ab351fe1c9
The extended unified packet type is now part of the standard ABI. As mbuf struct is changed, the mbuf library version is incremented. Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com> Acked-by: Stephen Hemminger <stephen@networkplumber.org> Acked-by: Neil Horman <nhorman@tuxdriver.com>
3066 lines
89 KiB
C
3066 lines
89 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_string_fns.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_udp.h>
|
|
|
|
#include "i40e_logs.h"
|
|
#include "base/i40e_prototype.h"
|
|
#include "base/i40e_type.h"
|
|
#include "i40e_ethdev.h"
|
|
#include "i40e_rxtx.h"
|
|
|
|
#define I40E_MIN_RING_DESC 64
|
|
#define I40E_MAX_RING_DESC 4096
|
|
#define I40E_ALIGN 128
|
|
#define DEFAULT_TX_RS_THRESH 32
|
|
#define DEFAULT_TX_FREE_THRESH 32
|
|
#define I40E_MAX_PKT_TYPE 256
|
|
|
|
#define I40E_TX_MAX_BURST 32
|
|
|
|
#define I40E_DMA_MEM_ALIGN 4096
|
|
|
|
#define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
|
|
ETH_TXQ_FLAGS_NOOFFLOADS)
|
|
|
|
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
|
|
|
|
#define I40E_TX_CKSUM_OFFLOAD_MASK ( \
|
|
PKT_TX_IP_CKSUM | \
|
|
PKT_TX_L4_MASK | \
|
|
PKT_TX_OUTER_IP_CKSUM)
|
|
|
|
#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
|
|
(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
|
|
|
|
#define RTE_MBUF_DATA_DMA_ADDR(mb) \
|
|
((uint64_t)((mb)->buf_physaddr + (mb)->data_off))
|
|
|
|
static const struct rte_memzone *
|
|
i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
|
|
const char *ring_name,
|
|
uint16_t queue_id,
|
|
uint32_t ring_size,
|
|
int socket_id);
|
|
static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts);
|
|
|
|
static inline void
|
|
i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
|
|
{
|
|
if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
|
|
(1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
|
|
mb->ol_flags |= PKT_RX_VLAN_PKT;
|
|
mb->vlan_tci =
|
|
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
|
|
PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
|
|
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
|
|
} else {
|
|
mb->vlan_tci = 0;
|
|
}
|
|
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
|
|
if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
|
|
(1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
|
|
mb->ol_flags |= PKT_RX_QINQ_PKT;
|
|
mb->vlan_tci_outer = mb->vlan_tci;
|
|
mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
|
|
PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
|
|
rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
|
|
rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
|
|
} else {
|
|
mb->vlan_tci_outer = 0;
|
|
}
|
|
#endif
|
|
PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
|
|
mb->vlan_tci, mb->vlan_tci_outer);
|
|
}
|
|
|
|
/* Translate the rx descriptor status to pkt flags */
|
|
static inline uint64_t
|
|
i40e_rxd_status_to_pkt_flags(uint64_t qword)
|
|
{
|
|
uint64_t flags;
|
|
|
|
/* Check if RSS_HASH */
|
|
flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
|
|
I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
|
|
I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
|
|
|
|
/* Check if FDIR Match */
|
|
flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
|
|
PKT_RX_FDIR : 0);
|
|
|
|
return flags;
|
|
}
|
|
|
|
static inline uint64_t
|
|
i40e_rxd_error_to_pkt_flags(uint64_t qword)
|
|
{
|
|
uint64_t flags = 0;
|
|
uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
|
|
|
|
#define I40E_RX_ERR_BITS 0x3f
|
|
if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
|
|
return flags;
|
|
/* If RXE bit set, all other status bits are meaningless */
|
|
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
|
|
flags |= PKT_RX_MAC_ERR;
|
|
return flags;
|
|
}
|
|
|
|
/* If RECIPE bit set, all other status indications should be ignored */
|
|
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) {
|
|
flags |= PKT_RX_RECIP_ERR;
|
|
return flags;
|
|
}
|
|
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT)))
|
|
flags |= PKT_RX_HBUF_OVERFLOW;
|
|
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
|
|
flags |= PKT_RX_IP_CKSUM_BAD;
|
|
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
|
|
flags |= PKT_RX_L4_CKSUM_BAD;
|
|
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
|
|
flags |= PKT_RX_EIP_CKSUM_BAD;
|
|
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT)))
|
|
flags |= PKT_RX_OVERSIZE;
|
|
|
|
return flags;
|
|
}
|
|
|
|
/* Function to check and set the ieee1588 timesync index and get the
|
|
* appropriate flags.
|
|
*/
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
static inline uint64_t
|
|
i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
|
|
{
|
|
uint64_t pkt_flags = 0;
|
|
uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
|
|
| I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
|
|
>> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
|
|
|
|
if ((mb->packet_type & RTE_PTYPE_L2_MASK)
|
|
== RTE_PTYPE_L2_ETHER_TIMESYNC)
|
|
pkt_flags = PKT_RX_IEEE1588_PTP;
|
|
if (tsyn & 0x04) {
|
|
pkt_flags |= PKT_RX_IEEE1588_TMST;
|
|
mb->timesync = tsyn & 0x03;
|
|
}
|
|
|
|
return pkt_flags;
|
|
}
|
|
#endif
|
|
|
|
/* For each value it means, datasheet of hardware can tell more details */
|
|
static inline uint32_t
|
|
i40e_rxd_pkt_type_mapping(uint8_t ptype)
|
|
{
|
|
static const uint32_t ptype_table[UINT8_MAX] __rte_cache_aligned = {
|
|
/* L2 types */
|
|
/* [0] reserved */
|
|
[1] = RTE_PTYPE_L2_ETHER,
|
|
[2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
|
|
/* [3] - [5] reserved */
|
|
[6] = RTE_PTYPE_L2_ETHER_LLDP,
|
|
/* [7] - [10] reserved */
|
|
[11] = RTE_PTYPE_L2_ETHER_ARP,
|
|
/* [12] - [21] reserved */
|
|
|
|
/* Non tunneled IPv4 */
|
|
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
/* [25] reserved */
|
|
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
/* IPv4 --> IPv4 */
|
|
[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [32] reserved */
|
|
[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> IPv6 */
|
|
[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [39] reserved */
|
|
[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN */
|
|
[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
|
|
[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [47] reserved */
|
|
[48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
|
|
[51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [54] reserved */
|
|
[55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
|
|
[58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
|
|
[59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [62] reserved */
|
|
[63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
|
|
[66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [69] reserved */
|
|
[70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
|
|
[73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
|
|
[74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [77] reserved */
|
|
[78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
|
|
[81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [84] reserved */
|
|
[85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* Non tunneled IPv6 */
|
|
[88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
/* [91] reserved */
|
|
[92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
/* IPv6 --> IPv4 */
|
|
[95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [98] reserved */
|
|
[99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> IPv6 */
|
|
[102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [105] reserved */
|
|
[106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN */
|
|
[109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
|
|
[110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [113] reserved */
|
|
[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
|
|
[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [120] reserved */
|
|
[121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
|
|
[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
|
|
[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [128] reserved */
|
|
[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
|
|
[132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [135] reserved */
|
|
[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
|
|
[139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
|
|
[140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [143] reserved */
|
|
[144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
|
|
[147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [150] reserved */
|
|
[151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* All others reserved */
|
|
};
|
|
|
|
return ptype_table[ptype];
|
|
}
|
|
|
|
#define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK 0x03
|
|
#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID 0x01
|
|
#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX 0x02
|
|
#define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK 0x03
|
|
#define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX 0x01
|
|
|
|
static inline uint64_t
|
|
i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
|
|
{
|
|
uint64_t flags = 0;
|
|
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
|
|
uint16_t flexbh, flexbl;
|
|
|
|
flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
|
|
I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
|
|
I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
|
|
flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
|
|
I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
|
|
I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
|
|
|
|
|
|
if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
|
|
mb->hash.fdir.hi =
|
|
rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
|
|
flags |= PKT_RX_FDIR_ID;
|
|
} else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
|
|
mb->hash.fdir.hi =
|
|
rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
|
|
flags |= PKT_RX_FDIR_FLX;
|
|
}
|
|
if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
|
|
mb->hash.fdir.lo =
|
|
rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
|
|
flags |= PKT_RX_FDIR_FLX;
|
|
}
|
|
#else
|
|
mb->hash.fdir.hi =
|
|
rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
|
|
flags |= PKT_RX_FDIR_ID;
|
|
#endif
|
|
return flags;
|
|
}
|
|
static inline void
|
|
i40e_txd_enable_checksum(uint64_t ol_flags,
|
|
uint32_t *td_cmd,
|
|
uint32_t *td_offset,
|
|
union i40e_tx_offload tx_offload,
|
|
uint32_t *cd_tunneling)
|
|
{
|
|
/* UDP tunneling packet TX checksum offload */
|
|
if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
|
|
|
|
*td_offset |= (tx_offload.outer_l2_len >> 1)
|
|
<< I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
|
|
|
|
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
|
|
*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
|
|
else if (ol_flags & PKT_TX_OUTER_IPV4)
|
|
*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
|
|
else if (ol_flags & PKT_TX_OUTER_IPV6)
|
|
*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
|
|
|
|
/* Now set the ctx descriptor fields */
|
|
*cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
|
|
I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
|
|
(tx_offload.l2_len >> 1) <<
|
|
I40E_TXD_CTX_QW0_NATLEN_SHIFT;
|
|
|
|
} else
|
|
*td_offset |= (tx_offload.l2_len >> 1)
|
|
<< I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
|
|
|
|
/* Enable L3 checksum offloads */
|
|
if (ol_flags & PKT_TX_IP_CKSUM) {
|
|
*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
|
|
*td_offset |= (tx_offload.l3_len >> 2)
|
|
<< I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
} else if (ol_flags & PKT_TX_IPV4) {
|
|
*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
|
|
*td_offset |= (tx_offload.l3_len >> 2)
|
|
<< I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
} else if (ol_flags & PKT_TX_IPV6) {
|
|
*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
|
|
*td_offset |= (tx_offload.l3_len >> 2)
|
|
<< I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
}
|
|
|
|
if (ol_flags & PKT_TX_TCP_SEG) {
|
|
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
*td_offset |= (tx_offload.l4_len >> 2)
|
|
<< I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
return;
|
|
}
|
|
|
|
/* Enable L4 checksum offloads */
|
|
switch (ol_flags & PKT_TX_L4_MASK) {
|
|
case PKT_TX_TCP_CKSUM:
|
|
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
*td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
case PKT_TX_SCTP_CKSUM:
|
|
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
|
|
*td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
case PKT_TX_UDP_CKSUM:
|
|
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
|
|
*td_offset |= (sizeof(struct udp_hdr) >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline struct rte_mbuf *
|
|
rte_rxmbuf_alloc(struct rte_mempool *mp)
|
|
{
|
|
struct rte_mbuf *m;
|
|
|
|
m = __rte_mbuf_raw_alloc(mp);
|
|
__rte_mbuf_sanity_check_raw(m, 0);
|
|
|
|
return m;
|
|
}
|
|
|
|
/* Construct the tx flags */
|
|
static inline uint64_t
|
|
i40e_build_ctob(uint32_t td_cmd,
|
|
uint32_t td_offset,
|
|
unsigned int size,
|
|
uint32_t td_tag)
|
|
{
|
|
return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
|
|
((uint64_t)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
|
|
((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
|
|
((uint64_t)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
|
|
((uint64_t)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
|
|
}
|
|
|
|
static inline int
|
|
i40e_xmit_cleanup(struct i40e_tx_queue *txq)
|
|
{
|
|
struct i40e_tx_entry *sw_ring = txq->sw_ring;
|
|
volatile struct i40e_tx_desc *txd = txq->tx_ring;
|
|
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
|
|
uint16_t nb_tx_desc = txq->nb_tx_desc;
|
|
uint16_t desc_to_clean_to;
|
|
uint16_t nb_tx_to_clean;
|
|
|
|
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
|
|
if (desc_to_clean_to >= nb_tx_desc)
|
|
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
|
|
|
|
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
|
|
if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
|
|
rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
|
|
rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
|
|
PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
|
|
"(port=%d queue=%d)", desc_to_clean_to,
|
|
txq->port_id, txq->queue_id);
|
|
return -1;
|
|
}
|
|
|
|
if (last_desc_cleaned > desc_to_clean_to)
|
|
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
|
|
desc_to_clean_to);
|
|
else
|
|
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
|
|
last_desc_cleaned);
|
|
|
|
txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
|
|
|
|
txq->last_desc_cleaned = desc_to_clean_to;
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
|
|
check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
|
|
#else
|
|
check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
|
|
#endif
|
|
{
|
|
int ret = 0;
|
|
|
|
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
|
|
if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->rx_free_thresh=%d, "
|
|
"RTE_PMD_I40E_RX_MAX_BURST=%d",
|
|
rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
|
|
ret = -EINVAL;
|
|
} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->rx_free_thresh=%d, "
|
|
"rxq->nb_rx_desc=%d",
|
|
rxq->rx_free_thresh, rxq->nb_rx_desc);
|
|
ret = -EINVAL;
|
|
} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->nb_rx_desc=%d, "
|
|
"rxq->rx_free_thresh=%d",
|
|
rxq->nb_rx_desc, rxq->rx_free_thresh);
|
|
ret = -EINVAL;
|
|
} else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
|
|
RTE_PMD_I40E_RX_MAX_BURST))) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->nb_rx_desc=%d, "
|
|
"I40E_MAX_RING_DESC=%d, "
|
|
"RTE_PMD_I40E_RX_MAX_BURST=%d",
|
|
rxq->nb_rx_desc, I40E_MAX_RING_DESC,
|
|
RTE_PMD_I40E_RX_MAX_BURST);
|
|
ret = -EINVAL;
|
|
}
|
|
#else
|
|
ret = -EINVAL;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
|
|
#define I40E_LOOK_AHEAD 8
|
|
#if (I40E_LOOK_AHEAD != 8)
|
|
#error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
|
|
#endif
|
|
static inline int
|
|
i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
|
|
{
|
|
volatile union i40e_rx_desc *rxdp;
|
|
struct i40e_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t pkt_len;
|
|
uint64_t qword1;
|
|
uint32_t rx_status;
|
|
int32_t s[I40E_LOOK_AHEAD], nb_dd;
|
|
int32_t i, j, nb_rx = 0;
|
|
uint64_t pkt_flags;
|
|
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
rxep = &rxq->sw_ring[rxq->rx_tail];
|
|
|
|
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
|
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
|
|
I40E_RXD_QW1_STATUS_SHIFT;
|
|
|
|
/* Make sure there is at least 1 packet to receive */
|
|
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
|
|
return 0;
|
|
|
|
/**
|
|
* Scan LOOK_AHEAD descriptors at a time to determine which
|
|
* descriptors reference packets that are ready to be received.
|
|
*/
|
|
for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
|
|
rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
|
|
/* Read desc statuses backwards to avoid race condition */
|
|
for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
|
|
qword1 = rte_le_to_cpu_64(\
|
|
rxdp[j].wb.qword1.status_error_len);
|
|
s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
|
|
I40E_RXD_QW1_STATUS_SHIFT;
|
|
}
|
|
|
|
/* Compute how many status bits were set */
|
|
for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
|
|
nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
|
|
|
|
nb_rx += nb_dd;
|
|
|
|
/* Translate descriptor info to mbuf parameters */
|
|
for (j = 0; j < nb_dd; j++) {
|
|
mb = rxep[j].mbuf;
|
|
qword1 = rte_le_to_cpu_64(\
|
|
rxdp[j].wb.qword1.status_error_len);
|
|
pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
|
|
mb->data_len = pkt_len;
|
|
mb->pkt_len = pkt_len;
|
|
mb->ol_flags = 0;
|
|
i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
|
|
pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
|
|
pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
|
|
mb->packet_type =
|
|
i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
|
|
I40E_RXD_QW1_PTYPE_MASK) >>
|
|
I40E_RXD_QW1_PTYPE_SHIFT));
|
|
if (pkt_flags & PKT_RX_RSS_HASH)
|
|
mb->hash.rss = rte_le_to_cpu_32(\
|
|
rxdp[j].wb.qword0.hi_dword.rss);
|
|
if (pkt_flags & PKT_RX_FDIR)
|
|
pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
|
|
#endif
|
|
mb->ol_flags |= pkt_flags;
|
|
|
|
}
|
|
|
|
for (j = 0; j < I40E_LOOK_AHEAD; j++)
|
|
rxq->rx_stage[i + j] = rxep[j].mbuf;
|
|
|
|
if (nb_dd != I40E_LOOK_AHEAD)
|
|
break;
|
|
}
|
|
|
|
/* Clear software ring entries */
|
|
for (i = 0; i < nb_rx; i++)
|
|
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
static inline uint16_t
|
|
i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t i;
|
|
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
|
|
|
|
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
|
|
|
|
for (i = 0; i < nb_pkts; i++)
|
|
rx_pkts[i] = stage[i];
|
|
|
|
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
|
|
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static inline int
|
|
i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
|
|
{
|
|
volatile union i40e_rx_desc *rxdp;
|
|
struct i40e_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t alloc_idx, i;
|
|
uint64_t dma_addr;
|
|
int diag;
|
|
|
|
/* Allocate buffers in bulk */
|
|
alloc_idx = (uint16_t)(rxq->rx_free_trigger -
|
|
(rxq->rx_free_thresh - 1));
|
|
rxep = &(rxq->sw_ring[alloc_idx]);
|
|
diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
|
|
rxq->rx_free_thresh);
|
|
if (unlikely(diag != 0)) {
|
|
PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rxdp = &rxq->rx_ring[alloc_idx];
|
|
for (i = 0; i < rxq->rx_free_thresh; i++) {
|
|
if (likely(i < (rxq->rx_free_thresh - 1)))
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(rxep[i + 1].mbuf);
|
|
|
|
mb = rxep[i].mbuf;
|
|
rte_mbuf_refcnt_set(mb, 1);
|
|
mb->next = NULL;
|
|
mb->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mb->nb_segs = 1;
|
|
mb->port = rxq->port_id;
|
|
dma_addr = rte_cpu_to_le_64(\
|
|
RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb));
|
|
rxdp[i].read.hdr_addr = 0;
|
|
rxdp[i].read.pkt_addr = dma_addr;
|
|
}
|
|
|
|
/* Update rx tail regsiter */
|
|
rte_wmb();
|
|
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
|
|
|
|
rxq->rx_free_trigger =
|
|
(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
|
|
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
|
|
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline uint16_t
|
|
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
|
|
uint16_t nb_rx = 0;
|
|
|
|
if (!nb_pkts)
|
|
return 0;
|
|
|
|
if (rxq->rx_nb_avail)
|
|
return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_nb_avail = nb_rx;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
|
|
|
|
if (rxq->rx_tail > rxq->rx_free_trigger) {
|
|
if (i40e_rx_alloc_bufs(rxq) != 0) {
|
|
uint16_t i, j;
|
|
|
|
PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
|
|
"port_id=%u, queue_id=%u",
|
|
rxq->port_id, rxq->queue_id);
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
|
|
for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
|
|
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (rxq->rx_tail >= rxq->nb_rx_desc)
|
|
rxq->rx_tail = 0;
|
|
|
|
if (rxq->rx_nb_avail)
|
|
return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t
|
|
i40e_recv_pkts_bulk_alloc(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_rx = 0, n, count;
|
|
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
|
|
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
|
|
|
|
while (nb_pkts) {
|
|
n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
|
|
count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
|
|
nb_rx = (uint16_t)(nb_rx + count);
|
|
nb_pkts = (uint16_t)(nb_pkts - count);
|
|
if (count < n)
|
|
break;
|
|
}
|
|
|
|
return nb_rx;
|
|
}
|
|
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
|
|
|
|
uint16_t
|
|
i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct i40e_rx_queue *rxq;
|
|
volatile union i40e_rx_desc *rx_ring;
|
|
volatile union i40e_rx_desc *rxdp;
|
|
union i40e_rx_desc rxd;
|
|
struct i40e_rx_entry *sw_ring;
|
|
struct i40e_rx_entry *rxe;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
uint16_t nb_rx;
|
|
uint32_t rx_status;
|
|
uint64_t qword1;
|
|
uint16_t rx_packet_len;
|
|
uint16_t rx_id, nb_hold;
|
|
uint64_t dma_addr;
|
|
uint64_t pkt_flags;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rxq = rx_queue;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = &rx_ring[rx_id];
|
|
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
|
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
|
|
>> I40E_RXD_QW1_STATUS_SHIFT;
|
|
|
|
/* Check the DD bit first */
|
|
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
|
|
break;
|
|
|
|
nmb = rte_rxmbuf_alloc(rxq->mp);
|
|
if (unlikely(!nmb))
|
|
break;
|
|
rxd = *rxdp;
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (unlikely(rx_id == rxq->nb_rx_desc))
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(sw_ring[rx_id].mbuf);
|
|
|
|
/**
|
|
* When next RX descriptor is on a cache line boundary,
|
|
* prefetch the next 4 RX descriptors and next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
rte_prefetch0(&sw_ring[rx_id]);
|
|
}
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
|
|
rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
|
|
rxm->nb_segs = 1;
|
|
rxm->next = NULL;
|
|
rxm->pkt_len = rx_packet_len;
|
|
rxm->data_len = rx_packet_len;
|
|
rxm->port = rxq->port_id;
|
|
rxm->ol_flags = 0;
|
|
i40e_rxd_to_vlan_tci(rxm, &rxd);
|
|
pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
|
|
pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
|
|
rxm->packet_type =
|
|
i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
|
|
I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
|
|
if (pkt_flags & PKT_RX_RSS_HASH)
|
|
rxm->hash.rss =
|
|
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
|
|
if (pkt_flags & PKT_RX_FDIR)
|
|
pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
|
|
#endif
|
|
rxm->ol_flags |= pkt_flags;
|
|
|
|
rx_pkts[nb_rx++] = rxm;
|
|
}
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/**
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the receive tail register of queue.
|
|
* Update that register with the value of the last processed RX
|
|
* descriptor minus 1.
|
|
*/
|
|
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
rx_id = (uint16_t) ((rx_id == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
uint16_t
|
|
i40e_recv_scattered_pkts(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct i40e_rx_queue *rxq = rx_queue;
|
|
volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
|
|
volatile union i40e_rx_desc *rxdp;
|
|
union i40e_rx_desc rxd;
|
|
struct i40e_rx_entry *sw_ring = rxq->sw_ring;
|
|
struct i40e_rx_entry *rxe;
|
|
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
|
|
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
|
|
struct rte_mbuf *nmb, *rxm;
|
|
uint16_t rx_id = rxq->rx_tail;
|
|
uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
|
|
uint32_t rx_status;
|
|
uint64_t qword1;
|
|
uint64_t dma_addr;
|
|
uint64_t pkt_flags;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = &rx_ring[rx_id];
|
|
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
|
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
|
|
I40E_RXD_QW1_STATUS_SHIFT;
|
|
|
|
/* Check the DD bit */
|
|
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
|
|
break;
|
|
|
|
nmb = rte_rxmbuf_alloc(rxq->mp);
|
|
if (unlikely(!nmb))
|
|
break;
|
|
rxd = *rxdp;
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(sw_ring[rx_id].mbuf);
|
|
|
|
/**
|
|
* When next RX descriptor is on a cache line boundary,
|
|
* prefetch the next 4 RX descriptors and next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
rte_prefetch0(&sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
|
|
|
|
/* Set data buffer address and data length of the mbuf */
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
|
|
rxm->data_len = rx_packet_len;
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
/**
|
|
* If this is the first buffer of the received packet, set the
|
|
* pointer to the first mbuf of the packet and initialize its
|
|
* context. Otherwise, update the total length and the number
|
|
* of segments of the current scattered packet, and update the
|
|
* pointer to the last mbuf of the current packet.
|
|
*/
|
|
if (!first_seg) {
|
|
first_seg = rxm;
|
|
first_seg->nb_segs = 1;
|
|
first_seg->pkt_len = rx_packet_len;
|
|
} else {
|
|
first_seg->pkt_len =
|
|
(uint16_t)(first_seg->pkt_len +
|
|
rx_packet_len);
|
|
first_seg->nb_segs++;
|
|
last_seg->next = rxm;
|
|
}
|
|
|
|
/**
|
|
* If this is not the last buffer of the received packet,
|
|
* update the pointer to the last mbuf of the current scattered
|
|
* packet and continue to parse the RX ring.
|
|
*/
|
|
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
|
|
last_seg = rxm;
|
|
continue;
|
|
}
|
|
|
|
/**
|
|
* This is the last buffer of the received packet. If the CRC
|
|
* is not stripped by the hardware:
|
|
* - Subtract the CRC length from the total packet length.
|
|
* - If the last buffer only contains the whole CRC or a part
|
|
* of it, free the mbuf associated to the last buffer. If part
|
|
* of the CRC is also contained in the previous mbuf, subtract
|
|
* the length of that CRC part from the data length of the
|
|
* previous mbuf.
|
|
*/
|
|
rxm->next = NULL;
|
|
if (unlikely(rxq->crc_len > 0)) {
|
|
first_seg->pkt_len -= ETHER_CRC_LEN;
|
|
if (rx_packet_len <= ETHER_CRC_LEN) {
|
|
rte_pktmbuf_free_seg(rxm);
|
|
first_seg->nb_segs--;
|
|
last_seg->data_len =
|
|
(uint16_t)(last_seg->data_len -
|
|
(ETHER_CRC_LEN - rx_packet_len));
|
|
last_seg->next = NULL;
|
|
} else
|
|
rxm->data_len = (uint16_t)(rx_packet_len -
|
|
ETHER_CRC_LEN);
|
|
}
|
|
|
|
first_seg->port = rxq->port_id;
|
|
first_seg->ol_flags = 0;
|
|
i40e_rxd_to_vlan_tci(first_seg, &rxd);
|
|
pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
|
|
pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
|
|
first_seg->packet_type =
|
|
i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
|
|
I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
|
|
if (pkt_flags & PKT_RX_RSS_HASH)
|
|
rxm->hash.rss =
|
|
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
|
|
if (pkt_flags & PKT_RX_FDIR)
|
|
pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
|
|
#endif
|
|
first_seg->ol_flags |= pkt_flags;
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
|
|
first_seg->data_off));
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
first_seg = NULL;
|
|
}
|
|
|
|
/* Record index of the next RX descriptor to probe. */
|
|
rxq->rx_tail = rx_id;
|
|
rxq->pkt_first_seg = first_seg;
|
|
rxq->pkt_last_seg = last_seg;
|
|
|
|
/**
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register. Update the RDT with the value of the last processed RX
|
|
* descriptor minus 1, to guarantee that the RDT register is never
|
|
* equal to the RDH register, which creates a "full" ring situtation
|
|
* from the hardware point of view.
|
|
*/
|
|
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
rx_id = (uint16_t)(rx_id == 0 ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
/* Check if the context descriptor is needed for TX offloading */
|
|
static inline uint16_t
|
|
i40e_calc_context_desc(uint64_t flags)
|
|
{
|
|
static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
|
|
PKT_TX_TCP_SEG |
|
|
PKT_TX_QINQ_PKT;
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
mask |= PKT_TX_IEEE1588_TMST;
|
|
#endif
|
|
|
|
return ((flags & mask) ? 1 : 0);
|
|
}
|
|
|
|
/* set i40e TSO context descriptor */
|
|
static inline uint64_t
|
|
i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
|
|
{
|
|
uint64_t ctx_desc = 0;
|
|
uint32_t cd_cmd, hdr_len, cd_tso_len;
|
|
|
|
if (!tx_offload.l4_len) {
|
|
PMD_DRV_LOG(DEBUG, "L4 length set to 0");
|
|
return ctx_desc;
|
|
}
|
|
|
|
/**
|
|
* in case of tunneling packet, the outer_l2_len and
|
|
* outer_l3_len must be 0.
|
|
*/
|
|
hdr_len = tx_offload.outer_l2_len +
|
|
tx_offload.outer_l3_len +
|
|
tx_offload.l2_len +
|
|
tx_offload.l3_len +
|
|
tx_offload.l4_len;
|
|
|
|
cd_cmd = I40E_TX_CTX_DESC_TSO;
|
|
cd_tso_len = mbuf->pkt_len - hdr_len;
|
|
ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
|
|
((uint64_t)cd_tso_len <<
|
|
I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
|
|
((uint64_t)mbuf->tso_segsz <<
|
|
I40E_TXD_CTX_QW1_MSS_SHIFT);
|
|
|
|
return ctx_desc;
|
|
}
|
|
|
|
uint16_t
|
|
i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct i40e_tx_queue *txq;
|
|
struct i40e_tx_entry *sw_ring;
|
|
struct i40e_tx_entry *txe, *txn;
|
|
volatile struct i40e_tx_desc *txd;
|
|
volatile struct i40e_tx_desc *txr;
|
|
struct rte_mbuf *tx_pkt;
|
|
struct rte_mbuf *m_seg;
|
|
uint32_t cd_tunneling_params;
|
|
uint16_t tx_id;
|
|
uint16_t nb_tx;
|
|
uint32_t td_cmd;
|
|
uint32_t td_offset;
|
|
uint32_t tx_flags;
|
|
uint32_t td_tag;
|
|
uint64_t ol_flags;
|
|
uint16_t nb_used;
|
|
uint16_t nb_ctx;
|
|
uint16_t tx_last;
|
|
uint16_t slen;
|
|
uint64_t buf_dma_addr;
|
|
union i40e_tx_offload tx_offload = {0};
|
|
|
|
txq = tx_queue;
|
|
sw_ring = txq->sw_ring;
|
|
txr = txq->tx_ring;
|
|
tx_id = txq->tx_tail;
|
|
txe = &sw_ring[tx_id];
|
|
|
|
/* Check if the descriptor ring needs to be cleaned. */
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
i40e_xmit_cleanup(txq);
|
|
|
|
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
|
|
td_cmd = 0;
|
|
td_tag = 0;
|
|
td_offset = 0;
|
|
tx_flags = 0;
|
|
|
|
tx_pkt = *tx_pkts++;
|
|
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
|
|
|
|
ol_flags = tx_pkt->ol_flags;
|
|
tx_offload.l2_len = tx_pkt->l2_len;
|
|
tx_offload.l3_len = tx_pkt->l3_len;
|
|
tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
|
|
tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
|
|
tx_offload.l4_len = tx_pkt->l4_len;
|
|
tx_offload.tso_segsz = tx_pkt->tso_segsz;
|
|
|
|
/* Calculate the number of context descriptors needed. */
|
|
nb_ctx = i40e_calc_context_desc(ol_flags);
|
|
|
|
/**
|
|
* The number of descriptors that must be allocated for
|
|
* a packet equals to the number of the segments of that
|
|
* packet plus 1 context descriptor if needed.
|
|
*/
|
|
nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
|
|
tx_last = (uint16_t)(tx_id + nb_used - 1);
|
|
|
|
/* Circular ring */
|
|
if (tx_last >= txq->nb_tx_desc)
|
|
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
|
|
|
|
if (nb_used > txq->nb_tx_free) {
|
|
if (i40e_xmit_cleanup(txq) != 0) {
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
if (unlikely(nb_used > txq->tx_rs_thresh)) {
|
|
while (nb_used > txq->nb_tx_free) {
|
|
if (i40e_xmit_cleanup(txq) != 0) {
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Descriptor based VLAN insertion */
|
|
if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
|
|
tx_flags |= tx_pkt->vlan_tci <<
|
|
I40E_TX_FLAG_L2TAG1_SHIFT;
|
|
tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
|
|
td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
|
|
td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
|
|
I40E_TX_FLAG_L2TAG1_SHIFT;
|
|
}
|
|
|
|
/* Always enable CRC offload insertion */
|
|
td_cmd |= I40E_TX_DESC_CMD_ICRC;
|
|
|
|
/* Enable checksum offloading */
|
|
cd_tunneling_params = 0;
|
|
if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK) {
|
|
i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
|
|
tx_offload, &cd_tunneling_params);
|
|
}
|
|
|
|
if (nb_ctx) {
|
|
/* Setup TX context descriptor if required */
|
|
volatile struct i40e_tx_context_desc *ctx_txd =
|
|
(volatile struct i40e_tx_context_desc *)\
|
|
&txr[tx_id];
|
|
uint16_t cd_l2tag2 = 0;
|
|
uint64_t cd_type_cmd_tso_mss =
|
|
I40E_TX_DESC_DTYPE_CONTEXT;
|
|
|
|
txn = &sw_ring[txe->next_id];
|
|
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
|
|
if (txe->mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = NULL;
|
|
}
|
|
|
|
/* TSO enabled means no timestamp */
|
|
if (ol_flags & PKT_TX_TCP_SEG)
|
|
cd_type_cmd_tso_mss |=
|
|
i40e_set_tso_ctx(tx_pkt, tx_offload);
|
|
else {
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
if (ol_flags & PKT_TX_IEEE1588_TMST)
|
|
cd_type_cmd_tso_mss |=
|
|
((uint64_t)I40E_TX_CTX_DESC_TSYN <<
|
|
I40E_TXD_CTX_QW1_CMD_SHIFT);
|
|
#endif
|
|
}
|
|
|
|
ctx_txd->tunneling_params =
|
|
rte_cpu_to_le_32(cd_tunneling_params);
|
|
if (ol_flags & PKT_TX_QINQ_PKT) {
|
|
cd_l2tag2 = tx_pkt->vlan_tci_outer;
|
|
cd_type_cmd_tso_mss |=
|
|
((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
|
|
I40E_TXD_CTX_QW1_CMD_SHIFT);
|
|
}
|
|
ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
|
|
ctx_txd->type_cmd_tso_mss =
|
|
rte_cpu_to_le_64(cd_type_cmd_tso_mss);
|
|
|
|
PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
|
|
"tunneling_params: %#x;\n"
|
|
"l2tag2: %#hx;\n"
|
|
"rsvd: %#hx;\n"
|
|
"type_cmd_tso_mss: %#"PRIx64";\n",
|
|
tx_pkt, tx_id,
|
|
ctx_txd->tunneling_params,
|
|
ctx_txd->l2tag2,
|
|
ctx_txd->rsvd,
|
|
ctx_txd->type_cmd_tso_mss);
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
}
|
|
|
|
m_seg = tx_pkt;
|
|
do {
|
|
txd = &txr[tx_id];
|
|
txn = &sw_ring[txe->next_id];
|
|
|
|
if (txe->mbuf)
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = m_seg;
|
|
|
|
/* Setup TX Descriptor */
|
|
slen = m_seg->data_len;
|
|
buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
|
|
|
|
PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
|
|
"buf_dma_addr: %#"PRIx64";\n"
|
|
"td_cmd: %#x;\n"
|
|
"td_offset: %#x;\n"
|
|
"td_len: %u;\n"
|
|
"td_tag: %#x;\n",
|
|
tx_pkt, tx_id, buf_dma_addr,
|
|
td_cmd, td_offset, slen, td_tag);
|
|
|
|
txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
|
|
txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
|
|
td_offset, slen, td_tag);
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
m_seg = m_seg->next;
|
|
} while (m_seg != NULL);
|
|
|
|
/* The last packet data descriptor needs End Of Packet (EOP) */
|
|
td_cmd |= I40E_TX_DESC_CMD_EOP;
|
|
txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
|
|
|
|
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"Setting RS bit on TXD id="
|
|
"%4u (port=%d queue=%d)",
|
|
tx_last, txq->port_id, txq->queue_id);
|
|
|
|
td_cmd |= I40E_TX_DESC_CMD_RS;
|
|
|
|
/* Update txq RS bit counters */
|
|
txq->nb_tx_used = 0;
|
|
}
|
|
|
|
txd->cmd_type_offset_bsz |=
|
|
rte_cpu_to_le_64(((uint64_t)td_cmd) <<
|
|
I40E_TXD_QW1_CMD_SHIFT);
|
|
}
|
|
|
|
end_of_tx:
|
|
rte_wmb();
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
(unsigned) txq->port_id, (unsigned) txq->queue_id,
|
|
(unsigned) tx_id, (unsigned) nb_tx);
|
|
|
|
I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
|
|
txq->tx_tail = tx_id;
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
static inline int __attribute__((always_inline))
|
|
i40e_tx_free_bufs(struct i40e_tx_queue *txq)
|
|
{
|
|
struct i40e_tx_entry *txep;
|
|
uint16_t i;
|
|
|
|
if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
|
|
rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
|
|
rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
|
|
return 0;
|
|
|
|
txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
|
|
|
|
for (i = 0; i < txq->tx_rs_thresh; i++)
|
|
rte_prefetch0((txep + i)->mbuf);
|
|
|
|
if (!(txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT)) {
|
|
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
|
|
rte_mempool_put(txep->mbuf->pool, txep->mbuf);
|
|
txep->mbuf = NULL;
|
|
}
|
|
} else {
|
|
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
|
|
rte_pktmbuf_free_seg(txep->mbuf);
|
|
txep->mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
|
|
if (txq->tx_next_dd >= txq->nb_tx_desc)
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
return txq->tx_rs_thresh;
|
|
}
|
|
|
|
#define I40E_TD_CMD (I40E_TX_DESC_CMD_ICRC |\
|
|
I40E_TX_DESC_CMD_EOP)
|
|
|
|
/* Populate 4 descriptors with data from 4 mbufs */
|
|
static inline void
|
|
tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t dma_addr;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < 4; i++, txdp++, pkts++) {
|
|
dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
|
|
txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
|
|
txdp->cmd_type_offset_bsz =
|
|
i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
|
|
(*pkts)->data_len, 0);
|
|
}
|
|
}
|
|
|
|
/* Populate 1 descriptor with data from 1 mbuf */
|
|
static inline void
|
|
tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t dma_addr;
|
|
|
|
dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
|
|
txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
|
|
txdp->cmd_type_offset_bsz =
|
|
i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
|
|
(*pkts)->data_len, 0);
|
|
}
|
|
|
|
/* Fill hardware descriptor ring with mbuf data */
|
|
static inline void
|
|
i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
|
|
struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
|
|
struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
|
|
const int N_PER_LOOP = 4;
|
|
const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
|
|
int mainpart, leftover;
|
|
int i, j;
|
|
|
|
mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
|
|
leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
|
|
for (i = 0; i < mainpart; i += N_PER_LOOP) {
|
|
for (j = 0; j < N_PER_LOOP; ++j) {
|
|
(txep + i + j)->mbuf = *(pkts + i + j);
|
|
}
|
|
tx4(txdp + i, pkts + i);
|
|
}
|
|
if (unlikely(leftover > 0)) {
|
|
for (i = 0; i < leftover; ++i) {
|
|
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
|
|
tx1(txdp + mainpart + i, pkts + mainpart + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline uint16_t
|
|
tx_xmit_pkts(struct i40e_tx_queue *txq,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile struct i40e_tx_desc *txr = txq->tx_ring;
|
|
uint16_t n = 0;
|
|
|
|
/**
|
|
* Begin scanning the H/W ring for done descriptors when the number
|
|
* of available descriptors drops below tx_free_thresh. For each done
|
|
* descriptor, free the associated buffer.
|
|
*/
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
i40e_tx_free_bufs(txq);
|
|
|
|
/* Use available descriptor only */
|
|
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
|
|
if (unlikely(!nb_pkts))
|
|
return 0;
|
|
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
|
|
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
|
|
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
|
|
i40e_tx_fill_hw_ring(txq, tx_pkts, n);
|
|
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
|
|
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
|
|
I40E_TXD_QW1_CMD_SHIFT);
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
txq->tx_tail = 0;
|
|
}
|
|
|
|
/* Fill hardware descriptor ring with mbuf data */
|
|
i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
|
|
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
|
|
|
|
/* Determin if RS bit needs to be set */
|
|
if (txq->tx_tail > txq->tx_next_rs) {
|
|
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
|
|
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
|
|
I40E_TXD_QW1_CMD_SHIFT);
|
|
txq->tx_next_rs =
|
|
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
|
|
if (txq->tx_next_rs >= txq->nb_tx_desc)
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
}
|
|
|
|
if (txq->tx_tail >= txq->nb_tx_desc)
|
|
txq->tx_tail = 0;
|
|
|
|
/* Update the tx tail register */
|
|
rte_wmb();
|
|
I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static uint16_t
|
|
i40e_xmit_pkts_simple(void *tx_queue,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_tx = 0;
|
|
|
|
if (likely(nb_pkts <= I40E_TX_MAX_BURST))
|
|
return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
|
|
tx_pkts, nb_pkts);
|
|
|
|
while (nb_pkts) {
|
|
uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
|
|
I40E_TX_MAX_BURST);
|
|
|
|
ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
|
|
&tx_pkts[nb_tx], num);
|
|
nb_tx = (uint16_t)(nb_tx + ret);
|
|
nb_pkts = (uint16_t)(nb_pkts - ret);
|
|
if (ret < num)
|
|
break;
|
|
}
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
/*
|
|
* Find the VSI the queue belongs to. 'queue_idx' is the queue index
|
|
* application used, which assume having sequential ones. But from driver's
|
|
* perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
|
|
* to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
|
|
* running on host, q1-64 and q97-128 can be used, total 96 queues. They can
|
|
* use queue_idx from 0 to 95 to access queues, while real queue would be
|
|
* different. This function will do a queue mapping to find VSI the queue
|
|
* belongs to.
|
|
*/
|
|
static struct i40e_vsi*
|
|
i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
|
|
{
|
|
/* the queue in MAIN VSI range */
|
|
if (queue_idx < pf->main_vsi->nb_qps)
|
|
return pf->main_vsi;
|
|
|
|
queue_idx -= pf->main_vsi->nb_qps;
|
|
|
|
/* queue_idx is greater than VMDQ VSIs range */
|
|
if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
|
|
PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
|
|
return NULL;
|
|
}
|
|
|
|
return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
|
|
}
|
|
|
|
static uint16_t
|
|
i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
|
|
{
|
|
/* the queue in MAIN VSI range */
|
|
if (queue_idx < pf->main_vsi->nb_qps)
|
|
return queue_idx;
|
|
|
|
/* It's VMDQ queues */
|
|
queue_idx -= pf->main_vsi->nb_qps;
|
|
|
|
if (pf->nb_cfg_vmdq_vsi)
|
|
return queue_idx % pf->vmdq_nb_qps;
|
|
else {
|
|
PMD_INIT_LOG(ERR, "Fail to get queue offset");
|
|
return (uint16_t)(-1);
|
|
}
|
|
}
|
|
|
|
int
|
|
i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct i40e_rx_queue *rxq;
|
|
int err = -1;
|
|
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (rx_queue_id < dev->data->nb_rx_queues) {
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
err = i40e_alloc_rx_queue_mbufs(rxq);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
|
|
return err;
|
|
}
|
|
|
|
rte_wmb();
|
|
|
|
/* Init the RX tail regieter. */
|
|
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
|
|
|
|
err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
|
|
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
|
|
rx_queue_id);
|
|
|
|
i40e_rx_queue_release_mbufs(rxq);
|
|
i40e_reset_rx_queue(rxq);
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct i40e_rx_queue *rxq;
|
|
int err;
|
|
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (rx_queue_id < dev->data->nb_rx_queues) {
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
/*
|
|
* rx_queue_id is queue id aplication refers to, while
|
|
* rxq->reg_idx is the real queue index.
|
|
*/
|
|
err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
|
|
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
|
|
rx_queue_id);
|
|
return err;
|
|
}
|
|
i40e_rx_queue_release_mbufs(rxq);
|
|
i40e_reset_rx_queue(rxq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
int err = -1;
|
|
struct i40e_tx_queue *txq;
|
|
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (tx_queue_id < dev->data->nb_tx_queues) {
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
|
|
/*
|
|
* tx_queue_id is queue id aplication refers to, while
|
|
* rxq->reg_idx is the real queue index.
|
|
*/
|
|
err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
|
|
if (err)
|
|
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
|
|
tx_queue_id);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct i40e_tx_queue *txq;
|
|
int err;
|
|
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (tx_queue_id < dev->data->nb_tx_queues) {
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
|
|
/*
|
|
* tx_queue_id is queue id aplication refers to, while
|
|
* txq->reg_idx is the real queue index.
|
|
*/
|
|
err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
|
|
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
|
|
tx_queue_id);
|
|
return err;
|
|
}
|
|
|
|
i40e_tx_queue_release_mbufs(txq);
|
|
i40e_reset_tx_queue(txq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct i40e_vsi *vsi;
|
|
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
|
|
struct i40e_rx_queue *rxq;
|
|
const struct rte_memzone *rz;
|
|
uint32_t ring_size;
|
|
uint16_t len;
|
|
int use_def_burst_func = 1;
|
|
|
|
if (hw->mac.type == I40E_MAC_VF) {
|
|
struct i40e_vf *vf =
|
|
I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
vsi = &vf->vsi;
|
|
} else
|
|
vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
|
|
|
|
if (vsi == NULL) {
|
|
PMD_DRV_LOG(ERR, "VSI not available or queue "
|
|
"index exceeds the maximum");
|
|
return I40E_ERR_PARAM;
|
|
}
|
|
if (((nb_desc * sizeof(union i40e_rx_desc)) % I40E_ALIGN) != 0 ||
|
|
(nb_desc > I40E_MAX_RING_DESC) ||
|
|
(nb_desc < I40E_MIN_RING_DESC)) {
|
|
PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
|
|
"invalid", nb_desc);
|
|
return I40E_ERR_PARAM;
|
|
}
|
|
|
|
/* Free memory if needed */
|
|
if (dev->data->rx_queues[queue_idx]) {
|
|
i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
|
|
dev->data->rx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* Allocate the rx queue data structure */
|
|
rxq = rte_zmalloc_socket("i40e rx queue",
|
|
sizeof(struct i40e_rx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!rxq) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
|
|
"rx queue data structure");
|
|
return (-ENOMEM);
|
|
}
|
|
rxq->mp = mp;
|
|
rxq->nb_rx_desc = nb_desc;
|
|
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
|
|
rxq->queue_id = queue_idx;
|
|
if (hw->mac.type == I40E_MAC_VF)
|
|
rxq->reg_idx = queue_idx;
|
|
else /* PF device */
|
|
rxq->reg_idx = vsi->base_queue +
|
|
i40e_get_queue_offset_by_qindex(pf, queue_idx);
|
|
|
|
rxq->port_id = dev->data->port_id;
|
|
rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
|
|
0 : ETHER_CRC_LEN);
|
|
rxq->drop_en = rx_conf->rx_drop_en;
|
|
rxq->vsi = vsi;
|
|
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
|
|
|
|
/* Allocate the maximun number of RX ring hardware descriptor. */
|
|
ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
|
|
ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
|
|
rz = i40e_ring_dma_zone_reserve(dev,
|
|
"rx_ring",
|
|
queue_idx,
|
|
ring_size,
|
|
socket_id);
|
|
if (!rz) {
|
|
i40e_dev_rx_queue_release(rxq);
|
|
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
/* Zero all the descriptors in the ring. */
|
|
memset(rz->addr, 0, ring_size);
|
|
|
|
#ifdef RTE_LIBRTE_XEN_DOM0
|
|
rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
|
|
#else
|
|
rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
|
|
#endif
|
|
|
|
rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
|
|
|
|
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
|
|
len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
|
|
#else
|
|
len = nb_desc;
|
|
#endif
|
|
|
|
/* Allocate the software ring. */
|
|
rxq->sw_ring =
|
|
rte_zmalloc_socket("i40e rx sw ring",
|
|
sizeof(struct i40e_rx_entry) * len,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!rxq->sw_ring) {
|
|
i40e_dev_rx_queue_release(rxq);
|
|
PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
i40e_reset_rx_queue(rxq);
|
|
rxq->q_set = TRUE;
|
|
dev->data->rx_queues[queue_idx] = rxq;
|
|
|
|
use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
|
|
|
|
if (!use_def_burst_func && !dev->data->scattered_rx) {
|
|
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
|
|
"satisfied. Rx Burst Bulk Alloc function will be "
|
|
"used on port=%d, queue=%d.",
|
|
rxq->port_id, rxq->queue_id);
|
|
dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
|
|
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
|
|
"not satisfied, Scattered Rx is requested, "
|
|
"or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
|
|
"not enabled on port=%d, queue=%d.",
|
|
rxq->port_id, rxq->queue_id);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i40e_dev_rx_queue_release(void *rxq)
|
|
{
|
|
struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
|
|
|
|
if (!q) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
|
|
return;
|
|
}
|
|
|
|
i40e_rx_queue_release_mbufs(q);
|
|
rte_free(q->sw_ring);
|
|
rte_free(q);
|
|
}
|
|
|
|
uint32_t
|
|
i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
#define I40E_RXQ_SCAN_INTERVAL 4
|
|
volatile union i40e_rx_desc *rxdp;
|
|
struct i40e_rx_queue *rxq;
|
|
uint16_t desc = 0;
|
|
|
|
if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
|
|
PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
|
|
return 0;
|
|
}
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
|
|
while ((desc < rxq->nb_rx_desc) &&
|
|
((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
|
|
I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
|
|
(1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
|
|
/**
|
|
* Check the DD bit of a rx descriptor of each 4 in a group,
|
|
* to avoid checking too frequently and downgrading performance
|
|
* too much.
|
|
*/
|
|
desc += I40E_RXQ_SCAN_INTERVAL;
|
|
rxdp += I40E_RXQ_SCAN_INTERVAL;
|
|
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail +
|
|
desc - rxq->nb_rx_desc]);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
int
|
|
i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
|
|
{
|
|
volatile union i40e_rx_desc *rxdp;
|
|
struct i40e_rx_queue *rxq = rx_queue;
|
|
uint16_t desc;
|
|
int ret;
|
|
|
|
if (unlikely(offset >= rxq->nb_rx_desc)) {
|
|
PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
|
|
return 0;
|
|
}
|
|
|
|
desc = rxq->rx_tail + offset;
|
|
if (desc >= rxq->nb_rx_desc)
|
|
desc -= rxq->nb_rx_desc;
|
|
|
|
rxdp = &(rxq->rx_ring[desc]);
|
|
|
|
ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
|
|
I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
|
|
(1 << I40E_RX_DESC_STATUS_DD_SHIFT));
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
struct i40e_vsi *vsi;
|
|
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
|
|
struct i40e_tx_queue *txq;
|
|
const struct rte_memzone *tz;
|
|
uint32_t ring_size;
|
|
uint16_t tx_rs_thresh, tx_free_thresh;
|
|
|
|
if (hw->mac.type == I40E_MAC_VF) {
|
|
struct i40e_vf *vf =
|
|
I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
vsi = &vf->vsi;
|
|
} else
|
|
vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
|
|
|
|
if (vsi == NULL) {
|
|
PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
|
|
"exceeds the maximum", queue_idx);
|
|
return I40E_ERR_PARAM;
|
|
}
|
|
|
|
if (((nb_desc * sizeof(struct i40e_tx_desc)) % I40E_ALIGN) != 0 ||
|
|
(nb_desc > I40E_MAX_RING_DESC) ||
|
|
(nb_desc < I40E_MIN_RING_DESC)) {
|
|
PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
|
|
"invalid", nb_desc);
|
|
return I40E_ERR_PARAM;
|
|
}
|
|
|
|
/**
|
|
* The following two parameters control the setting of the RS bit on
|
|
* transmit descriptors. TX descriptors will have their RS bit set
|
|
* after txq->tx_rs_thresh descriptors have been used. The TX
|
|
* descriptor ring will be cleaned after txq->tx_free_thresh
|
|
* descriptors are used or if the number of descriptors required to
|
|
* transmit a packet is greater than the number of free TX descriptors.
|
|
*
|
|
* The following constraints must be satisfied:
|
|
* - tx_rs_thresh must be greater than 0.
|
|
* - tx_rs_thresh must be less than the size of the ring minus 2.
|
|
* - tx_rs_thresh must be less than or equal to tx_free_thresh.
|
|
* - tx_rs_thresh must be a divisor of the ring size.
|
|
* - tx_free_thresh must be greater than 0.
|
|
* - tx_free_thresh must be less than the size of the ring minus 3.
|
|
*
|
|
* One descriptor in the TX ring is used as a sentinel to avoid a H/W
|
|
* race condition, hence the maximum threshold constraints. When set
|
|
* to zero use default values.
|
|
*/
|
|
tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
|
|
tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
|
|
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
|
|
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
|
|
if (tx_rs_thresh >= (nb_desc - 2)) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
|
|
"number of TX descriptors minus 2. "
|
|
"(tx_rs_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return I40E_ERR_PARAM;
|
|
}
|
|
if (tx_free_thresh >= (nb_desc - 3)) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
|
|
"tx_free_thresh must be less than the "
|
|
"number of TX descriptors minus 3. "
|
|
"(tx_free_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return I40E_ERR_PARAM;
|
|
}
|
|
if (tx_rs_thresh > tx_free_thresh) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
|
|
"equal to tx_free_thresh. (tx_free_thresh=%u"
|
|
" tx_rs_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return I40E_ERR_PARAM;
|
|
}
|
|
if ((nb_desc % tx_rs_thresh) != 0) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
|
|
"number of TX descriptors. (tx_rs_thresh=%u"
|
|
" port=%d queue=%d)",
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return I40E_ERR_PARAM;
|
|
}
|
|
if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
|
|
PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
|
|
"tx_rs_thresh is greater than 1. "
|
|
"(tx_rs_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return I40E_ERR_PARAM;
|
|
}
|
|
|
|
/* Free memory if needed. */
|
|
if (dev->data->tx_queues[queue_idx]) {
|
|
i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
|
|
dev->data->tx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* Allocate the TX queue data structure. */
|
|
txq = rte_zmalloc_socket("i40e tx queue",
|
|
sizeof(struct i40e_tx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!txq) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
|
|
"tx queue structure");
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
/* Allocate TX hardware ring descriptors. */
|
|
ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
|
|
ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
|
|
tz = i40e_ring_dma_zone_reserve(dev,
|
|
"tx_ring",
|
|
queue_idx,
|
|
ring_size,
|
|
socket_id);
|
|
if (!tz) {
|
|
i40e_dev_tx_queue_release(txq);
|
|
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
txq->nb_tx_desc = nb_desc;
|
|
txq->tx_rs_thresh = tx_rs_thresh;
|
|
txq->tx_free_thresh = tx_free_thresh;
|
|
txq->pthresh = tx_conf->tx_thresh.pthresh;
|
|
txq->hthresh = tx_conf->tx_thresh.hthresh;
|
|
txq->wthresh = tx_conf->tx_thresh.wthresh;
|
|
txq->queue_id = queue_idx;
|
|
if (hw->mac.type == I40E_MAC_VF)
|
|
txq->reg_idx = queue_idx;
|
|
else /* PF device */
|
|
txq->reg_idx = vsi->base_queue +
|
|
i40e_get_queue_offset_by_qindex(pf, queue_idx);
|
|
|
|
txq->port_id = dev->data->port_id;
|
|
txq->txq_flags = tx_conf->txq_flags;
|
|
txq->vsi = vsi;
|
|
txq->tx_deferred_start = tx_conf->tx_deferred_start;
|
|
|
|
#ifdef RTE_LIBRTE_XEN_DOM0
|
|
txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
|
|
#else
|
|
txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
|
|
#endif
|
|
txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
|
|
|
|
/* Allocate software ring */
|
|
txq->sw_ring =
|
|
rte_zmalloc_socket("i40e tx sw ring",
|
|
sizeof(struct i40e_tx_entry) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!txq->sw_ring) {
|
|
i40e_dev_tx_queue_release(txq);
|
|
PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
i40e_reset_tx_queue(txq);
|
|
txq->q_set = TRUE;
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
|
|
/* Use a simple TX queue without offloads or multi segs if possible */
|
|
if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS) &&
|
|
(txq->tx_rs_thresh >= I40E_TX_MAX_BURST)) {
|
|
PMD_INIT_LOG(INFO, "Using simple tx path");
|
|
dev->tx_pkt_burst = i40e_xmit_pkts_simple;
|
|
} else {
|
|
PMD_INIT_LOG(INFO, "Using full-featured tx path");
|
|
dev->tx_pkt_burst = i40e_xmit_pkts;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i40e_dev_tx_queue_release(void *txq)
|
|
{
|
|
struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
|
|
|
|
if (!q) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
|
|
return;
|
|
}
|
|
|
|
i40e_tx_queue_release_mbufs(q);
|
|
rte_free(q->sw_ring);
|
|
rte_free(q);
|
|
}
|
|
|
|
static const struct rte_memzone *
|
|
i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
|
|
const char *ring_name,
|
|
uint16_t queue_id,
|
|
uint32_t ring_size,
|
|
int socket_id)
|
|
{
|
|
char z_name[RTE_MEMZONE_NAMESIZE];
|
|
const struct rte_memzone *mz;
|
|
|
|
snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
|
|
dev->driver->pci_drv.name, ring_name,
|
|
dev->data->port_id, queue_id);
|
|
mz = rte_memzone_lookup(z_name);
|
|
if (mz)
|
|
return mz;
|
|
|
|
#ifdef RTE_LIBRTE_XEN_DOM0
|
|
return rte_memzone_reserve_bounded(z_name, ring_size,
|
|
socket_id, 0, I40E_ALIGN, RTE_PGSIZE_2M);
|
|
#else
|
|
return rte_memzone_reserve_aligned(z_name, ring_size,
|
|
socket_id, 0, I40E_ALIGN);
|
|
#endif
|
|
}
|
|
|
|
const struct rte_memzone *
|
|
i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
|
|
{
|
|
const struct rte_memzone *mz = NULL;
|
|
|
|
mz = rte_memzone_lookup(name);
|
|
if (mz)
|
|
return mz;
|
|
#ifdef RTE_LIBRTE_XEN_DOM0
|
|
mz = rte_memzone_reserve_bounded(name, len,
|
|
socket_id, 0, I40E_ALIGN, RTE_PGSIZE_2M);
|
|
#else
|
|
mz = rte_memzone_reserve_aligned(name, len,
|
|
socket_id, 0, I40E_ALIGN);
|
|
#endif
|
|
return mz;
|
|
}
|
|
|
|
void
|
|
i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
|
|
{
|
|
uint16_t i;
|
|
|
|
if (!rxq || !rxq->sw_ring) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_ring[i].mbuf) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
|
|
rxq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
|
|
if (rxq->rx_nb_avail == 0)
|
|
return;
|
|
for (i = 0; i < rxq->rx_nb_avail; i++) {
|
|
struct rte_mbuf *mbuf;
|
|
|
|
mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
|
|
rte_pktmbuf_free_seg(mbuf);
|
|
}
|
|
rxq->rx_nb_avail = 0;
|
|
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
|
|
}
|
|
|
|
void
|
|
i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
|
|
{
|
|
unsigned i;
|
|
uint16_t len;
|
|
|
|
if (!rxq) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
|
|
return;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
|
|
if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
|
|
len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
|
|
else
|
|
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
|
|
len = rxq->nb_rx_desc;
|
|
|
|
for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
|
|
((volatile char *)rxq->rx_ring)[i] = 0;
|
|
|
|
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
|
|
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
|
|
for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
|
|
rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
|
|
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
|
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
|
|
rxq->rx_tail = 0;
|
|
rxq->nb_rx_hold = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
}
|
|
|
|
void
|
|
i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
|
|
{
|
|
uint16_t i;
|
|
|
|
if (!txq || !txq->sw_ring) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
if (txq->sw_ring[i].mbuf) {
|
|
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
i40e_reset_tx_queue(struct i40e_tx_queue *txq)
|
|
{
|
|
struct i40e_tx_entry *txe;
|
|
uint16_t i, prev, size;
|
|
|
|
if (!txq) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
|
|
return;
|
|
}
|
|
|
|
txe = txq->sw_ring;
|
|
size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
|
|
for (i = 0; i < size; i++)
|
|
((volatile char *)txq->tx_ring)[i] = 0;
|
|
|
|
prev = (uint16_t)(txq->nb_tx_desc - 1);
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
|
|
|
|
txd->cmd_type_offset_bsz =
|
|
rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
|
|
txe[i].mbuf = NULL;
|
|
txe[i].last_id = i;
|
|
txe[prev].next_id = i;
|
|
prev = i;
|
|
}
|
|
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
txq->tx_tail = 0;
|
|
txq->nb_tx_used = 0;
|
|
|
|
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
|
|
}
|
|
|
|
/* Init the TX queue in hardware */
|
|
int
|
|
i40e_tx_queue_init(struct i40e_tx_queue *txq)
|
|
{
|
|
enum i40e_status_code err = I40E_SUCCESS;
|
|
struct i40e_vsi *vsi = txq->vsi;
|
|
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
|
|
uint16_t pf_q = txq->reg_idx;
|
|
struct i40e_hmc_obj_txq tx_ctx;
|
|
uint32_t qtx_ctl;
|
|
|
|
/* clear the context structure first */
|
|
memset(&tx_ctx, 0, sizeof(tx_ctx));
|
|
tx_ctx.new_context = 1;
|
|
tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
|
|
tx_ctx.qlen = txq->nb_tx_desc;
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
tx_ctx.timesync_ena = 1;
|
|
#endif
|
|
tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[0]);
|
|
if (vsi->type == I40E_VSI_FDIR)
|
|
tx_ctx.fd_ena = TRUE;
|
|
|
|
err = i40e_clear_lan_tx_queue_context(hw, pf_q);
|
|
if (err != I40E_SUCCESS) {
|
|
PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
|
|
return err;
|
|
}
|
|
|
|
err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
|
|
if (err != I40E_SUCCESS) {
|
|
PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
|
|
return err;
|
|
}
|
|
|
|
/* Now associate this queue with this PCI function */
|
|
qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
|
|
qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
|
|
I40E_QTX_CTL_PF_INDX_MASK);
|
|
I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
|
|
I40E_WRITE_FLUSH(hw);
|
|
|
|
txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
|
|
{
|
|
struct i40e_rx_entry *rxe = rxq->sw_ring;
|
|
uint64_t dma_addr;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
volatile union i40e_rx_desc *rxd;
|
|
struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp);
|
|
|
|
if (unlikely(!mbuf)) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rte_mbuf_refcnt_set(mbuf, 1);
|
|
mbuf->next = NULL;
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mbuf->nb_segs = 1;
|
|
mbuf->port = rxq->port_id;
|
|
|
|
dma_addr =
|
|
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
|
|
|
|
rxd = &rxq->rx_ring[i];
|
|
rxd->read.pkt_addr = dma_addr;
|
|
rxd->read.hdr_addr = 0;
|
|
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
|
|
rxd->read.rsvd1 = 0;
|
|
rxd->read.rsvd2 = 0;
|
|
#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
|
|
|
|
rxe[i].mbuf = mbuf;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate the buffer length, and check the jumbo frame
|
|
* and maximum packet length.
|
|
*/
|
|
static int
|
|
i40e_rx_queue_config(struct i40e_rx_queue *rxq)
|
|
{
|
|
struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
|
|
struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
|
|
struct rte_eth_dev_data *data = pf->dev_data;
|
|
uint16_t buf_size, len;
|
|
|
|
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
|
|
switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
|
|
I40E_FLAG_HEADER_SPLIT_ENABLED)) {
|
|
case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
|
|
rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
|
|
(1 << I40E_RXQ_CTX_HBUFF_SHIFT));
|
|
rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
|
|
(1 << I40E_RXQ_CTX_DBUFF_SHIFT));
|
|
rxq->hs_mode = i40e_header_split_enabled;
|
|
break;
|
|
case I40E_FLAG_HEADER_SPLIT_DISABLED:
|
|
default:
|
|
rxq->rx_hdr_len = 0;
|
|
rxq->rx_buf_len = RTE_ALIGN(buf_size,
|
|
(1 << I40E_RXQ_CTX_DBUFF_SHIFT));
|
|
rxq->hs_mode = i40e_header_split_none;
|
|
break;
|
|
}
|
|
|
|
len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
|
|
rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
|
|
if (data->dev_conf.rxmode.jumbo_frame == 1) {
|
|
if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
|
|
rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
|
|
PMD_DRV_LOG(ERR, "maximum packet length must "
|
|
"be larger than %u and smaller than %u,"
|
|
"as jumbo frame is enabled",
|
|
(uint32_t)ETHER_MAX_LEN,
|
|
(uint32_t)I40E_FRAME_SIZE_MAX);
|
|
return I40E_ERR_CONFIG;
|
|
}
|
|
} else {
|
|
if (rxq->max_pkt_len < ETHER_MIN_LEN ||
|
|
rxq->max_pkt_len > ETHER_MAX_LEN) {
|
|
PMD_DRV_LOG(ERR, "maximum packet length must be "
|
|
"larger than %u and smaller than %u, "
|
|
"as jumbo frame is disabled",
|
|
(uint32_t)ETHER_MIN_LEN,
|
|
(uint32_t)ETHER_MAX_LEN);
|
|
return I40E_ERR_CONFIG;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Init the RX queue in hardware */
|
|
int
|
|
i40e_rx_queue_init(struct i40e_rx_queue *rxq)
|
|
{
|
|
int err = I40E_SUCCESS;
|
|
struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
|
|
struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
|
|
struct rte_eth_dev *dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
|
|
uint16_t pf_q = rxq->reg_idx;
|
|
uint16_t buf_size;
|
|
struct i40e_hmc_obj_rxq rx_ctx;
|
|
|
|
err = i40e_rx_queue_config(rxq);
|
|
if (err < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to config RX queue");
|
|
return err;
|
|
}
|
|
|
|
/* Clear the context structure first */
|
|
memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
|
|
rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
|
|
rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
|
|
|
|
rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
|
|
rx_ctx.qlen = rxq->nb_rx_desc;
|
|
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
|
|
rx_ctx.dsize = 1;
|
|
#endif
|
|
rx_ctx.dtype = rxq->hs_mode;
|
|
if (rxq->hs_mode)
|
|
rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
|
|
else
|
|
rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
|
|
rx_ctx.rxmax = rxq->max_pkt_len;
|
|
rx_ctx.tphrdesc_ena = 1;
|
|
rx_ctx.tphwdesc_ena = 1;
|
|
rx_ctx.tphdata_ena = 1;
|
|
rx_ctx.tphhead_ena = 1;
|
|
rx_ctx.lrxqthresh = 2;
|
|
rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
|
|
rx_ctx.l2tsel = 1;
|
|
rx_ctx.showiv = 1;
|
|
rx_ctx.prefena = 1;
|
|
|
|
err = i40e_clear_lan_rx_queue_context(hw, pf_q);
|
|
if (err != I40E_SUCCESS) {
|
|
PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
|
|
return err;
|
|
}
|
|
err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
|
|
if (err != I40E_SUCCESS) {
|
|
PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
|
|
return err;
|
|
}
|
|
|
|
rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
|
|
|
|
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
|
|
/* Check if scattered RX needs to be used. */
|
|
if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
|
|
dev_data->scattered_rx = 1;
|
|
dev->rx_pkt_burst = i40e_recv_scattered_pkts;
|
|
}
|
|
|
|
/* Init the RX tail regieter. */
|
|
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i40e_dev_clear_queues(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
|
|
i40e_reset_tx_queue(dev->data->tx_queues[i]);
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
|
|
i40e_reset_rx_queue(dev->data->rx_queues[i]);
|
|
}
|
|
}
|
|
|
|
void
|
|
i40e_dev_free_queues(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
|
|
dev->data->rx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_rx_queues = 0;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
|
|
dev->data->tx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_tx_queues = 0;
|
|
}
|
|
|
|
#define I40E_FDIR_NUM_TX_DESC I40E_MIN_RING_DESC
|
|
#define I40E_FDIR_NUM_RX_DESC I40E_MIN_RING_DESC
|
|
|
|
enum i40e_status_code
|
|
i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_tx_queue *txq;
|
|
const struct rte_memzone *tz = NULL;
|
|
uint32_t ring_size;
|
|
struct rte_eth_dev *dev = pf->adapter->eth_dev;
|
|
|
|
if (!pf) {
|
|
PMD_DRV_LOG(ERR, "PF is not available");
|
|
return I40E_ERR_BAD_PTR;
|
|
}
|
|
|
|
/* Allocate the TX queue data structure. */
|
|
txq = rte_zmalloc_socket("i40e fdir tx queue",
|
|
sizeof(struct i40e_tx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
SOCKET_ID_ANY);
|
|
if (!txq) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
|
|
"tx queue structure.");
|
|
return I40E_ERR_NO_MEMORY;
|
|
}
|
|
|
|
/* Allocate TX hardware ring descriptors. */
|
|
ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
|
|
ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
|
|
|
|
tz = i40e_ring_dma_zone_reserve(dev,
|
|
"fdir_tx_ring",
|
|
I40E_FDIR_QUEUE_ID,
|
|
ring_size,
|
|
SOCKET_ID_ANY);
|
|
if (!tz) {
|
|
i40e_dev_tx_queue_release(txq);
|
|
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
|
|
return I40E_ERR_NO_MEMORY;
|
|
}
|
|
|
|
txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
|
|
txq->queue_id = I40E_FDIR_QUEUE_ID;
|
|
txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
|
|
txq->vsi = pf->fdir.fdir_vsi;
|
|
|
|
#ifdef RTE_LIBRTE_XEN_DOM0
|
|
txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
|
|
#else
|
|
txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
|
|
#endif
|
|
txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
|
|
/*
|
|
* don't need to allocate software ring and reset for the fdir
|
|
* program queue just set the queue has been configured.
|
|
*/
|
|
txq->q_set = TRUE;
|
|
pf->fdir.txq = txq;
|
|
|
|
return I40E_SUCCESS;
|
|
}
|
|
|
|
enum i40e_status_code
|
|
i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_rx_queue *rxq;
|
|
const struct rte_memzone *rz = NULL;
|
|
uint32_t ring_size;
|
|
struct rte_eth_dev *dev = pf->adapter->eth_dev;
|
|
|
|
if (!pf) {
|
|
PMD_DRV_LOG(ERR, "PF is not available");
|
|
return I40E_ERR_BAD_PTR;
|
|
}
|
|
|
|
/* Allocate the RX queue data structure. */
|
|
rxq = rte_zmalloc_socket("i40e fdir rx queue",
|
|
sizeof(struct i40e_rx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
SOCKET_ID_ANY);
|
|
if (!rxq) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
|
|
"rx queue structure.");
|
|
return I40E_ERR_NO_MEMORY;
|
|
}
|
|
|
|
/* Allocate RX hardware ring descriptors. */
|
|
ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
|
|
ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
|
|
|
|
rz = i40e_ring_dma_zone_reserve(dev,
|
|
"fdir_rx_ring",
|
|
I40E_FDIR_QUEUE_ID,
|
|
ring_size,
|
|
SOCKET_ID_ANY);
|
|
if (!rz) {
|
|
i40e_dev_rx_queue_release(rxq);
|
|
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
|
|
return I40E_ERR_NO_MEMORY;
|
|
}
|
|
|
|
rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
|
|
rxq->queue_id = I40E_FDIR_QUEUE_ID;
|
|
rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
|
|
rxq->vsi = pf->fdir.fdir_vsi;
|
|
|
|
#ifdef RTE_LIBRTE_XEN_DOM0
|
|
rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
|
|
#else
|
|
rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
|
|
#endif
|
|
rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
|
|
|
|
/*
|
|
* Don't need to allocate software ring and reset for the fdir
|
|
* rx queue, just set the queue has been configured.
|
|
*/
|
|
rxq->q_set = TRUE;
|
|
pf->fdir.rxq = rxq;
|
|
|
|
return I40E_SUCCESS;
|
|
}
|