo = algo->algo;
|
|
rule->cipher_key_len = algo->key_len;
|
|
rule->digest_len = algo->digest_len;
|
|
rule->aad_len = algo->aad_len;
|
|
rule->block_size = algo->block_size;
|
|
rule->iv_len = algo->iv_len;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
APP_CHECK(strcmp(tokens[ti], "aead_key") == 0,
|
|
status, "unrecognized input \"%s\", "
|
|
"expect \"aead_key\"", tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
key_len = parse_key_string(tokens[ti],
|
|
rule->cipher_key);
|
|
APP_CHECK(key_len == rule->cipher_key_len, status,
|
|
"unrecognized input \"%s\"", tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
key_len -= 4;
|
|
rule->cipher_key_len = key_len;
|
|
memcpy(&rule->salt,
|
|
&rule->cipher_key[key_len], 4);
|
|
|
|
aead_algo_p = 1;
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(tokens[ti], "src") == 0) {
|
|
APP_CHECK_PRESENCE(src_p, tokens[ti], status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
if (rule->flags == IP4_TUNNEL) {
|
|
struct in_addr ip;
|
|
|
|
APP_CHECK(parse_ipv4_addr(tokens[ti],
|
|
&ip, NULL) == 0, status,
|
|
"unrecognized input \"%s\", "
|
|
"expect valid ipv4 addr",
|
|
tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
rule->src.ip.ip4 = rte_bswap32(
|
|
(uint32_t)ip.s_addr);
|
|
} else if (rule->flags == IP6_TUNNEL) {
|
|
struct in6_addr ip;
|
|
|
|
APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
|
|
NULL) == 0, status,
|
|
"unrecognized input \"%s\", "
|
|
"expect valid ipv6 addr",
|
|
tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
memcpy(rule->src.ip.ip6.ip6_b,
|
|
ip.s6_addr, 16);
|
|
} else if (rule->flags == TRANSPORT) {
|
|
APP_CHECK(0, status, "unrecognized input "
|
|
"\"%s\"", tokens[ti]);
|
|
return;
|
|
}
|
|
|
|
src_p = 1;
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(tokens[ti], "dst") == 0) {
|
|
APP_CHECK_PRESENCE(dst_p, tokens[ti], status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
if (rule->flags == IP4_TUNNEL) {
|
|
struct in_addr ip;
|
|
|
|
APP_CHECK(parse_ipv4_addr(tokens[ti],
|
|
&ip, NULL) == 0, status,
|
|
"unrecognized input \"%s\", "
|
|
"expect valid ipv4 addr",
|
|
tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
rule->dst.ip.ip4 = rte_bswap32(
|
|
(uint32_t)ip.s_addr);
|
|
} else if (rule->flags == IP6_TUNNEL) {
|
|
struct in6_addr ip;
|
|
|
|
APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
|
|
NULL) == 0, status,
|
|
"unrecognized input \"%s\", "
|
|
"expect valid ipv6 addr",
|
|
tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
memcpy(rule->dst.ip.ip6.ip6_b, ip.s6_addr, 16);
|
|
} else if (rule->flags == TRANSPORT) {
|
|
APP_CHECK(0, status, "unrecognized "
|
|
"input \"%s\"", tokens[ti]);
|
|
return;
|
|
}
|
|
|
|
dst_p = 1;
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(tokens[ti], "type") == 0) {
|
|
APP_CHECK_PRESENCE(type_p, tokens[ti], status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
if (strcmp(tokens[ti], "inline-crypto-offload") == 0)
|
|
rule->type =
|
|
RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO;
|
|
else if (strcmp(tokens[ti],
|
|
"inline-protocol-offload") == 0)
|
|
rule->type =
|
|
RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL;
|
|
else if (strcmp(tokens[ti],
|
|
"lookaside-protocol-offload") == 0)
|
|
rule->type =
|
|
RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL;
|
|
else if (strcmp(tokens[ti], "no-offload") == 0)
|
|
rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
|
|
else {
|
|
APP_CHECK(0, status, "Invalid input \"%s\"",
|
|
tokens[ti]);
|
|
return;
|
|
}
|
|
|
|
type_p = 1;
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(tokens[ti], "port_id") == 0) {
|
|
APP_CHECK_PRESENCE(portid_p, tokens[ti], status);
|
|
if (status->status < 0)
|
|
return;
|
|
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
|
|
if (status->status < 0)
|
|
return;
|
|
rule->portid = atoi(tokens[ti]);
|
|
if (status->status < 0)
|
|
return;
|
|
portid_p = 1;
|
|
continue;
|
|
}
|
|
|
|
/* unrecognizeable input */
|
|
APP_CHECK(0, status, "unrecognized input \"%s\"",
|
|
tokens[ti]);
|
|
return;
|
|
}
|
|
|
|
if (aead_algo_p) {
|
|
APP_CHECK(cipher_algo_p == 0, status,
|
|
"AEAD used, no need for cipher options");
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
APP_CHECK(auth_algo_p == 0, status,
|
|
"AEAD used, no need for auth options");
|
|
if (status->status < 0)
|
|
return;
|
|
} else {
|
|
APP_CHECK(cipher_algo_p == 1, status, "missing cipher or AEAD options");
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
APP_CHECK(auth_algo_p == 1, status, "missing auth or AEAD options");
|
|
if (status->status < 0)
|
|
return;
|
|
}
|
|
|
|
APP_CHECK(mode_p == 1, status, "missing mode option");
|
|
if (status->status < 0)
|
|
return;
|
|
|
|
if ((rule->type != RTE_SECURITY_ACTION_TYPE_NONE) && (portid_p == 0))
|
|
printf("Missing portid option, falling back to non-offload\n");
|
|
|
|
if (!type_p || !portid_p) {
|
|
rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
|
|
rule->portid = -1;
|
|
}
|
|
|
|
*ri = *ri + 1;
|
|
}
|
|
|
|
static inline void
|
|
print_one_sa_rule(const struct ipsec_sa *sa, int inbound)
|
|
{
|
|
uint32_t i;
|
|
uint8_t a, b, c, d;
|
|
|
|
printf("\tspi_%s(%3u):", inbound?"in":"out", sa->spi);
|
|
|
|
for (i = 0; i < RTE_DIM(cipher_algos); i++) {
|
|
if (cipher_algos[i].algo == sa->cipher_algo) {
|
|
printf("%s ", cipher_algos[i].keyword);
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < RTE_DIM(auth_algos); i++) {
|
|
if (auth_algos[i].algo == sa->auth_algo) {
|
|
printf("%s ", auth_algos[i].keyword);
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < RTE_DIM(aead_algos); i++) {
|
|
if (aead_algos[i].algo == sa->aead_algo) {
|
|
printf("%s ", aead_algos[i].keyword);
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("mode:");
|
|
|
|
switch (sa->flags) {
|
|
case IP4_TUNNEL:
|
|
printf("IP4Tunnel ");
|
|
uint32_t_to_char(sa->src.ip.ip4, &a, &b, &c, &d);
|
|
printf("%hhu.%hhu.%hhu.%hhu ", d, c, b, a);
|
|
uint32_t_to_char(sa->dst.ip.ip4, &a, &b, &c, &d);
|
|
printf("%hhu.%hhu.%hhu.%hhu", d, c, b, a);
|
|
break;
|
|
case IP6_TUNNEL:
|
|
printf("IP6Tunnel ");
|
|
for (i = 0; i < 16; i++) {
|
|
if (i % 2 && i != 15)
|
|
printf("%.2x:", sa->src.ip.ip6.ip6_b[i]);
|
|
else
|
|
printf("%.2x", sa->src.ip.ip6.ip6_b[i]);
|
|
}
|
|
printf(" ");
|
|
for (i = 0; i < 16; i++) {
|
|
if (i % 2 && i != 15)
|
|
printf("%.2x:", sa->dst.ip.ip6.ip6_b[i]);
|
|
else
|
|
printf("%.2x", sa->dst.ip.ip6.ip6_b[i]);
|
|
}
|
|
break;
|
|
case TRANSPORT:
|
|
printf("Transport");
|
|
break;
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
struct sa_ctx {
|
|
struct ipsec_sa sa[IPSEC_SA_MAX_ENTRIES];
|
|
union {
|
|
struct {
|
|
struct rte_crypto_sym_xform a;
|
|
struct rte_crypto_sym_xform b;
|
|
};
|
|
} xf[IPSEC_SA_MAX_ENTRIES];
|
|
};
|
|
|
|
static struct sa_ctx *
|
|
sa_create(const char *name, int32_t socket_id)
|
|
{
|
|
char s[PATH_MAX];
|
|
struct sa_ctx *sa_ctx;
|
|
uint32_t mz_size;
|
|
const struct rte_memzone *mz;
|
|
|
|
snprintf(s, sizeof(s), "%s_%u", name, socket_id);
|
|
|
|
/* Create SA array table */
|
|
printf("Creating SA context with %u maximum entries\n",
|
|
IPSEC_SA_MAX_ENTRIES);
|
|
|
|
mz_size = sizeof(struct sa_ctx);
|
|
mz = rte_memzone_reserve(s, mz_size, socket_id,
|
|
RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY);
|
|
if (mz == NULL) {
|
|
printf("Failed to allocate SA DB memory\n");
|
|
rte_errno = -ENOMEM;
|
|
return NULL;
|
|
}
|
|
|
|
sa_ctx = (struct sa_ctx *)mz->addr;
|
|
|
|
return sa_ctx;
|
|
}
|
|
|
|
static int
|
|
check_eth_dev_caps(uint16_t portid, uint32_t inbound)
|
|
{
|
|
struct rte_eth_dev_info dev_info;
|
|
|
|
rte_eth_dev_info_get(portid, &dev_info);
|
|
|
|
if (inbound) {
|
|
if ((dev_info.rx_offload_capa &
|
|
DEV_RX_OFFLOAD_SECURITY) == 0) {
|
|
RTE_LOG(WARNING, PORT,
|
|
"hardware RX IPSec offload is not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
} else { /* outbound */
|
|
if ((dev_info.tx_offload_capa &
|
|
DEV_TX_OFFLOAD_SECURITY) == 0) {
|
|
RTE_LOG(WARNING, PORT,
|
|
"hardware TX IPSec offload is not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
|
|
uint32_t nb_entries, uint32_t inbound)
|
|
{
|
|
struct ipsec_sa *sa;
|
|
uint32_t i, idx;
|
|
uint16_t iv_length;
|
|
|
|
for (i = 0; i < nb_entries; i++) {
|
|
idx = SPI2IDX(entries[i].spi);
|
|
sa = &sa_ctx->sa[idx];
|
|
if (sa->spi != 0) {
|
|
printf("Index %u already in use by SPI %u\n",
|
|
idx, sa->spi);
|
|
return -EINVAL;
|
|
}
|
|
*sa = entries[i];
|
|
sa->seq = 0;
|
|
|
|
if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL ||
|
|
sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
|
|
if (check_eth_dev_caps(sa->portid, inbound))
|
|
return -EINVAL;
|
|
}
|
|
|
|
sa->direction = (inbound == 1) ?
|
|
RTE_SECURITY_IPSEC_SA_DIR_INGRESS :
|
|
RTE_SECURITY_IPSEC_SA_DIR_EGRESS;
|
|
|
|
switch (sa->flags) {
|
|
case IP4_TUNNEL:
|
|
sa->src.ip.ip4 = rte_cpu_to_be_32(sa->src.ip.ip4);
|
|
sa->dst.ip.ip4 = rte_cpu_to_be_32(sa->dst.ip.ip4);
|
|
}
|
|
|
|
if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) {
|
|
iv_length = 16;
|
|
|
|
sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AEAD;
|
|
sa_ctx->xf[idx].a.aead.algo = sa->aead_algo;
|
|
sa_ctx->xf[idx].a.aead.key.data = sa->cipher_key;
|
|
sa_ctx->xf[idx].a.aead.key.length =
|
|
sa->cipher_key_len;
|
|
sa_ctx->xf[idx].a.aead.op = (inbound == 1) ?
|
|
RTE_CRYPTO_AEAD_OP_DECRYPT :
|
|
RTE_CRYPTO_AEAD_OP_ENCRYPT;
|
|
sa_ctx->xf[idx].a.next = NULL;
|
|
sa_ctx->xf[idx].a.aead.iv.offset = IV_OFFSET;
|
|
sa_ctx->xf[idx].a.aead.iv.length = iv_length;
|
|
sa_ctx->xf[idx].a.aead.aad_length =
|
|
sa->aad_len;
|
|
sa_ctx->xf[idx].a.aead.digest_length =
|
|
sa->digest_len;
|
|
|
|
sa->xforms = &sa_ctx->xf[idx].a;
|
|
|
|
print_one_sa_rule(sa, inbound);
|
|
} else {
|
|
switch (sa->cipher_algo) {
|
|
case RTE_CRYPTO_CIPHER_NULL:
|
|
case RTE_CRYPTO_CIPHER_AES_CBC:
|
|
iv_length = sa->iv_len;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_AES_CTR:
|
|
iv_length = 16;
|
|
break;
|
|
default:
|
|
RTE_LOG(ERR, IPSEC_ESP,
|
|
"unsupported cipher algorithm %u\n",
|
|
sa->cipher_algo);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (inbound) {
|
|
sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
|
|
sa_ctx->xf[idx].b.cipher.algo = sa->cipher_algo;
|
|
sa_ctx->xf[idx].b.cipher.key.data = sa->cipher_key;
|
|
sa_ctx->xf[idx].b.cipher.key.length =
|
|
sa->cipher_key_len;
|
|
sa_ctx->xf[idx].b.cipher.op =
|
|
RTE_CRYPTO_CIPHER_OP_DECRYPT;
|
|
sa_ctx->xf[idx].b.next = NULL;
|
|
sa_ctx->xf[idx].b.cipher.iv.offset = IV_OFFSET;
|
|
sa_ctx->xf[idx].b.cipher.iv.length = iv_length;
|
|
|
|
sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AUTH;
|
|
sa_ctx->xf[idx].a.auth.algo = sa->auth_algo;
|
|
sa_ctx->xf[idx].a.auth.key.data = sa->auth_key;
|
|
sa_ctx->xf[idx].a.auth.key.length =
|
|
sa->auth_key_len;
|
|
sa_ctx->xf[idx].a.auth.digest_length =
|
|
sa->digest_len;
|
|
sa_ctx->xf[idx].a.auth.op =
|
|
RTE_CRYPTO_AUTH_OP_VERIFY;
|
|
} else { /* outbound */
|
|
sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
|
|
sa_ctx->xf[idx].a.cipher.algo = sa->cipher_algo;
|
|
sa_ctx->xf[idx].a.cipher.key.data = sa->cipher_key;
|
|
sa_ctx->xf[idx].a.cipher.key.length =
|
|
sa->cipher_key_len;
|
|
sa_ctx->xf[idx].a.cipher.op =
|
|
RTE_CRYPTO_CIPHER_OP_ENCRYPT;
|
|
sa_ctx->xf[idx].a.next = NULL;
|
|
sa_ctx->xf[idx].a.cipher.iv.offset = IV_OFFSET;
|
|
sa_ctx->xf[idx].a.cipher.iv.length = iv_length;
|
|
|
|
sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_AUTH;
|
|
sa_ctx->xf[idx].b.auth.algo = sa->auth_algo;
|
|
sa_ctx->xf[idx].b.auth.key.data = sa->auth_key;
|
|
sa_ctx->xf[idx].b.auth.key.length =
|
|
sa->auth_key_len;
|
|
sa_ctx->xf[idx].b.auth.digest_length =
|
|
sa->digest_len;
|
|
sa_ctx->xf[idx].b.auth.op =
|
|
RTE_CRYPTO_AUTH_OP_GENERATE;
|
|
}
|
|
|
|
sa_ctx->xf[idx].a.next = &sa_ctx->xf[idx].b;
|
|
sa_ctx->xf[idx].b.next = NULL;
|
|
sa->xforms = &sa_ctx->xf[idx].a;
|
|
|
|
print_one_sa_rule(sa, inbound);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
sa_out_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
|
|
uint32_t nb_entries)
|
|
{
|
|
return sa_add_rules(sa_ctx, entries, nb_entries, 0);
|
|
}
|
|
|
|
static inline int
|
|
sa_in_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
|
|
uint32_t nb_entries)
|
|
{
|
|
return sa_add_rules(sa_ctx, entries, nb_entries, 1);
|
|
}
|
|
|
|
void
|
|
sa_init(struct socket_ctx *ctx, int32_t socket_id)
|
|
{
|
|
const char *name;
|
|
|
|
if (ctx == NULL)
|
|
rte_exit(EXIT_FAILURE, "NULL context.\n");
|
|
|
|
if (ctx->sa_in != NULL)
|
|
rte_exit(EXIT_FAILURE, "Inbound SA DB for socket %u already "
|
|
"initialized\n", socket_id);
|
|
|
|
if (ctx->sa_out != NULL)
|
|
rte_exit(EXIT_FAILURE, "Outbound SA DB for socket %u already "
|
|
"initialized\n", socket_id);
|
|
|
|
if (nb_sa_in > 0) {
|
|
name = "sa_in";
|
|
ctx->sa_in = sa_create(name, socket_id);
|
|
if (ctx->sa_in == NULL)
|
|
rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
|
|
"context %s in socket %d\n", rte_errno,
|
|
name, socket_id);
|
|
|
|
sa_in_add_rules(ctx->sa_in, sa_in, nb_sa_in);
|
|
} else
|
|
RTE_LOG(WARNING, IPSEC, "No SA Inbound rule specified\n");
|
|
|
|
if (nb_sa_out > 0) {
|
|
name = "sa_out";
|
|
ctx->sa_out = sa_create(name, socket_id);
|
|
if (ctx->sa_out == NULL)
|
|
rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
|
|
"context %s in socket %d\n", rte_errno,
|
|
name, socket_id);
|
|
|
|
sa_out_add_rules(ctx->sa_out, sa_out, nb_sa_out);
|
|
} else
|
|
RTE_LOG(WARNING, IPSEC, "No SA Outbound rule "
|
|
"specified\n");
|
|
}
|
|
|
|
int
|
|
inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx)
|
|
{
|
|
struct ipsec_mbuf_metadata *priv;
|
|
|
|
priv = RTE_PTR_ADD(m, sizeof(struct rte_mbuf));
|
|
|
|
return (sa_ctx->sa[sa_idx].spi == priv->sa->spi);
|
|
}
|
|
|
|
static inline void
|
|
single_inbound_lookup(struct ipsec_sa *sadb, struct rte_mbuf *pkt,
|
|
struct ipsec_sa **sa_ret)
|
|
{
|
|
struct esp_hdr *esp;
|
|
struct ip *ip;
|
|
uint32_t *src4_addr;
|
|
uint8_t *src6_addr;
|
|
struct ipsec_sa *sa;
|
|
|
|
*sa_ret = NULL;
|
|
|
|
ip = rte_pktmbuf_mtod(pkt, struct ip *);
|
|
if (ip->ip_v == IPVERSION)
|
|
esp = (struct esp_hdr *)(ip + 1);
|
|
else
|
|
esp = (struct esp_hdr *)(((struct ip6_hdr *)ip) + 1);
|
|
|
|
if (esp->spi == INVALID_SPI)
|
|
return;
|
|
|
|
sa = &sadb[SPI2IDX(rte_be_to_cpu_32(esp->spi))];
|
|
if (rte_be_to_cpu_32(esp->spi) != sa->spi)
|
|
return;
|
|
|
|
switch (sa->flags) {
|
|
case IP4_TUNNEL:
|
|
src4_addr = RTE_PTR_ADD(ip, offsetof(struct ip, ip_src));
|
|
if ((ip->ip_v == IPVERSION) &&
|
|
(sa->src.ip.ip4 == *src4_addr) &&
|
|
(sa->dst.ip.ip4 == *(src4_addr + 1)))
|
|
*sa_ret = sa;
|
|
break;
|
|
case IP6_TUNNEL:
|
|
src6_addr = RTE_PTR_ADD(ip, offsetof(struct ip6_hdr, ip6_src));
|
|
if ((ip->ip_v == IP6_VERSION) &&
|
|
!memcmp(&sa->src.ip.ip6.ip6, src6_addr, 16) &&
|
|
!memcmp(&sa->dst.ip.ip6.ip6, src6_addr + 16, 16))
|
|
*sa_ret = sa;
|
|
break;
|
|
case TRANSPORT:
|
|
*sa_ret = sa;
|
|
}
|
|
}
|
|
|
|
void
|
|
inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[],
|
|
struct ipsec_sa *sa[], uint16_t nb_pkts)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < nb_pkts; i++)
|
|
single_inbound_lookup(sa_ctx->sa, pkts[i], &sa[i]);
|
|
}
|
|
|
|
void
|
|
outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
|
|
struct ipsec_sa *sa[], uint16_t nb_pkts)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < nb_pkts; i++)
|
|
sa[i] = &sa_ctx->sa[sa_idx[i]];
|
|
}
|