numam-dpdk/drivers/net/ixgbe/ixgbe_rxtx.c
Renata Saiakhova 460d167958 drivers/net: delete HW rings while freeing queues
Delete memzones for HW rings in igb and ixgbe while freeing queues

Updated igb, ixgbe, i40e, ice & em drivers.

Signed-off-by: Renata Saiakhova <renata.saiakhova@ekinops.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2020-07-11 06:18:54 +02:00

5970 lines
172 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation.
* Copyright 2014 6WIND S.A.
*/
#include <sys/queue.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_prefetch.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_ip.h>
#include <rte_net.h>
#include "ixgbe_logs.h"
#include "base/ixgbe_api.h"
#include "base/ixgbe_vf.h"
#include "ixgbe_ethdev.h"
#include "base/ixgbe_dcb.h"
#include "base/ixgbe_common.h"
#include "ixgbe_rxtx.h"
#ifdef RTE_LIBRTE_IEEE1588
#define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
#else
#define IXGBE_TX_IEEE1588_TMST 0
#endif
/* Bit Mask to indicate what bits required for building TX context */
#define IXGBE_TX_OFFLOAD_MASK ( \
PKT_TX_OUTER_IPV6 | \
PKT_TX_OUTER_IPV4 | \
PKT_TX_IPV6 | \
PKT_TX_IPV4 | \
PKT_TX_VLAN_PKT | \
PKT_TX_IP_CKSUM | \
PKT_TX_L4_MASK | \
PKT_TX_TCP_SEG | \
PKT_TX_MACSEC | \
PKT_TX_OUTER_IP_CKSUM | \
PKT_TX_SEC_OFFLOAD | \
IXGBE_TX_IEEE1588_TMST)
#define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
(PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
#if 1
#define RTE_PMD_USE_PREFETCH
#endif
#ifdef RTE_PMD_USE_PREFETCH
/*
* Prefetch a cache line into all cache levels.
*/
#define rte_ixgbe_prefetch(p) rte_prefetch0(p)
#else
#define rte_ixgbe_prefetch(p) do {} while (0)
#endif
/*********************************************************************
*
* TX functions
*
**********************************************************************/
/*
* Check for descriptors with their DD bit set and free mbufs.
* Return the total number of buffers freed.
*/
static __rte_always_inline int
ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
{
struct ixgbe_tx_entry *txep;
uint32_t status;
int i, nb_free = 0;
struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
/* check DD bit on threshold descriptor */
status = txq->tx_ring[txq->tx_next_dd].wb.status;
if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
return 0;
/*
* first buffer to free from S/W ring is at index
* tx_next_dd - (tx_rs_thresh-1)
*/
txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
/* free buffers one at a time */
m = rte_pktmbuf_prefree_seg(txep->mbuf);
txep->mbuf = NULL;
if (unlikely(m == NULL))
continue;
if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
(nb_free > 0 && m->pool != free[0]->pool)) {
rte_mempool_put_bulk(free[0]->pool,
(void **)free, nb_free);
nb_free = 0;
}
free[nb_free++] = m;
}
if (nb_free > 0)
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
/* buffers were freed, update counters */
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
if (txq->tx_next_dd >= txq->nb_tx_desc)
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
return txq->tx_rs_thresh;
}
/* Populate 4 descriptors with data from 4 mbufs */
static inline void
tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t buf_dma_addr;
uint32_t pkt_len;
int i;
for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
buf_dma_addr = rte_mbuf_data_iova(*pkts);
pkt_len = (*pkts)->data_len;
/* write data to descriptor */
txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
txdp->read.cmd_type_len =
rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
txdp->read.olinfo_status =
rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
rte_prefetch0(&(*pkts)->pool);
}
}
/* Populate 1 descriptor with data from 1 mbuf */
static inline void
tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t buf_dma_addr;
uint32_t pkt_len;
buf_dma_addr = rte_mbuf_data_iova(*pkts);
pkt_len = (*pkts)->data_len;
/* write data to descriptor */
txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
txdp->read.cmd_type_len =
rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
txdp->read.olinfo_status =
rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
rte_prefetch0(&(*pkts)->pool);
}
/*
* Fill H/W descriptor ring with mbuf data.
* Copy mbuf pointers to the S/W ring.
*/
static inline void
ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
const int N_PER_LOOP = 4;
const int N_PER_LOOP_MASK = N_PER_LOOP-1;
int mainpart, leftover;
int i, j;
/*
* Process most of the packets in chunks of N pkts. Any
* leftover packets will get processed one at a time.
*/
mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
for (i = 0; i < mainpart; i += N_PER_LOOP) {
/* Copy N mbuf pointers to the S/W ring */
for (j = 0; j < N_PER_LOOP; ++j) {
(txep + i + j)->mbuf = *(pkts + i + j);
}
tx4(txdp + i, pkts + i);
}
if (unlikely(leftover > 0)) {
for (i = 0; i < leftover; ++i) {
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
tx1(txdp + mainpart + i, pkts + mainpart + i);
}
}
}
static inline uint16_t
tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
uint16_t n = 0;
/*
* Begin scanning the H/W ring for done descriptors when the
* number of available descriptors drops below tx_free_thresh. For
* each done descriptor, free the associated buffer.
*/
if (txq->nb_tx_free < txq->tx_free_thresh)
ixgbe_tx_free_bufs(txq);
/* Only use descriptors that are available */
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
/* Use exactly nb_pkts descriptors */
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
/*
* At this point, we know there are enough descriptors in the
* ring to transmit all the packets. This assumes that each
* mbuf contains a single segment, and that no new offloads
* are expected, which would require a new context descriptor.
*/
/*
* See if we're going to wrap-around. If so, handle the top
* of the descriptor ring first, then do the bottom. If not,
* the processing looks just like the "bottom" part anyway...
*/
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
/*
* We know that the last descriptor in the ring will need to
* have its RS bit set because tx_rs_thresh has to be
* a divisor of the ring size
*/
tx_r[txq->tx_next_rs].read.cmd_type_len |=
rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_tail = 0;
}
/* Fill H/W descriptor ring with mbuf data */
ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
/*
* Determine if RS bit should be set
* This is what we actually want:
* if ((txq->tx_tail - 1) >= txq->tx_next_rs)
* but instead of subtracting 1 and doing >=, we can just do
* greater than without subtracting.
*/
if (txq->tx_tail > txq->tx_next_rs) {
tx_r[txq->tx_next_rs].read.cmd_type_len |=
rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
txq->tx_rs_thresh);
if (txq->tx_next_rs >= txq->nb_tx_desc)
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
}
/*
* Check for wrap-around. This would only happen if we used
* up to the last descriptor in the ring, no more, no less.
*/
if (txq->tx_tail >= txq->nb_tx_desc)
txq->tx_tail = 0;
/* update tail pointer */
rte_wmb();
IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
return nb_pkts;
}
uint16_t
ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx;
/* Try to transmit at least chunks of TX_MAX_BURST pkts */
if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
/* transmit more than the max burst, in chunks of TX_MAX_BURST */
nb_tx = 0;
while (nb_pkts) {
uint16_t ret, n;
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
nb_tx = (uint16_t)(nb_tx + ret);
nb_pkts = (uint16_t)(nb_pkts - ret);
if (ret < n)
break;
}
return nb_tx;
}
static uint16_t
ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
static inline void
ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
__rte_unused uint64_t *mdata)
{
uint32_t type_tucmd_mlhl;
uint32_t mss_l4len_idx = 0;
uint32_t ctx_idx;
uint32_t vlan_macip_lens;
union ixgbe_tx_offload tx_offload_mask;
uint32_t seqnum_seed = 0;
ctx_idx = txq->ctx_curr;
tx_offload_mask.data[0] = 0;
tx_offload_mask.data[1] = 0;
type_tucmd_mlhl = 0;
/* Specify which HW CTX to upload. */
mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
if (ol_flags & PKT_TX_VLAN_PKT) {
tx_offload_mask.vlan_tci |= ~0;
}
/* check if TCP segmentation required for this packet */
if (ol_flags & PKT_TX_TCP_SEG) {
/* implies IP cksum in IPv4 */
if (ol_flags & PKT_TX_IP_CKSUM)
type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
IXGBE_ADVTXD_TUCMD_L4T_TCP |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
else
type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
IXGBE_ADVTXD_TUCMD_L4T_TCP |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
tx_offload_mask.l4_len |= ~0;
tx_offload_mask.tso_segsz |= ~0;
mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
} else { /* no TSO, check if hardware checksum is needed */
if (ol_flags & PKT_TX_IP_CKSUM) {
type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
}
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_UDP_CKSUM:
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct rte_udp_hdr)
<< IXGBE_ADVTXD_L4LEN_SHIFT;
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
break;
case PKT_TX_TCP_CKSUM:
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
<< IXGBE_ADVTXD_L4LEN_SHIFT;
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
break;
case PKT_TX_SCTP_CKSUM:
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
<< IXGBE_ADVTXD_L4LEN_SHIFT;
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
break;
default:
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
break;
}
}
if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
tx_offload_mask.outer_l2_len |= ~0;
tx_offload_mask.outer_l3_len |= ~0;
tx_offload_mask.l2_len |= ~0;
seqnum_seed |= tx_offload.outer_l3_len
<< IXGBE_ADVTXD_OUTER_IPLEN;
seqnum_seed |= tx_offload.l2_len
<< IXGBE_ADVTXD_TUNNEL_LEN;
}
#ifdef RTE_LIBRTE_SECURITY
if (ol_flags & PKT_TX_SEC_OFFLOAD) {
union ixgbe_crypto_tx_desc_md *md =
(union ixgbe_crypto_tx_desc_md *)mdata;
seqnum_seed |=
(IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
type_tucmd_mlhl |= md->enc ?
(IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
type_tucmd_mlhl |=
(md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
tx_offload_mask.sa_idx |= ~0;
tx_offload_mask.sec_pad_len |= ~0;
}
#endif
txq->ctx_cache[ctx_idx].flags = ol_flags;
txq->ctx_cache[ctx_idx].tx_offload.data[0] =
tx_offload_mask.data[0] & tx_offload.data[0];
txq->ctx_cache[ctx_idx].tx_offload.data[1] =
tx_offload_mask.data[1] & tx_offload.data[1];
txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask;
ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
vlan_macip_lens = tx_offload.l3_len;
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
vlan_macip_lens |= (tx_offload.outer_l2_len <<
IXGBE_ADVTXD_MACLEN_SHIFT);
else
vlan_macip_lens |= (tx_offload.l2_len <<
IXGBE_ADVTXD_MACLEN_SHIFT);
vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
ctx_txd->seqnum_seed = seqnum_seed;
}
/*
* Check which hardware context can be used. Use the existing match
* or create a new context descriptor.
*/
static inline uint32_t
what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
union ixgbe_tx_offload tx_offload)
{
/* If match with the current used context */
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
& tx_offload.data[0])) &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
& tx_offload.data[1]))))
return txq->ctx_curr;
/* What if match with the next context */
txq->ctx_curr ^= 1;
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
& tx_offload.data[0])) &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
& tx_offload.data[1]))))
return txq->ctx_curr;
/* Mismatch, use the previous context */
return IXGBE_CTX_NUM;
}
static inline uint32_t
tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
{
uint32_t tmp = 0;
if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
tmp |= IXGBE_ADVTXD_POPTS_TXSM;
if (ol_flags & PKT_TX_IP_CKSUM)
tmp |= IXGBE_ADVTXD_POPTS_IXSM;
if (ol_flags & PKT_TX_TCP_SEG)
tmp |= IXGBE_ADVTXD_POPTS_TXSM;
return tmp;
}
static inline uint32_t
tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
{
uint32_t cmdtype = 0;
if (ol_flags & PKT_TX_VLAN_PKT)
cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
if (ol_flags & PKT_TX_TCP_SEG)
cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
if (ol_flags & PKT_TX_MACSEC)
cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
return cmdtype;
}
/* Default RS bit threshold values */
#ifndef DEFAULT_TX_RS_THRESH
#define DEFAULT_TX_RS_THRESH 32
#endif
#ifndef DEFAULT_TX_FREE_THRESH
#define DEFAULT_TX_FREE_THRESH 32
#endif
/* Reset transmit descriptors after they have been used */
static inline int
ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
{
struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
uint32_t status;
/* Determine the last descriptor needing to be cleaned */
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
/* Check to make sure the last descriptor to clean is done */
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
status = txr[desc_to_clean_to].wb.status;
if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
PMD_TX_FREE_LOG(DEBUG,
"TX descriptor %4u is not done"
"(port=%d queue=%d)",
desc_to_clean_to,
txq->port_id, txq->queue_id);
/* Failed to clean any descriptors, better luck next time */
return -(1);
}
/* Figure out how many descriptors will be cleaned */
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
last_desc_cleaned);
PMD_TX_FREE_LOG(DEBUG,
"Cleaning %4u TX descriptors: %4u to %4u "
"(port=%d queue=%d)",
nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
txq->port_id, txq->queue_id);
/*
* The last descriptor to clean is done, so that means all the
* descriptors from the last descriptor that was cleaned
* up to the last descriptor with the RS bit set
* are done. Only reset the threshold descriptor.
*/
txr[desc_to_clean_to].wb.status = 0;
/* Update the txq to reflect the last descriptor that was cleaned */
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
/* No Error */
return 0;
}
uint16_t
ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ixgbe_tx_queue *txq;
struct ixgbe_tx_entry *sw_ring;
struct ixgbe_tx_entry *txe, *txn;
volatile union ixgbe_adv_tx_desc *txr;
volatile union ixgbe_adv_tx_desc *txd, *txp;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint64_t buf_dma_addr;
uint32_t olinfo_status;
uint32_t cmd_type_len;
uint32_t pkt_len;
uint16_t slen;
uint64_t ol_flags;
uint16_t tx_id;
uint16_t tx_last;
uint16_t nb_tx;
uint16_t nb_used;
uint64_t tx_ol_req;
uint32_t ctx = 0;
uint32_t new_ctx;
union ixgbe_tx_offload tx_offload;
#ifdef RTE_LIBRTE_SECURITY
uint8_t use_ipsec;
#endif
tx_offload.data[0] = 0;
tx_offload.data[1] = 0;
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
txp = NULL;
/* Determine if the descriptor ring needs to be cleaned. */
if (txq->nb_tx_free < txq->tx_free_thresh)
ixgbe_xmit_cleanup(txq);
rte_prefetch0(&txe->mbuf->pool);
/* TX loop */
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
new_ctx = 0;
tx_pkt = *tx_pkts++;
pkt_len = tx_pkt->pkt_len;
/*
* Determine how many (if any) context descriptors
* are needed for offload functionality.
*/
ol_flags = tx_pkt->ol_flags;
#ifdef RTE_LIBRTE_SECURITY
use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
#endif
/* If hardware offload required */
tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
if (tx_ol_req) {
tx_offload.l2_len = tx_pkt->l2_len;
tx_offload.l3_len = tx_pkt->l3_len;
tx_offload.l4_len = tx_pkt->l4_len;
tx_offload.vlan_tci = tx_pkt->vlan_tci;
tx_offload.tso_segsz = tx_pkt->tso_segsz;
tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
#ifdef RTE_LIBRTE_SECURITY
if (use_ipsec) {
union ixgbe_crypto_tx_desc_md *ipsec_mdata =
(union ixgbe_crypto_tx_desc_md *)
&tx_pkt->udata64;
tx_offload.sa_idx = ipsec_mdata->sa_idx;
tx_offload.sec_pad_len = ipsec_mdata->pad_len;
}
#endif
/* If new context need be built or reuse the exist ctx. */
ctx = what_advctx_update(txq, tx_ol_req,
tx_offload);
/* Only allocate context descriptor if required*/
new_ctx = (ctx == IXGBE_CTX_NUM);
ctx = txq->ctx_curr;
}
/*
* Keep track of how many descriptors are used this loop
* This will always be the number of segments + the number of
* Context descriptors required to transmit the packet
*/
nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
if (txp != NULL &&
nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
/* set RS on the previous packet in the burst */
txp->read.cmd_type_len |=
rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
/*
* The number of descriptors that must be allocated for a
* packet is the number of segments of that packet, plus 1
* Context Descriptor for the hardware offload, if any.
* Determine the last TX descriptor to allocate in the TX ring
* for the packet, starting from the current position (tx_id)
* in the ring.
*/
tx_last = (uint16_t) (tx_id + nb_used - 1);
/* Circular ring */
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
" tx_first=%u tx_last=%u",
(unsigned) txq->port_id,
(unsigned) txq->queue_id,
(unsigned) pkt_len,
(unsigned) tx_id,
(unsigned) tx_last);
/*
* Make sure there are enough TX descriptors available to
* transmit the entire packet.
* nb_used better be less than or equal to txq->tx_rs_thresh
*/
if (nb_used > txq->nb_tx_free) {
PMD_TX_FREE_LOG(DEBUG,
"Not enough free TX descriptors "
"nb_used=%4u nb_free=%4u "
"(port=%d queue=%d)",
nb_used, txq->nb_tx_free,
txq->port_id, txq->queue_id);
if (ixgbe_xmit_cleanup(txq) != 0) {
/* Could not clean any descriptors */
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
/* nb_used better be <= txq->tx_rs_thresh */
if (unlikely(nb_used > txq->tx_rs_thresh)) {
PMD_TX_FREE_LOG(DEBUG,
"The number of descriptors needed to "
"transmit the packet exceeds the "
"RS bit threshold. This will impact "
"performance."
"nb_used=%4u nb_free=%4u "
"tx_rs_thresh=%4u. "
"(port=%d queue=%d)",
nb_used, txq->nb_tx_free,
txq->tx_rs_thresh,
txq->port_id, txq->queue_id);
/*
* Loop here until there are enough TX
* descriptors or until the ring cannot be
* cleaned.
*/
while (nb_used > txq->nb_tx_free) {
if (ixgbe_xmit_cleanup(txq) != 0) {
/*
* Could not clean any
* descriptors
*/
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
}
}
}
/*
* By now there are enough free TX descriptors to transmit
* the packet.
*/
/*
* Set common flags of all TX Data Descriptors.
*
* The following bits must be set in all Data Descriptors:
* - IXGBE_ADVTXD_DTYP_DATA
* - IXGBE_ADVTXD_DCMD_DEXT
*
* The following bits must be set in the first Data Descriptor
* and are ignored in the other ones:
* - IXGBE_ADVTXD_DCMD_IFCS
* - IXGBE_ADVTXD_MAC_1588
* - IXGBE_ADVTXD_DCMD_VLE
*
* The following bits must only be set in the last Data
* Descriptor:
* - IXGBE_TXD_CMD_EOP
*
* The following bits can be set in any Data Descriptor, but
* are only set in the last Data Descriptor:
* - IXGBE_TXD_CMD_RS
*/
cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
#ifdef RTE_LIBRTE_IEEE1588
if (ol_flags & PKT_TX_IEEE1588_TMST)
cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
#endif
olinfo_status = 0;
if (tx_ol_req) {
if (ol_flags & PKT_TX_TCP_SEG) {
/* when TSO is on, paylen in descriptor is the
* not the packet len but the tcp payload len */
pkt_len -= (tx_offload.l2_len +
tx_offload.l3_len + tx_offload.l4_len);
}
/*
* Setup the TX Advanced Context Descriptor if required
*/
if (new_ctx) {
volatile struct ixgbe_adv_tx_context_desc *
ctx_txd;
ctx_txd = (volatile struct
ixgbe_adv_tx_context_desc *)
&txr[tx_id];
txn = &sw_ring[txe->next_id];
rte_prefetch0(&txn->mbuf->pool);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
tx_offload, &tx_pkt->udata64);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
/*
* Setup the TX Advanced Data Descriptor,
* This path will go through
* whatever new/reuse the context descriptor
*/
cmd_type_len |= tx_desc_ol_flags_to_cmdtype(ol_flags);
olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
}
olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
#ifdef RTE_LIBRTE_SECURITY
if (use_ipsec)
olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
#endif
m_seg = tx_pkt;
do {
txd = &txr[tx_id];
txn = &sw_ring[txe->next_id];
rte_prefetch0(&txn->mbuf->pool);
if (txe->mbuf != NULL)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/*
* Set up Transmit Data Descriptor.
*/
slen = m_seg->data_len;
buf_dma_addr = rte_mbuf_data_iova(m_seg);
txd->read.buffer_addr =
rte_cpu_to_le_64(buf_dma_addr);
txd->read.cmd_type_len =
rte_cpu_to_le_32(cmd_type_len | slen);
txd->read.olinfo_status =
rte_cpu_to_le_32(olinfo_status);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg != NULL);
/*
* The last packet data descriptor needs End Of Packet (EOP)
*/
cmd_type_len |= IXGBE_TXD_CMD_EOP;
txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
/* Set RS bit only on threshold packets' last descriptor */
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
PMD_TX_FREE_LOG(DEBUG,
"Setting RS bit on TXD id="
"%4u (port=%d queue=%d)",
tx_last, txq->port_id, txq->queue_id);
cmd_type_len |= IXGBE_TXD_CMD_RS;
/* Update txq RS bit counters */
txq->nb_tx_used = 0;
txp = NULL;
} else
txp = txd;
txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
}
end_of_tx:
/* set RS on last packet in the burst */
if (txp != NULL)
txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
rte_wmb();
/*
* Set the Transmit Descriptor Tail (TDT)
*/
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(unsigned) txq->port_id, (unsigned) txq->queue_id,
(unsigned) tx_id, (unsigned) nb_tx);
IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
txq->tx_tail = tx_id;
return nb_tx;
}
/*********************************************************************
*
* TX prep functions
*
**********************************************************************/
uint16_t
ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
int i, ret;
uint64_t ol_flags;
struct rte_mbuf *m;
struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
/**
* Check if packet meets requirements for number of segments
*
* NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
* non-TSO
*/
if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
rte_errno = EINVAL;
return i;
}
if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = ENOTSUP;
return i;
}
/* check the size of packet */
if (m->pkt_len < IXGBE_TX_MIN_PKT_LEN) {
rte_errno = EINVAL;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
}
return i;
}
/*********************************************************************
*
* RX functions
*
**********************************************************************/
#define IXGBE_PACKET_TYPE_ETHER 0X00
#define IXGBE_PACKET_TYPE_IPV4 0X01
#define IXGBE_PACKET_TYPE_IPV4_TCP 0X11
#define IXGBE_PACKET_TYPE_IPV4_UDP 0X21
#define IXGBE_PACKET_TYPE_IPV4_SCTP 0X41
#define IXGBE_PACKET_TYPE_IPV4_EXT 0X03
#define IXGBE_PACKET_TYPE_IPV4_EXT_TCP 0X13
#define IXGBE_PACKET_TYPE_IPV4_EXT_UDP 0X23
#define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP 0X43
#define IXGBE_PACKET_TYPE_IPV6 0X04
#define IXGBE_PACKET_TYPE_IPV6_TCP 0X14
#define IXGBE_PACKET_TYPE_IPV6_UDP 0X24
#define IXGBE_PACKET_TYPE_IPV6_SCTP 0X44
#define IXGBE_PACKET_TYPE_IPV6_EXT 0X0C
#define IXGBE_PACKET_TYPE_IPV6_EXT_TCP 0X1C
#define IXGBE_PACKET_TYPE_IPV6_EXT_UDP 0X2C
#define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP 0X4C
#define IXGBE_PACKET_TYPE_IPV4_IPV6 0X05
#define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP 0X15
#define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP 0X25
#define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP 0X45
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6 0X07
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP 0X17
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP 0X27
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP 0X47
#define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT 0X0D
#define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
#define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
#define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP 0X4D
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT 0X0F
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP 0X1F
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP 0X2F
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP 0X4F
#define IXGBE_PACKET_TYPE_NVGRE 0X00
#define IXGBE_PACKET_TYPE_NVGRE_IPV4 0X01
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP 0X11
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP 0X21
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP 0X41
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT 0X03
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP 0X13
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP 0X23
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP 0X43
#define IXGBE_PACKET_TYPE_NVGRE_IPV6 0X04
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP 0X14
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP 0X24
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP 0X44
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT 0X0C
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP 0X1C
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP 0X2C
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP 0X4C
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6 0X05
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP 0X15
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP 0X25
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT 0X0D
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
#define IXGBE_PACKET_TYPE_VXLAN 0X80
#define IXGBE_PACKET_TYPE_VXLAN_IPV4 0X81
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP 0x91
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP 0xA1
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP 0xC1
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT 0x83
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP 0X93
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP 0XA3
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP 0XC3
#define IXGBE_PACKET_TYPE_VXLAN_IPV6 0X84
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP 0X94
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP 0XA4
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP 0XC4
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT 0X8C
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP 0X9C
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP 0XAC
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP 0XCC
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6 0X85
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP 0X95
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP 0XA5
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT 0X8D
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
/**
* Use 2 different table for normal packet and tunnel packet
* to save the space.
*/
const uint32_t
ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
[IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
[IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4,
[IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
[IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
[IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
[IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT,
[IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
[IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
[IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
[IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6,
[IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
[IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
[IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
[IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT,
[IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
[IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
[IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
[IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6,
[IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6,
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT,
[IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT,
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
};
const uint32_t
ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
[IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER,
[IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
[IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
[IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT,
[IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
[IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
[IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
};
/* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
static inline uint32_t
ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
{
if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
return RTE_PTYPE_UNKNOWN;
pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
/* For tunnel packet */
if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
/* Remove the tunnel bit to save the space. */
pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
return ptype_table_tn[pkt_info];
}
/**
* For x550, if it's not tunnel,
* tunnel type bit should be set to 0.
* Reuse 82599's mask.
*/
pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
return ptype_table[pkt_info];
}
static inline uint64_t
ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
{
static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, 0, 0, 0,
0, 0, 0, PKT_RX_FDIR,
};
#ifdef RTE_LIBRTE_IEEE1588
static uint64_t ip_pkt_etqf_map[8] = {
0, 0, 0, PKT_RX_IEEE1588_PTP,
0, 0, 0, 0,
};
if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
ip_rss_types_map[pkt_info & 0XF];
else
return ip_rss_types_map[pkt_info & 0XF];
#else
return ip_rss_types_map[pkt_info & 0XF];
#endif
}
static inline uint64_t
rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
{
uint64_t pkt_flags;
/*
* Check if VLAN present only.
* Do not check whether L3/L4 rx checksum done by NIC or not,
* That can be found from rte_eth_rxmode.offloads flag
*/
pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ? vlan_flags : 0;
#ifdef RTE_LIBRTE_IEEE1588
if (rx_status & IXGBE_RXD_STAT_TMST)
pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
#endif
return pkt_flags;
}
static inline uint64_t
rx_desc_error_to_pkt_flags(uint32_t rx_status)
{
uint64_t pkt_flags;
/*
* Bit 31: IPE, IPv4 checksum error
* Bit 30: L4I, L4I integrity error
*/
static uint64_t error_to_pkt_flags_map[4] = {
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
};
pkt_flags = error_to_pkt_flags_map[(rx_status >>
IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
(rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
pkt_flags |= PKT_RX_EIP_CKSUM_BAD;
}
#ifdef RTE_LIBRTE_SECURITY
if (rx_status & IXGBE_RXD_STAT_SECP) {
pkt_flags |= PKT_RX_SEC_OFFLOAD;
if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
}
#endif
return pkt_flags;
}
/*
* LOOK_AHEAD defines how many desc statuses to check beyond the
* current descriptor.
* It must be a pound define for optimal performance.
* Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
* function only works with LOOK_AHEAD=8.
*/
#define LOOK_AHEAD 8
#if (LOOK_AHEAD != 8)
#error "PMD IXGBE: LOOK_AHEAD must be 8\n"
#endif
static inline int
ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
{
volatile union ixgbe_adv_rx_desc *rxdp;
struct ixgbe_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t pkt_len;
uint64_t pkt_flags;
int nb_dd;
uint32_t s[LOOK_AHEAD];
uint32_t pkt_info[LOOK_AHEAD];
int i, j, nb_rx = 0;
uint32_t status;
uint64_t vlan_flags = rxq->vlan_flags;
/* get references to current descriptor and S/W ring entry */
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
status = rxdp->wb.upper.status_error;
/* check to make sure there is at least 1 packet to receive */
if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
return 0;
/*
* Scan LOOK_AHEAD descriptors at a time to determine which descriptors
* reference packets that are ready to be received.
*/
for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
/* Read desc statuses backwards to avoid race condition */
for (j = 0; j < LOOK_AHEAD; j++)
s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
rte_smp_rmb();
/* Compute how many status bits were set */
for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
(s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
;
for (j = 0; j < nb_dd; j++)
pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
lo_dword.data);
nb_rx += nb_dd;
/* Translate descriptor info to mbuf format */
for (j = 0; j < nb_dd; ++j) {
mb = rxep[j].mbuf;
pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
rxq->crc_len;
mb->data_len = pkt_len;
mb->pkt_len = pkt_len;
mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
/* convert descriptor fields to rte mbuf flags */
pkt_flags = rx_desc_status_to_pkt_flags(s[j],
vlan_flags);
pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
((uint16_t)pkt_info[j]);
mb->ol_flags = pkt_flags;
mb->packet_type =
ixgbe_rxd_pkt_info_to_pkt_type
(pkt_info[j], rxq->pkt_type_mask);
if (likely(pkt_flags & PKT_RX_RSS_HASH))
mb->hash.rss = rte_le_to_cpu_32(
rxdp[j].wb.lower.hi_dword.rss);
else if (pkt_flags & PKT_RX_FDIR) {
mb->hash.fdir.hash = rte_le_to_cpu_16(
rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
IXGBE_ATR_HASH_MASK;
mb->hash.fdir.id = rte_le_to_cpu_16(
rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
}
}
/* Move mbuf pointers from the S/W ring to the stage */
for (j = 0; j < LOOK_AHEAD; ++j) {
rxq->rx_stage[i + j] = rxep[j].mbuf;
}
/* stop if all requested packets could not be received */
if (nb_dd != LOOK_AHEAD)
break;
}
/* clear software ring entries so we can cleanup correctly */
for (i = 0; i < nb_rx; ++i) {
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
}
return nb_rx;
}
static inline int
ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
{
volatile union ixgbe_adv_rx_desc *rxdp;
struct ixgbe_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t alloc_idx;
__le64 dma_addr;
int diag, i;
/* allocate buffers in bulk directly into the S/W ring */
alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
rxep = &rxq->sw_ring[alloc_idx];
diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
rxq->rx_free_thresh);
if (unlikely(diag != 0))
return -ENOMEM;
rxdp = &rxq->rx_ring[alloc_idx];
for (i = 0; i < rxq->rx_free_thresh; ++i) {
/* populate the static rte mbuf fields */
mb = rxep[i].mbuf;
if (reset_mbuf) {
mb->port = rxq->port_id;
}
rte_mbuf_refcnt_set(mb, 1);
mb->data_off = RTE_PKTMBUF_HEADROOM;
/* populate the descriptors */
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
rxdp[i].read.hdr_addr = 0;
rxdp[i].read.pkt_addr = dma_addr;
}
/* update state of internal queue structure */
rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
/* no errors */
return 0;
}
static inline uint16_t
ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
int i;
/* how many packets are ready to return? */
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
/* copy mbuf pointers to the application's packet list */
for (i = 0; i < nb_pkts; ++i)
rx_pkts[i] = stage[i];
/* update internal queue state */
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
return nb_pkts;
}
static inline uint16_t
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
uint16_t nb_rx = 0;
/* Any previously recv'd pkts will be returned from the Rx stage */
if (rxq->rx_nb_avail)
return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
/* Scan the H/W ring for packets to receive */
nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
/* update internal queue state */
rxq->rx_next_avail = 0;
rxq->rx_nb_avail = nb_rx;
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
/* if required, allocate new buffers to replenish descriptors */
if (rxq->rx_tail > rxq->rx_free_trigger) {
uint16_t cur_free_trigger = rxq->rx_free_trigger;
if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
int i, j;
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
rxq->rx_free_thresh;
/*
* Need to rewind any previous receives if we cannot
* allocate new buffers to replenish the old ones.
*/
rxq->rx_nb_avail = 0;
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
return 0;
}
/* update tail pointer */
rte_wmb();
IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
cur_free_trigger);
}
if (rxq->rx_tail >= rxq->nb_rx_desc)
rxq->rx_tail = 0;
/* received any packets this loop? */
if (rxq->rx_nb_avail)
return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
return 0;
}
/* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
uint16_t
ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_rx;
if (unlikely(nb_pkts == 0))
return 0;
if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
/* request is relatively large, chunk it up */
nb_rx = 0;
while (nb_pkts) {
uint16_t ret, n;
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
nb_rx = (uint16_t)(nb_rx + ret);
nb_pkts = (uint16_t)(nb_pkts - ret);
if (ret < n)
break;
}
return nb_rx;
}
uint16_t
ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ixgbe_rx_queue *rxq;
volatile union ixgbe_adv_rx_desc *rx_ring;
volatile union ixgbe_adv_rx_desc *rxdp;
struct ixgbe_rx_entry *sw_ring;
struct ixgbe_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union ixgbe_adv_rx_desc rxd;
uint64_t dma_addr;
uint32_t staterr;
uint32_t pkt_info;
uint16_t pkt_len;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint64_t pkt_flags;
uint64_t vlan_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
vlan_flags = rxq->vlan_flags;
while (nb_rx < nb_pkts) {
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->wb.upper.status_error;
if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
break;
rxd = *rxdp;
/*
* End of packet.
*
* If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
* is likely to be invalid and to be dropped by the various
* validation checks performed by the network stack.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy do not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
"ext_err_stat=0x%08x pkt_len=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) staterr,
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_ixgbe_prefetch(&rx_ring[rx_id]);
rte_ixgbe_prefetch(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
/*
* Initialize the returned mbuf.
* 1) setup generic mbuf fields:
* - number of segments,
* - next segment,
* - packet length,
* - RX port identifier.
* 2) integrate hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
rxq->crc_len);
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = pkt_len;
rxm->data_len = pkt_len;
rxm->port = rxq->port_id;
pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
/* Only valid if PKT_RX_VLAN set in pkt_flags */
rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
pkt_flags = pkt_flags |
ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
rxm->ol_flags = pkt_flags;
rxm->packet_type =
ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
rxq->pkt_type_mask);
if (likely(pkt_flags & PKT_RX_RSS_HASH))
rxm->hash.rss = rte_le_to_cpu_32(
rxd.wb.lower.hi_dword.rss);
else if (pkt_flags & PKT_RX_FDIR) {
rxm->hash.fdir.hash = rte_le_to_cpu_16(
rxd.wb.lower.hi_dword.csum_ip.csum) &
IXGBE_ATR_HASH_MASK;
rxm->hash.fdir.id = rte_le_to_cpu_16(
rxd.wb.lower.hi_dword.csum_ip.ip_id);
}
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
/**
* Detect an RSC descriptor.
*/
static inline uint32_t
ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
{
return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
}
/**
* ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
*
* Fill the following info in the HEAD buffer of the Rx cluster:
* - RX port identifier
* - hardware offload data, if any:
* - RSS flag & hash
* - IP checksum flag
* - VLAN TCI, if any
* - error flags
* @head HEAD of the packet cluster
* @desc HW descriptor to get data from
* @rxq Pointer to the Rx queue
*/
static inline void
ixgbe_fill_cluster_head_buf(
struct rte_mbuf *head,
union ixgbe_adv_rx_desc *desc,
struct ixgbe_rx_queue *rxq,
uint32_t staterr)
{
uint32_t pkt_info;
uint64_t pkt_flags;
head->port = rxq->port_id;
/* The vlan_tci field is only valid when PKT_RX_VLAN is
* set in the pkt_flags field.
*/
head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
head->ol_flags = pkt_flags;
head->packet_type =
ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
if (likely(pkt_flags & PKT_RX_RSS_HASH))
head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
else if (pkt_flags & PKT_RX_FDIR) {
head->hash.fdir.hash =
rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
& IXGBE_ATR_HASH_MASK;
head->hash.fdir.id =
rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
}
}
/**
* ixgbe_recv_pkts_lro - receive handler for and LRO case.
*
* @rx_queue Rx queue handle
* @rx_pkts table of received packets
* @nb_pkts size of rx_pkts table
* @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
*
* Handles the Rx HW ring completions when RSC feature is configured. Uses an
* additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
*
* We use the same logic as in Linux and in FreeBSD ixgbe drivers:
* 1) When non-EOP RSC completion arrives:
* a) Update the HEAD of the current RSC aggregation cluster with the new
* segment's data length.
* b) Set the "next" pointer of the current segment to point to the segment
* at the NEXTP index.
* c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
* in the sw_rsc_ring.
* 2) When EOP arrives we just update the cluster's total length and offload
* flags and deliver the cluster up to the upper layers. In our case - put it
* in the rx_pkts table.
*
* Returns the number of received packets/clusters (according to the "bulk
* receive" interface).
*/
static inline uint16_t
ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
bool bulk_alloc)
{
struct ixgbe_rx_queue *rxq = rx_queue;
volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0;
uint16_t nb_hold = rxq->nb_rx_hold;
uint16_t prev_id = rxq->rx_tail;
while (nb_rx < nb_pkts) {
bool eop;
struct ixgbe_rx_entry *rxe;
struct ixgbe_scattered_rx_entry *sc_entry;
struct ixgbe_scattered_rx_entry *next_sc_entry = NULL;
struct ixgbe_rx_entry *next_rxe = NULL;
struct rte_mbuf *first_seg;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb = NULL;
union ixgbe_adv_rx_desc rxd;
uint16_t data_len;
uint16_t next_id;
volatile union ixgbe_adv_rx_desc *rxdp;
uint32_t staterr;
next_desc:
/*
* The code in this whole file uses the volatile pointer to
* ensure the read ordering of the status and the rest of the
* descriptor fields (on the compiler level only!!!). This is so
* UGLY - why not to just use the compiler barrier instead? DPDK
* even has the rte_compiler_barrier() for that.
*
* But most importantly this is just wrong because this doesn't
* ensure memory ordering in a general case at all. For
* instance, DPDK is supposed to work on Power CPUs where
* compiler barrier may just not be enough!
*
* I tried to write only this function properly to have a
* starting point (as a part of an LRO/RSC series) but the
* compiler cursed at me when I tried to cast away the
* "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
* keeping it the way it is for now.
*
* The code in this file is broken in so many other places and
* will just not work on a big endian CPU anyway therefore the
* lines below will have to be revisited together with the rest
* of the ixgbe PMD.
*
* TODO:
* - Get rid of "volatile" and let the compiler do its job.
* - Use the proper memory barrier (rte_rmb()) to ensure the
* memory ordering below.
*/
rxdp = &rx_ring[rx_id];
staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
if (!(staterr & IXGBE_RXDADV_STAT_DD))
break;
rxd = *rxdp;
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
"staterr=0x%x data_len=%u",
rxq->port_id, rxq->queue_id, rx_id, staterr,
rte_le_to_cpu_16(rxd.wb.upper.length));
if (!bulk_alloc) {
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
"port_id=%u queue_id=%u",
rxq->port_id, rxq->queue_id);
rte_eth_devices[rxq->port_id].data->
rx_mbuf_alloc_failed++;
break;
}
} else if (nb_hold > rxq->rx_free_thresh) {
uint16_t next_rdt = rxq->rx_free_trigger;
if (!ixgbe_rx_alloc_bufs(rxq, false)) {
rte_wmb();
IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
next_rdt);
nb_hold -= rxq->rx_free_thresh;
} else {
PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
"port_id=%u queue_id=%u",
rxq->port_id, rxq->queue_id);
rte_eth_devices[rxq->port_id].data->
rx_mbuf_alloc_failed++;
break;
}
}
nb_hold++;
rxe = &sw_ring[rx_id];
eop = staterr & IXGBE_RXDADV_STAT_EOP;
next_id = rx_id + 1;
if (next_id == rxq->nb_rx_desc)
next_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 4 pointers
* to mbufs.
*/
if ((next_id & 0x3) == 0) {
rte_ixgbe_prefetch(&rx_ring[next_id]);
rte_ixgbe_prefetch(&sw_ring[next_id]);
}
rxm = rxe->mbuf;
if (!bulk_alloc) {
__le64 dma =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
/*
* Update RX descriptor with the physical address of the
* new data buffer of the new allocated mbuf.
*/
rxe->mbuf = nmb;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma;
} else
rxe->mbuf = NULL;
/*
* Set data length & data buffer address of mbuf.
*/
data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
rxm->data_len = data_len;
if (!eop) {
uint16_t nextp_id;
/*
* Get next descriptor index:
* - For RSC it's in the NEXTP field.
* - For a scattered packet - it's just a following
* descriptor.
*/
if (ixgbe_rsc_count(&rxd))
nextp_id =
(staterr & IXGBE_RXDADV_NEXTP_MASK) >>
IXGBE_RXDADV_NEXTP_SHIFT;
else
nextp_id = next_id;
next_sc_entry = &sw_sc_ring[nextp_id];
next_rxe = &sw_ring[nextp_id];
rte_ixgbe_prefetch(next_rxe);
}
sc_entry = &sw_sc_ring[rx_id];
first_seg = sc_entry->fbuf;
sc_entry->fbuf = NULL;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet and
* initialize its context.
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (first_seg == NULL) {
first_seg = rxm;
first_seg->pkt_len = data_len;
first_seg->nb_segs = 1;
} else {
first_seg->pkt_len += data_len;
first_seg->nb_segs++;
}
prev_id = rx_id;
rx_id = next_id;
/*
* If this is not the last buffer of the received packet, update
* the pointer to the first mbuf at the NEXTP entry in the
* sw_sc_ring and continue to parse the RX ring.
*/
if (!eop && next_rxe) {
rxm->next = next_rxe->mbuf;
next_sc_entry->fbuf = first_seg;
goto next_desc;
}
/* Initialize the first mbuf of the returned packet */
ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
/*
* Deal with the case, when HW CRC srip is disabled.
* That can't happen when LRO is enabled, but still could
* happen for scattered RX mode.
*/
first_seg->pkt_len -= rxq->crc_len;
if (unlikely(rxm->data_len <= rxq->crc_len)) {
struct rte_mbuf *lp;
for (lp = first_seg; lp->next != rxm; lp = lp->next)
;
first_seg->nb_segs--;
lp->data_len -= rxq->crc_len - rxm->data_len;
lp->next = NULL;
rte_pktmbuf_free_seg(rxm);
} else
rxm->data_len -= rxq->crc_len;
/* Prefetch data of first segment, if configured to do so. */
rte_packet_prefetch((char *)first_seg->buf_addr +
first_seg->data_off);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = first_seg;
}
/*
* Record index of the next RX descriptor to probe.
*/
rxq->rx_tail = rx_id;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
rte_wmb();
IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
uint16_t
ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
}
uint16_t
ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
}
/*********************************************************************
*
* Queue management functions
*
**********************************************************************/
static void __rte_cold
ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
{
unsigned i;
if (txq->sw_ring != NULL) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static int
ixgbe_tx_done_cleanup_full(struct ixgbe_tx_queue *txq, uint32_t free_cnt)
{
struct ixgbe_tx_entry *swr_ring = txq->sw_ring;
uint16_t i, tx_last, tx_id;
uint16_t nb_tx_free_last;
uint16_t nb_tx_to_clean;
uint32_t pkt_cnt;
/* Start free mbuf from the next of tx_tail */
tx_last = txq->tx_tail;
tx_id = swr_ring[tx_last].next_id;
if (txq->nb_tx_free == 0 && ixgbe_xmit_cleanup(txq))
return 0;
nb_tx_to_clean = txq->nb_tx_free;
nb_tx_free_last = txq->nb_tx_free;
if (!free_cnt)
free_cnt = txq->nb_tx_desc;
/* Loop through swr_ring to count the amount of
* freeable mubfs and packets.
*/
for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
for (i = 0; i < nb_tx_to_clean &&
pkt_cnt < free_cnt &&
tx_id != tx_last; i++) {
if (swr_ring[tx_id].mbuf != NULL) {
rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
swr_ring[tx_id].mbuf = NULL;
/*
* last segment in the packet,
* increment packet count
*/
pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
}
tx_id = swr_ring[tx_id].next_id;
}
if (txq->tx_rs_thresh > txq->nb_tx_desc -
txq->nb_tx_free || tx_id == tx_last)
break;
if (pkt_cnt < free_cnt) {
if (ixgbe_xmit_cleanup(txq))
break;
nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
nb_tx_free_last = txq->nb_tx_free;
}
}
return (int)pkt_cnt;
}
static int
ixgbe_tx_done_cleanup_simple(struct ixgbe_tx_queue *txq,
uint32_t free_cnt)
{
int i, n, cnt;
if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
free_cnt = txq->nb_tx_desc;
cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
for (i = 0; i < cnt; i += n) {
if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
break;
n = ixgbe_tx_free_bufs(txq);
if (n == 0)
break;
}
return i;
}
static int
ixgbe_tx_done_cleanup_vec(struct ixgbe_tx_queue *txq __rte_unused,
uint32_t free_cnt __rte_unused)
{
return -ENOTSUP;
}
int
ixgbe_dev_tx_done_cleanup(void *tx_queue, uint32_t free_cnt)
{
struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
if (txq->offloads == 0 &&
#ifdef RTE_LIBRTE_SECURITY
!(txq->using_ipsec) &&
#endif
txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST) {
if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
(rte_eal_process_type() != RTE_PROC_PRIMARY ||
txq->sw_ring_v != NULL)) {
return ixgbe_tx_done_cleanup_vec(txq, free_cnt);
} else {
return ixgbe_tx_done_cleanup_simple(txq, free_cnt);
}
}
return ixgbe_tx_done_cleanup_full(txq, free_cnt);
}
static void __rte_cold
ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
{
if (txq != NULL &&
txq->sw_ring != NULL)
rte_free(txq->sw_ring);
}
static void __rte_cold
ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
{
if (txq != NULL && txq->ops != NULL) {
txq->ops->release_mbufs(txq);
txq->ops->free_swring(txq);
rte_free(txq);
}
}
void __rte_cold
ixgbe_dev_tx_queue_release(void *txq)
{
ixgbe_tx_queue_release(txq);
}
/* (Re)set dynamic ixgbe_tx_queue fields to defaults */
static void __rte_cold
ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
{
static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
struct ixgbe_tx_entry *txe = txq->sw_ring;
uint16_t prev, i;
/* Zero out HW ring memory */
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->tx_ring[i] = zeroed_desc;
}
/* Initialize SW ring entries */
prev = (uint16_t) (txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_tail = 0;
txq->nb_tx_used = 0;
/*
* Always allow 1 descriptor to be un-allocated to avoid
* a H/W race condition
*/
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
txq->ctx_curr = 0;
memset((void *)&txq->ctx_cache, 0,
IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
}
static const struct ixgbe_txq_ops def_txq_ops = {
.release_mbufs = ixgbe_tx_queue_release_mbufs,
.free_swring = ixgbe_tx_free_swring,
.reset = ixgbe_reset_tx_queue,
};
/* Takes an ethdev and a queue and sets up the tx function to be used based on
* the queue parameters. Used in tx_queue_setup by primary process and then
* in dev_init by secondary process when attaching to an existing ethdev.
*/
void __rte_cold
ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
{
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
if ((txq->offloads == 0) &&
#ifdef RTE_LIBRTE_SECURITY
!(txq->using_ipsec) &&
#endif
(txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
PMD_INIT_LOG(DEBUG, "Using simple tx code path");
dev->tx_pkt_prepare = NULL;
if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
(rte_eal_process_type() != RTE_PROC_PRIMARY ||
ixgbe_txq_vec_setup(txq) == 0)) {
PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
} else
dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
} else {
PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
PMD_INIT_LOG(DEBUG,
" - offloads = 0x%" PRIx64,
txq->offloads);
PMD_INIT_LOG(DEBUG,
" - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
(unsigned long)txq->tx_rs_thresh,
(unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
dev->tx_pkt_burst = ixgbe_xmit_pkts;
dev->tx_pkt_prepare = ixgbe_prep_pkts;
}
}
uint64_t
ixgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
{
RTE_SET_USED(dev);
return 0;
}
uint64_t
ixgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
{
uint64_t tx_offload_capa;
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_MULTI_SEGS;
if (hw->mac.type == ixgbe_mac_82599EB ||
hw->mac.type == ixgbe_mac_X540)
tx_offload_capa |= DEV_TX_OFFLOAD_MACSEC_INSERT;
if (hw->mac.type == ixgbe_mac_X550 ||
hw->mac.type == ixgbe_mac_X550EM_x ||
hw->mac.type == ixgbe_mac_X550EM_a)
tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
#ifdef RTE_LIBRTE_SECURITY
if (dev->security_ctx)
tx_offload_capa |= DEV_TX_OFFLOAD_SECURITY;
#endif
return tx_offload_capa;
}
int __rte_cold
ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct ixgbe_tx_queue *txq;
struct ixgbe_hw *hw;
uint16_t tx_rs_thresh, tx_free_thresh;
uint64_t offloads;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
/*
* Validate number of transmit descriptors.
* It must not exceed hardware maximum, and must be multiple
* of IXGBE_ALIGN.
*/
if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
(nb_desc > IXGBE_MAX_RING_DESC) ||
(nb_desc < IXGBE_MIN_RING_DESC)) {
return -EINVAL;
}
/*
* The following two parameters control the setting of the RS bit on
* transmit descriptors.
* TX descriptors will have their RS bit set after txq->tx_rs_thresh
* descriptors have been used.
* The TX descriptor ring will be cleaned after txq->tx_free_thresh
* descriptors are used or if the number of descriptors required
* to transmit a packet is greater than the number of free TX
* descriptors.
* The following constraints must be satisfied:
* tx_rs_thresh must be greater than 0.
* tx_rs_thresh must be less than the size of the ring minus 2.
* tx_rs_thresh must be less than or equal to tx_free_thresh.
* tx_rs_thresh must be a divisor of the ring size.
* tx_free_thresh must be greater than 0.
* tx_free_thresh must be less than the size of the ring minus 3.
* tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
* One descriptor in the TX ring is used as a sentinel to avoid a
* H/W race condition, hence the maximum threshold constraints.
* When set to zero use default values.
*/
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
/* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
if (tx_conf->tx_rs_thresh > 0)
tx_rs_thresh = tx_conf->tx_rs_thresh;
if (tx_rs_thresh + tx_free_thresh > nb_desc) {
PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
"exceed nb_desc. (tx_rs_thresh=%u "
"tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
(unsigned int)tx_rs_thresh,
(unsigned int)tx_free_thresh,
(unsigned int)nb_desc,
(int)dev->data->port_id,
(int)queue_idx);
return -(EINVAL);
}
if (tx_rs_thresh >= (nb_desc - 2)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
"of TX descriptors minus 2. (tx_rs_thresh=%u "
"port=%d queue=%d)", (unsigned int)tx_rs_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
"(tx_rs_thresh=%u port=%d queue=%d)",
DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
if (tx_free_thresh >= (nb_desc - 3)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
"tx_free_thresh must be less than the number of "
"TX descriptors minus 3. (tx_free_thresh=%u "
"port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
if (tx_rs_thresh > tx_free_thresh) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
"tx_free_thresh. (tx_free_thresh=%u "
"tx_rs_thresh=%u port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return -(EINVAL);
}
if ((nb_desc % tx_rs_thresh) != 0) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
"number of TX descriptors. (tx_rs_thresh=%u "
"port=%d queue=%d)", (unsigned int)tx_rs_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
/*
* If rs_bit_thresh is greater than 1, then TX WTHRESH should be
* set to 0. If WTHRESH is greater than zero, the RS bit is ignored
* by the NIC and all descriptors are written back after the NIC
* accumulates WTHRESH descriptors.
*/
if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
"tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
"port=%d queue=%d)", (unsigned int)tx_rs_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->tx_queues[queue_idx] != NULL) {
ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* First allocate the tx queue data structure */
txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL)
return -ENOMEM;
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
IXGBE_ALIGN, socket_id);
if (tz == NULL) {
ixgbe_tx_queue_release(txq);
return -ENOMEM;
}
txq->nb_tx_desc = nb_desc;
txq->tx_rs_thresh = tx_rs_thresh;
txq->tx_free_thresh = tx_free_thresh;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
txq->queue_id = queue_idx;
txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
txq->port_id = dev->data->port_id;
txq->offloads = offloads;
txq->ops = &def_txq_ops;
txq->tx_deferred_start = tx_conf->tx_deferred_start;
#ifdef RTE_LIBRTE_SECURITY
txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_SECURITY);
#endif
/*
* Modification to set VFTDT for virtual function if vf is detected
*/
if (hw->mac.type == ixgbe_mac_82599_vf ||
hw->mac.type == ixgbe_mac_X540_vf ||
hw->mac.type == ixgbe_mac_X550_vf ||
hw->mac.type == ixgbe_mac_X550EM_x_vf ||
hw->mac.type == ixgbe_mac_X550EM_a_vf)
txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
else
txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
txq->tx_ring_phys_addr = tz->iova;
txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
/* Allocate software ring */
txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
sizeof(struct ixgbe_tx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->sw_ring == NULL) {
ixgbe_tx_queue_release(txq);
return -ENOMEM;
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
/* set up vector or scalar TX function as appropriate */
ixgbe_set_tx_function(dev, txq);
txq->ops->reset(txq);
dev->data->tx_queues[queue_idx] = txq;
return 0;
}
/**
* ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
*
* The "next" pointer of the last segment of (not-yet-completed) RSC clusters
* in the sw_rsc_ring is not set to NULL but rather points to the next
* mbuf of this RSC aggregation (that has not been completed yet and still
* resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
* will just free first "nb_segs" segments of the cluster explicitly by calling
* an rte_pktmbuf_free_seg().
*
* @m scattered cluster head
*/
static void __rte_cold
ixgbe_free_sc_cluster(struct rte_mbuf *m)
{
uint16_t i, nb_segs = m->nb_segs;
struct rte_mbuf *next_seg;
for (i = 0; i < nb_segs; i++) {
next_seg = m->next;
rte_pktmbuf_free_seg(m);
m = next_seg;
}
}
static void __rte_cold
ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
{
unsigned i;
/* SSE Vector driver has a different way of releasing mbufs. */
if (rxq->rx_using_sse) {
ixgbe_rx_queue_release_mbufs_vec(rxq);
return;
}
if (rxq->sw_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
if (rxq->rx_nb_avail) {
for (i = 0; i < rxq->rx_nb_avail; ++i) {
struct rte_mbuf *mb;
mb = rxq->rx_stage[rxq->rx_next_avail + i];
rte_pktmbuf_free_seg(mb);
}
rxq->rx_nb_avail = 0;
}
}
if (rxq->sw_sc_ring)
for (i = 0; i < rxq->nb_rx_desc; i++)
if (rxq->sw_sc_ring[i].fbuf) {
ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
rxq->sw_sc_ring[i].fbuf = NULL;
}
}
static void __rte_cold
ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
{
if (rxq != NULL) {
ixgbe_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq->sw_sc_ring);
rte_free(rxq);
}
}
void __rte_cold
ixgbe_dev_rx_queue_release(void *rxq)
{
ixgbe_rx_queue_release(rxq);
}
/*
* Check if Rx Burst Bulk Alloc function can be used.
* Return
* 0: the preconditions are satisfied and the bulk allocation function
* can be used.
* -EINVAL: the preconditions are NOT satisfied and the default Rx burst
* function must be used.
*/
static inline int __rte_cold
check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
{
int ret = 0;
/*
* Make sure the following pre-conditions are satisfied:
* rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
* rxq->rx_free_thresh < rxq->nb_rx_desc
* (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
* Scattered packets are not supported. This should be checked
* outside of this function.
*/
if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->rx_free_thresh=%d, "
"RTE_PMD_IXGBE_RX_MAX_BURST=%d",
rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
ret = -EINVAL;
} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->rx_free_thresh=%d, "
"rxq->nb_rx_desc=%d",
rxq->rx_free_thresh, rxq->nb_rx_desc);
ret = -EINVAL;
} else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->nb_rx_desc=%d, "
"rxq->rx_free_thresh=%d",
rxq->nb_rx_desc, rxq->rx_free_thresh);
ret = -EINVAL;
}
return ret;
}
/* Reset dynamic ixgbe_rx_queue fields back to defaults */
static void __rte_cold
ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
{
static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
unsigned i;
uint16_t len = rxq->nb_rx_desc;
/*
* By default, the Rx queue setup function allocates enough memory for
* IXGBE_MAX_RING_DESC. The Rx Burst bulk allocation function requires
* extra memory at the end of the descriptor ring to be zero'd out.
*/
if (adapter->rx_bulk_alloc_allowed)
/* zero out extra memory */
len += RTE_PMD_IXGBE_RX_MAX_BURST;
/*
* Zero out HW ring memory. Zero out extra memory at the end of
* the H/W ring so look-ahead logic in Rx Burst bulk alloc function
* reads extra memory as zeros.
*/
for (i = 0; i < len; i++) {
rxq->rx_ring[i] = zeroed_desc;
}
/*
* initialize extra software ring entries. Space for these extra
* entries is always allocated
*/
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = rxq->nb_rx_desc; i < len; ++i) {
rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
}
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb = 0;
#endif
}
static int
ixgbe_is_vf(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
switch (hw->mac.type) {
case ixgbe_mac_82599_vf:
case ixgbe_mac_X540_vf:
case ixgbe_mac_X550_vf:
case ixgbe_mac_X550EM_x_vf:
case ixgbe_mac_X550EM_a_vf:
return 1;
default:
return 0;
}
}
uint64_t
ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
{
uint64_t offloads = 0;
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (hw->mac.type != ixgbe_mac_82598EB)
offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
return offloads;
}
uint64_t
ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
{
uint64_t offloads;
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
offloads = DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_KEEP_CRC |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_RSS_HASH;
if (hw->mac.type == ixgbe_mac_82598EB)
offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
if (ixgbe_is_vf(dev) == 0)
offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
/*
* RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
* mode.
*/
if ((hw->mac.type == ixgbe_mac_82599EB ||
hw->mac.type == ixgbe_mac_X540 ||
hw->mac.type == ixgbe_mac_X550) &&
!RTE_ETH_DEV_SRIOV(dev).active)
offloads |= DEV_RX_OFFLOAD_TCP_LRO;
if (hw->mac.type == ixgbe_mac_82599EB ||
hw->mac.type == ixgbe_mac_X540)
offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP;
if (hw->mac.type == ixgbe_mac_X550 ||
hw->mac.type == ixgbe_mac_X550EM_x ||
hw->mac.type == ixgbe_mac_X550EM_a)
offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
#ifdef RTE_LIBRTE_SECURITY
if (dev->security_ctx)
offloads |= DEV_RX_OFFLOAD_SECURITY;
#endif
return offloads;
}
int __rte_cold
ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *rz;
struct ixgbe_rx_queue *rxq;
struct ixgbe_hw *hw;
uint16_t len;
struct ixgbe_adapter *adapter = dev->data->dev_private;
uint64_t offloads;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
/*
* Validate number of receive descriptors.
* It must not exceed hardware maximum, and must be multiple
* of IXGBE_ALIGN.
*/
if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
(nb_desc > IXGBE_MAX_RING_DESC) ||
(nb_desc < IXGBE_MIN_RING_DESC)) {
return -EINVAL;
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->rx_queues[queue_idx] != NULL) {
ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* First allocate the rx queue data structure */
rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
return -ENOMEM;
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
rxq->port_id = dev->data->port_id;
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = RTE_ETHER_CRC_LEN;
else
rxq->crc_len = 0;
rxq->drop_en = rx_conf->rx_drop_en;
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
rxq->offloads = offloads;
/*
* The packet type in RX descriptor is different for different NICs.
* Some bits are used for x550 but reserved for other NICS.
* So set different masks for different NICs.
*/
if (hw->mac.type == ixgbe_mac_X550 ||
hw->mac.type == ixgbe_mac_X550EM_x ||
hw->mac.type == ixgbe_mac_X550EM_a ||
hw->mac.type == ixgbe_mac_X550_vf ||
hw->mac.type == ixgbe_mac_X550EM_x_vf ||
hw->mac.type == ixgbe_mac_X550EM_a_vf)
rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
else
rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
/*
* Allocate RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
RX_RING_SZ, IXGBE_ALIGN, socket_id);
if (rz == NULL) {
ixgbe_rx_queue_release(rxq);
return -ENOMEM;
}
/*
* Zero init all the descriptors in the ring.
*/
memset(rz->addr, 0, RX_RING_SZ);
/*
* Modified to setup VFRDT for Virtual Function
*/
if (hw->mac.type == ixgbe_mac_82599_vf ||
hw->mac.type == ixgbe_mac_X540_vf ||
hw->mac.type == ixgbe_mac_X550_vf ||
hw->mac.type == ixgbe_mac_X550EM_x_vf ||
hw->mac.type == ixgbe_mac_X550EM_a_vf) {
rxq->rdt_reg_addr =
IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
rxq->rdh_reg_addr =
IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
} else {
rxq->rdt_reg_addr =
IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
rxq->rdh_reg_addr =
IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
}
rxq->rx_ring_phys_addr = rz->iova;
rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
/*
* Certain constraints must be met in order to use the bulk buffer
* allocation Rx burst function. If any of Rx queues doesn't meet them
* the feature should be disabled for the whole port.
*/
if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
"preconditions - canceling the feature for "
"the whole port[%d]",
rxq->queue_id, rxq->port_id);
adapter->rx_bulk_alloc_allowed = false;
}
/*
* Allocate software ring. Allow for space at the end of the
* S/W ring to make sure look-ahead logic in bulk alloc Rx burst
* function does not access an invalid memory region.
*/
len = nb_desc;
if (adapter->rx_bulk_alloc_allowed)
len += RTE_PMD_IXGBE_RX_MAX_BURST;
rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
sizeof(struct ixgbe_rx_entry) * len,
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq->sw_ring) {
ixgbe_rx_queue_release(rxq);
return -ENOMEM;
}
/*
* Always allocate even if it's not going to be needed in order to
* simplify the code.
*
* This ring is used in LRO and Scattered Rx cases and Scattered Rx may
* be requested in ixgbe_dev_rx_init(), which is called later from
* dev_start() flow.
*/
rxq->sw_sc_ring =
rte_zmalloc_socket("rxq->sw_sc_ring",
sizeof(struct ixgbe_scattered_rx_entry) * len,
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq->sw_sc_ring) {
ixgbe_rx_queue_release(rxq);
return -ENOMEM;
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
"dma_addr=0x%"PRIx64,
rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
rxq->rx_ring_phys_addr);
if (!rte_is_power_of_2(nb_desc)) {
PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
"preconditions - canceling the feature for "
"the whole port[%d]",
rxq->queue_id, rxq->port_id);
adapter->rx_vec_allowed = false;
} else
ixgbe_rxq_vec_setup(rxq);
dev->data->rx_queues[queue_idx] = rxq;
ixgbe_reset_rx_queue(adapter, rxq);
return 0;
}
uint32_t
ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
#define IXGBE_RXQ_SCAN_INTERVAL 4
volatile union ixgbe_adv_rx_desc *rxdp;
struct ixgbe_rx_queue *rxq;
uint32_t desc = 0;
rxq = dev->data->rx_queues[rx_queue_id];
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
while ((desc < rxq->nb_rx_desc) &&
(rxdp->wb.upper.status_error &
rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
desc += IXGBE_RXQ_SCAN_INTERVAL;
rxdp += IXGBE_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
int
ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
{
volatile union ixgbe_adv_rx_desc *rxdp;
struct ixgbe_rx_queue *rxq = rx_queue;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return 0;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
rxdp = &rxq->rx_ring[desc];
return !!(rxdp->wb.upper.status_error &
rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
}
int
ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct ixgbe_rx_queue *rxq = rx_queue;
volatile uint32_t *status;
uint32_t nb_hold, desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return -EINVAL;
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
if (rxq->rx_using_sse)
nb_hold = rxq->rxrearm_nb;
else
#endif
nb_hold = rxq->nb_rx_hold;
if (offset >= rxq->nb_rx_desc - nb_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
status = &rxq->rx_ring[desc].wb.upper.status_error;
if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
int
ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct ixgbe_tx_queue *txq = tx_queue;
volatile uint32_t *status;
uint32_t desc;
if (unlikely(offset >= txq->nb_tx_desc))
return -EINVAL;
desc = txq->tx_tail + offset;
/* go to next desc that has the RS bit */
desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
txq->tx_rs_thresh;
if (desc >= txq->nb_tx_desc) {
desc -= txq->nb_tx_desc;
if (desc >= txq->nb_tx_desc)
desc -= txq->nb_tx_desc;
}
status = &txq->tx_ring[desc].wb.status;
if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
/*
* Set up link loopback for X540/X550 mode Tx->Rx.
*/
static inline void __rte_cold
ixgbe_setup_loopback_link_x540_x550(struct ixgbe_hw *hw, bool enable)
{
uint32_t macc;
PMD_INIT_FUNC_TRACE();
u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
macc = IXGBE_READ_REG(hw, IXGBE_MACC);
if (enable) {
/* datasheet 15.2.1: disable AUTONEG (PHY Bit 7.0.C) */
autoneg_reg |= IXGBE_MII_AUTONEG_ENABLE;
/* datasheet 15.2.1: MACC.FLU = 1 (force link up) */
macc |= IXGBE_MACC_FLU;
} else {
autoneg_reg &= ~IXGBE_MII_AUTONEG_ENABLE;
macc &= ~IXGBE_MACC_FLU;
}
hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
IXGBE_WRITE_REG(hw, IXGBE_MACC, macc);
}
void __rte_cold
ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
{
unsigned i;
struct ixgbe_adapter *adapter = dev->data->dev_private;
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
if (txq != NULL) {
txq->ops->release_mbufs(txq);
txq->ops->reset(txq);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
ixgbe_rx_queue_release_mbufs(rxq);
ixgbe_reset_rx_queue(adapter, rxq);
}
}
/* If loopback mode was enabled, reconfigure the link accordingly */
if (dev->data->dev_conf.lpbk_mode != 0) {
if (hw->mac.type == ixgbe_mac_X540 ||
hw->mac.type == ixgbe_mac_X550 ||
hw->mac.type == ixgbe_mac_X550EM_x ||
hw->mac.type == ixgbe_mac_X550EM_a)
ixgbe_setup_loopback_link_x540_x550(hw, false);
}
}
void
ixgbe_dev_free_queues(struct rte_eth_dev *dev)
{
unsigned i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_rx_queues; i++) {
ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
rte_eth_dma_zone_free(dev, "rx_ring", i);
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
rte_eth_dma_zone_free(dev, "tx_ring", i);
}
dev->data->nb_tx_queues = 0;
}
/*********************************************************************
*
* Device RX/TX init functions
*
**********************************************************************/
/**
* Receive Side Scaling (RSS)
* See section 7.1.2.8 in the following document:
* "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
*
* Principles:
* The source and destination IP addresses of the IP header and the source
* and destination ports of TCP/UDP headers, if any, of received packets are
* hashed against a configurable random key to compute a 32-bit RSS hash result.
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
* RSS output index which is used as the RX queue index where to store the
* received packets.
* The following output is supplied in the RX write-back descriptor:
* - 32-bit result of the Microsoft RSS hash function,
* - 4-bit RSS type field.
*/
/*
* RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
* Used as the default key.
*/
static uint8_t rss_intel_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
static void
ixgbe_rss_disable(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
uint32_t mrqc;
uint32_t mrqc_reg;
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
mrqc = IXGBE_READ_REG(hw, mrqc_reg);
mrqc &= ~IXGBE_MRQC_RSSEN;
IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
}
static void
ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
{
uint8_t *hash_key;
uint32_t mrqc;
uint32_t rss_key;
uint64_t rss_hf;
uint16_t i;
uint32_t mrqc_reg;
uint32_t rssrk_reg;
mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
hash_key = rss_conf->rss_key;
if (hash_key != NULL) {
/* Fill in RSS hash key */
for (i = 0; i < 10; i++) {
rss_key = hash_key[(i * 4)];
rss_key |= hash_key[(i * 4) + 1] << 8;
rss_key |= hash_key[(i * 4) + 2] << 16;
rss_key |= hash_key[(i * 4) + 3] << 24;
IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
}
}
/* Set configured hashing protocols in MRQC register */
rss_hf = rss_conf->rss_hf;
mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
if (rss_hf & ETH_RSS_IPV4)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
if (rss_hf & ETH_RSS_IPV6)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
if (rss_hf & ETH_RSS_IPV6_EX)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
if (rss_hf & ETH_RSS_IPV6_TCP_EX)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
if (rss_hf & ETH_RSS_IPV6_UDP_EX)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
}
int
ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct ixgbe_hw *hw;
uint32_t mrqc;
uint64_t rss_hf;
uint32_t mrqc_reg;
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!ixgbe_rss_update_sp(hw->mac.type)) {
PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
"NIC.");
return -ENOTSUP;
}
mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
/*
* Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
* "RSS enabling cannot be done dynamically while it must be
* preceded by a software reset"
* Before changing anything, first check that the update RSS operation
* does not attempt to disable RSS, if RSS was enabled at
* initialization time, or does not attempt to enable RSS, if RSS was
* disabled at initialization time.
*/
rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
mrqc = IXGBE_READ_REG(hw, mrqc_reg);
if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
if (rss_hf != 0) /* Enable RSS */
return -(EINVAL);
return 0; /* Nothing to do */
}
/* RSS enabled */
if (rss_hf == 0) /* Disable RSS */
return -(EINVAL);
ixgbe_hw_rss_hash_set(hw, rss_conf);
return 0;
}
int
ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct ixgbe_hw *hw;
uint8_t *hash_key;
uint32_t mrqc;
uint32_t rss_key;
uint64_t rss_hf;
uint16_t i;
uint32_t mrqc_reg;
uint32_t rssrk_reg;
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
hash_key = rss_conf->rss_key;
if (hash_key != NULL) {
/* Return RSS hash key */
for (i = 0; i < 10; i++) {
rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
hash_key[(i * 4)] = rss_key & 0x000000FF;
hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
}
}
/* Get RSS functions configured in MRQC register */
mrqc = IXGBE_READ_REG(hw, mrqc_reg);
if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
rss_conf->rss_hf = 0;
return 0;
}
rss_hf = 0;
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
rss_hf |= ETH_RSS_IPV4;
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
rss_hf |= ETH_RSS_IPV6;
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
rss_hf |= ETH_RSS_IPV6_EX;
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
rss_hf |= ETH_RSS_IPV6_TCP_EX;
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
rss_hf |= ETH_RSS_IPV6_UDP_EX;
rss_conf->rss_hf = rss_hf;
return 0;
}
static void
ixgbe_rss_configure(struct rte_eth_dev *dev)
{
struct rte_eth_rss_conf rss_conf;
struct ixgbe_adapter *adapter;
struct ixgbe_hw *hw;
uint32_t reta;
uint16_t i;
uint16_t j;
uint16_t sp_reta_size;
uint32_t reta_reg;
PMD_INIT_FUNC_TRACE();
adapter = dev->data->dev_private;
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
/*
* Fill in redirection table
* The byte-swap is needed because NIC registers are in
* little-endian order.
*/
if (adapter->rss_reta_updated == 0) {
reta = 0;
for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
if (j == dev->data->nb_rx_queues)
j = 0;
reta = (reta << 8) | j;
if ((i & 3) == 3)
IXGBE_WRITE_REG(hw, reta_reg,
rte_bswap32(reta));
}
}
/*
* Configure the RSS key and the RSS protocols used to compute
* the RSS hash of input packets.
*/
rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
ixgbe_rss_disable(dev);
return;
}
if (rss_conf.rss_key == NULL)
rss_conf.rss_key = rss_intel_key; /* Default hash key */
ixgbe_hw_rss_hash_set(hw, &rss_conf);
}
#define NUM_VFTA_REGISTERS 128
#define NIC_RX_BUFFER_SIZE 0x200
#define X550_RX_BUFFER_SIZE 0x180
static void
ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
{
struct rte_eth_vmdq_dcb_conf *cfg;
struct ixgbe_hw *hw;
enum rte_eth_nb_pools num_pools;
uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
uint16_t pbsize;
uint8_t nb_tcs; /* number of traffic classes */
int i;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
num_pools = cfg->nb_queue_pools;
/* Check we have a valid number of pools */
if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
ixgbe_rss_disable(dev);
return;
}
/* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
/*
* RXPBSIZE
* split rx buffer up into sections, each for 1 traffic class
*/
switch (hw->mac.type) {
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_X550EM_a:
pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
break;
default:
pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
break;
}
for (i = 0; i < nb_tcs; i++) {
uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
/* clear 10 bits. */
rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
}
/* zero alloc all unused TCs */
for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
/* clear 10 bits. */
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
}
/* MRQC: enable vmdq and dcb */
mrqc = (num_pools == ETH_16_POOLS) ?
IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
/* PFVTCTL: turn on virtualisation and set the default pool */
vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
if (cfg->enable_default_pool) {
vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
} else {
vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
}
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
/* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
queue_mapping = 0;
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
/*
* mapping is done with 3 bits per priority,
* so shift by i*3 each time
*/
queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
/* RTRPCS: DCB related */
IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
/* VLNCTRL: enable vlan filtering and allow all vlan tags through */
vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
/* VFTA - enable all vlan filters */
for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
}
/* VFRE: pool enabling for receive - 16 or 32 */
IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
/*
* MPSAR - allow pools to read specific mac addresses
* In this case, all pools should be able to read from mac addr 0
*/
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
/* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
for (i = 0; i < cfg->nb_pool_maps; i++) {
/* set vlan id in VF register and set the valid bit */
IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
(cfg->pool_map[i].vlan_id & 0xFFF)));
/*
* Put the allowed pools in VFB reg. As we only have 16 or 32
* pools, we only need to use the first half of the register
* i.e. bits 0-31
*/
IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
}
}
/**
* ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
* @dev: pointer to eth_dev structure
* @dcb_config: pointer to ixgbe_dcb_config structure
*/
static void
ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
uint32_t reg;
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (hw->mac.type != ixgbe_mac_82598EB) {
/* Disable the Tx desc arbiter so that MTQC can be changed */
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
reg |= IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
/* Enable DCB for Tx with 8 TCs */
if (dcb_config->num_tcs.pg_tcs == 8) {
reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
} else {
reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
}
if (dcb_config->vt_mode)
reg |= IXGBE_MTQC_VT_ENA;
IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
/* Enable the Tx desc arbiter */
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
reg &= ~IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
/* Enable Security TX Buffer IFG for DCB */
reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
reg |= IXGBE_SECTX_DCB;
IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
}
}
/**
* ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
* @dev: pointer to rte_eth_dev structure
* @dcb_config: pointer to ixgbe_dcb_config structure
*/
static void
ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
&dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
struct ixgbe_hw *hw =
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (hw->mac.type != ixgbe_mac_82598EB)
/*PF VF Transmit Enable*/
IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
/*Configure general DCB TX parameters*/
ixgbe_dcb_tx_hw_config(dev, dcb_config);
}
static void
ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
&dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
struct ixgbe_dcb_tc_config *tc;
uint8_t i, j;
/* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
} else {
dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
}
/* Initialize User Priority to Traffic Class mapping */
for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
}
/* User Priority to Traffic Class mapping */
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
j = vmdq_rx_conf->dcb_tc[i];
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
(uint8_t)(1 << i);
}
}
static void
ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
&dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
struct ixgbe_dcb_tc_config *tc;
uint8_t i, j;
/* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
} else {
dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
}
/* Initialize User Priority to Traffic Class mapping */
for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
}
/* User Priority to Traffic Class mapping */
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
j = vmdq_tx_conf->dcb_tc[i];
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
(uint8_t)(1 << i);
}
}
static void
ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_dcb_rx_conf *rx_conf =
&dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
struct ixgbe_dcb_tc_config *tc;
uint8_t i, j;
dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
/* Initialize User Priority to Traffic Class mapping */
for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
}
/* User Priority to Traffic Class mapping */
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
j = rx_conf->dcb_tc[i];
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
(uint8_t)(1 << i);
}
}
static void
ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
struct rte_eth_dcb_tx_conf *tx_conf =
&dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
struct ixgbe_dcb_tc_config *tc;
uint8_t i, j;
dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
/* Initialize User Priority to Traffic Class mapping */
for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
}
/* User Priority to Traffic Class mapping */
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
j = tx_conf->dcb_tc[i];
tc = &dcb_config->tc_config[j];
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
(uint8_t)(1 << i);
}
}
/**
* ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
* @dev: pointer to eth_dev structure
* @dcb_config: pointer to ixgbe_dcb_config structure
*/
static void
ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
uint32_t reg;
uint32_t vlanctrl;
uint8_t i;
uint32_t q;
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/*
* Disable the arbiter before changing parameters
* (always enable recycle mode; WSP)
*/
reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
if (hw->mac.type != ixgbe_mac_82598EB) {
reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
if (dcb_config->num_tcs.pg_tcs == 4) {
if (dcb_config->vt_mode)
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
IXGBE_MRQC_VMDQRT4TCEN;
else {
/* no matter the mode is DCB or DCB_RSS, just
* set the MRQE to RSSXTCEN. RSS is controlled
* by RSS_FIELD
*/
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
IXGBE_MRQC_RTRSS4TCEN;
}
}
if (dcb_config->num_tcs.pg_tcs == 8) {
if (dcb_config->vt_mode)
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
IXGBE_MRQC_VMDQRT8TCEN;
else {
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
IXGBE_MRQC_RTRSS8TCEN;
}
}
IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
/* Disable drop for all queues in VMDQ mode*/
for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
IXGBE_WRITE_REG(hw, IXGBE_QDE,
(IXGBE_QDE_WRITE |
(q << IXGBE_QDE_IDX_SHIFT)));
} else {
/* Enable drop for all queues in SRIOV mode */
for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
IXGBE_WRITE_REG(hw, IXGBE_QDE,
(IXGBE_QDE_WRITE |
(q << IXGBE_QDE_IDX_SHIFT) |
IXGBE_QDE_ENABLE));
}
}
/* VLNCTRL: enable vlan filtering and allow all vlan tags through */
vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
/* VFTA - enable all vlan filters */
for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
}
/*
* Configure Rx packet plane (recycle mode; WSP) and
* enable arbiter
*/
reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
}
static void
ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
{
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_X550EM_a:
ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
tsa, map);
break;
default:
break;
}
}
static void
ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
{
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_X550EM_a:
ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
break;
default:
break;
}
}
#define DCB_RX_CONFIG 1
#define DCB_TX_CONFIG 1
#define DCB_TX_PB 1024
/**
* ixgbe_dcb_hw_configure - Enable DCB and configure
* general DCB in VT mode and non-VT mode parameters
* @dev: pointer to rte_eth_dev structure
* @dcb_config: pointer to ixgbe_dcb_config structure
*/
static int
ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
struct ixgbe_dcb_config *dcb_config)
{
int ret = 0;
uint8_t i, pfc_en, nb_tcs;
uint16_t pbsize, rx_buffer_size;
uint8_t config_dcb_rx = 0;
uint8_t config_dcb_tx = 0;
uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
struct ixgbe_dcb_tc_config *tc;
uint32_t max_frame = dev->data->mtu + RTE_ETHER_HDR_LEN +
RTE_ETHER_CRC_LEN;
struct ixgbe_hw *hw =
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ixgbe_bw_conf *bw_conf =
IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
switch (dev->data->dev_conf.rxmode.mq_mode) {
case ETH_MQ_RX_VMDQ_DCB:
dcb_config->vt_mode = true;
if (hw->mac.type != ixgbe_mac_82598EB) {
config_dcb_rx = DCB_RX_CONFIG;
/*
*get dcb and VT rx configuration parameters
*from rte_eth_conf
*/
ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
/*Configure general VMDQ and DCB RX parameters*/
ixgbe_vmdq_dcb_configure(dev);
}
break;
case ETH_MQ_RX_DCB:
case ETH_MQ_RX_DCB_RSS:
dcb_config->vt_mode = false;
config_dcb_rx = DCB_RX_CONFIG;
/* Get dcb TX configuration parameters from rte_eth_conf */
ixgbe_dcb_rx_config(dev, dcb_config);
/*Configure general DCB RX parameters*/
ixgbe_dcb_rx_hw_config(dev, dcb_config);
break;
default:
PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
break;
}
switch (dev->data->dev_conf.txmode.mq_mode) {
case ETH_MQ_TX_VMDQ_DCB:
dcb_config->vt_mode = true;
config_dcb_tx = DCB_TX_CONFIG;
/* get DCB and VT TX configuration parameters
* from rte_eth_conf
*/
ixgbe_dcb_vt_tx_config(dev, dcb_config);
/*Configure general VMDQ and DCB TX parameters*/
ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
break;
case ETH_MQ_TX_DCB:
dcb_config->vt_mode = false;
config_dcb_tx = DCB_TX_CONFIG;
/*get DCB TX configuration parameters from rte_eth_conf*/
ixgbe_dcb_tx_config(dev, dcb_config);
/*Configure general DCB TX parameters*/
ixgbe_dcb_tx_hw_config(dev, dcb_config);
break;
default:
PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
break;
}
nb_tcs = dcb_config->num_tcs.pfc_tcs;
/* Unpack map */
ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
if (nb_tcs == ETH_4_TCS) {
/* Avoid un-configured priority mapping to TC0 */
uint8_t j = 4;
uint8_t mask = 0xFF;
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
mask = (uint8_t)(mask & (~(1 << map[i])));
for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
map[j++] = i;
mask >>= 1;
}
/* Re-configure 4 TCs BW */
for (i = 0; i < nb_tcs; i++) {
tc = &dcb_config->tc_config[i];
if (bw_conf->tc_num != nb_tcs)
tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
(uint8_t)(100 / nb_tcs);
tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
(uint8_t)(100 / nb_tcs);
}
for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
tc = &dcb_config->tc_config[i];
tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
}
} else {
/* Re-configure 8 TCs BW */
for (i = 0; i < nb_tcs; i++) {
tc = &dcb_config->tc_config[i];
if (bw_conf->tc_num != nb_tcs)
tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
(uint8_t)(100 / nb_tcs + (i & 1));
tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
(uint8_t)(100 / nb_tcs + (i & 1));
}
}
switch (hw->mac.type) {
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_X550EM_a:
rx_buffer_size = X550_RX_BUFFER_SIZE;
break;
default:
rx_buffer_size = NIC_RX_BUFFER_SIZE;
break;
}
if (config_dcb_rx) {
/* Set RX buffer size */
pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
for (i = 0; i < nb_tcs; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
}
/* zero alloc all unused TCs */
for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
}
}
if (config_dcb_tx) {
/* Only support an equally distributed
* Tx packet buffer strategy.
*/
uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
for (i = 0; i < nb_tcs; i++) {
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
}
/* Clear unused TCs, if any, to zero buffer size*/
for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
}
}
/*Calculates traffic class credits*/
ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
IXGBE_DCB_TX_CONFIG);
ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
IXGBE_DCB_RX_CONFIG);
if (config_dcb_rx) {
/* Unpack CEE standard containers */
ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
ixgbe_dcb_unpack_max_cee(dcb_config, max);
ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
/* Configure PG(ETS) RX */
ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
}
if (config_dcb_tx) {
/* Unpack CEE standard containers */
ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
ixgbe_dcb_unpack_max_cee(dcb_config, max);
ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
/* Configure PG(ETS) TX */
ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
}
/*Configure queue statistics registers*/
ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
/* Check if the PFC is supported */
if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
for (i = 0; i < nb_tcs; i++) {
/*
* If the TC count is 8,and the default high_water is 48,
* the low_water is 16 as default.
*/
hw->fc.high_water[i] = (pbsize * 3) / 4;
hw->fc.low_water[i] = pbsize / 4;
/* Enable pfc for this TC */
tc = &dcb_config->tc_config[i];
tc->pfc = ixgbe_dcb_pfc_enabled;
}
ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
pfc_en &= 0x0F;
ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
}
return ret;
}
/**
* ixgbe_configure_dcb - Configure DCB Hardware
* @dev: pointer to rte_eth_dev
*/
void ixgbe_configure_dcb(struct rte_eth_dev *dev)
{
struct ixgbe_dcb_config *dcb_cfg =
IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
PMD_INIT_FUNC_TRACE();
/* check support mq_mode for DCB */
if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
(dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
(dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
return;
if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
return;
/** Configure DCB hardware **/
ixgbe_dcb_hw_configure(dev, dcb_cfg);
}
/*
* VMDq only support for 10 GbE NIC.
*/
static void
ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
{
struct rte_eth_vmdq_rx_conf *cfg;
struct ixgbe_hw *hw;
enum rte_eth_nb_pools num_pools;
uint32_t mrqc, vt_ctl, vlanctrl;
uint32_t vmolr = 0;
int i;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
num_pools = cfg->nb_queue_pools;
ixgbe_rss_disable(dev);
/* MRQC: enable vmdq */
mrqc = IXGBE_MRQC_VMDQEN;
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
/* PFVTCTL: turn on virtualisation and set the default pool */
vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
if (cfg->enable_default_pool)
vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
else
vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
for (i = 0; i < (int)num_pools; i++) {
vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
}
/* VLNCTRL: enable vlan filtering and allow all vlan tags through */
vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
/* VFTA - enable all vlan filters */
for (i = 0; i < NUM_VFTA_REGISTERS; i++)
IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
/* VFRE: pool enabling for receive - 64 */
IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
if (num_pools == ETH_64_POOLS)
IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
/*
* MPSAR - allow pools to read specific mac addresses
* In this case, all pools should be able to read from mac addr 0
*/
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
/* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
for (i = 0; i < cfg->nb_pool_maps; i++) {
/* set vlan id in VF register and set the valid bit */
IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
(cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
/*
* Put the allowed pools in VFB reg. As we only have 16 or 64
* pools, we only need to use the first half of the register
* i.e. bits 0-31
*/
if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
(cfg->pool_map[i].pools & UINT32_MAX));
else
IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
}
/* PFDMA Tx General Switch Control Enables VMDQ loopback */
if (cfg->enable_loop_back) {
IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
}
IXGBE_WRITE_FLUSH(hw);
}
/*
* ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
* @hw: pointer to hardware structure
*/
static void
ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
{
uint32_t reg;
uint32_t q;
PMD_INIT_FUNC_TRACE();
/*PF VF Transmit Enable*/
IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
/* Disable the Tx desc arbiter so that MTQC can be changed */
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
reg |= IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
/* Disable drop for all queues */
for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
IXGBE_WRITE_REG(hw, IXGBE_QDE,
(IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
/* Enable the Tx desc arbiter */
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
reg &= ~IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
IXGBE_WRITE_FLUSH(hw);
}
static int __rte_cold
ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
{
struct ixgbe_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
unsigned int i;
/* Initialize software ring entries */
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union ixgbe_adv_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
if (mbuf == NULL) {
PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
(unsigned) rxq->queue_id);
return -ENOMEM;
}
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.hdr_addr = 0;
rxd->read.pkt_addr = dma_addr;
rxe[i].mbuf = mbuf;
}
return 0;
}
static int
ixgbe_config_vf_rss(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
uint32_t mrqc;
ixgbe_rss_configure(dev);
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* MRQC: enable VF RSS */
mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
mrqc &= ~IXGBE_MRQC_MRQE_MASK;
switch (RTE_ETH_DEV_SRIOV(dev).active) {
case ETH_64_POOLS:
mrqc |= IXGBE_MRQC_VMDQRSS64EN;
break;
case ETH_32_POOLS:
mrqc |= IXGBE_MRQC_VMDQRSS32EN;
break;
default:
PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
return -EINVAL;
}
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
return 0;
}
static int
ixgbe_config_vf_default(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw =
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
switch (RTE_ETH_DEV_SRIOV(dev).active) {
case ETH_64_POOLS:
IXGBE_WRITE_REG(hw, IXGBE_MRQC,
IXGBE_MRQC_VMDQEN);
break;
case ETH_32_POOLS:
IXGBE_WRITE_REG(hw, IXGBE_MRQC,
IXGBE_MRQC_VMDQRT4TCEN);
break;
case ETH_16_POOLS:
IXGBE_WRITE_REG(hw, IXGBE_MRQC,
IXGBE_MRQC_VMDQRT8TCEN);
break;
default:
PMD_INIT_LOG(ERR,
"invalid pool number in IOV mode");
break;
}
return 0;
}
static int
ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw =
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (hw->mac.type == ixgbe_mac_82598EB)
return 0;
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
/*
* SRIOV inactive scheme
* any DCB/RSS w/o VMDq multi-queue setting
*/
switch (dev->data->dev_conf.rxmode.mq_mode) {
case ETH_MQ_RX_RSS:
case ETH_MQ_RX_DCB_RSS:
case ETH_MQ_RX_VMDQ_RSS:
ixgbe_rss_configure(dev);
break;
case ETH_MQ_RX_VMDQ_DCB:
ixgbe_vmdq_dcb_configure(dev);
break;
case ETH_MQ_RX_VMDQ_ONLY:
ixgbe_vmdq_rx_hw_configure(dev);
break;
case ETH_MQ_RX_NONE:
default:
/* if mq_mode is none, disable rss mode.*/
ixgbe_rss_disable(dev);
break;
}
} else {
/* SRIOV active scheme
* Support RSS together with SRIOV.
*/
switch (dev->data->dev_conf.rxmode.mq_mode) {
case ETH_MQ_RX_RSS:
case ETH_MQ_RX_VMDQ_RSS:
ixgbe_config_vf_rss(dev);
break;
case ETH_MQ_RX_VMDQ_DCB:
case ETH_MQ_RX_DCB:
/* In SRIOV, the configuration is the same as VMDq case */
ixgbe_vmdq_dcb_configure(dev);
break;
/* DCB/RSS together with SRIOV is not supported */
case ETH_MQ_RX_VMDQ_DCB_RSS:
case ETH_MQ_RX_DCB_RSS:
PMD_INIT_LOG(ERR,
"Could not support DCB/RSS with VMDq & SRIOV");
return -1;
default:
ixgbe_config_vf_default(dev);
break;
}
}
return 0;
}
static int
ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw =
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mtqc;
uint32_t rttdcs;
if (hw->mac.type == ixgbe_mac_82598EB)
return 0;
/* disable arbiter before setting MTQC */
rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
rttdcs |= IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
/*
* SRIOV inactive scheme
* any DCB w/o VMDq multi-queue setting
*/
if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
ixgbe_vmdq_tx_hw_configure(hw);
else {
mtqc = IXGBE_MTQC_64Q_1PB;
IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
}
} else {
switch (RTE_ETH_DEV_SRIOV(dev).active) {
/*
* SRIOV active scheme
* FIXME if support DCB together with VMDq & SRIOV
*/
case ETH_64_POOLS:
mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
break;
case ETH_32_POOLS:
mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
break;
case ETH_16_POOLS:
mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
IXGBE_MTQC_8TC_8TQ;
break;
default:
mtqc = IXGBE_MTQC_64Q_1PB;
PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
}
IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
}
/* re-enable arbiter */
rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
return 0;
}
/**
* ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
*
* Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
* spec rev. 3.0 chapter 8.2.3.8.13.
*
* @pool Memory pool of the Rx queue
*/
static inline uint32_t
ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
{
struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
/* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
uint16_t maxdesc =
RTE_IPV4_MAX_PKT_LEN /
(mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
if (maxdesc >= 16)
return IXGBE_RSCCTL_MAXDESC_16;
else if (maxdesc >= 8)
return IXGBE_RSCCTL_MAXDESC_8;
else if (maxdesc >= 4)
return IXGBE_RSCCTL_MAXDESC_4;
else
return IXGBE_RSCCTL_MAXDESC_1;
}
/**
* ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
* interrupt
*
* (Taken from FreeBSD tree)
* (yes this is all very magic and confusing :)
*
* @dev port handle
* @entry the register array entry
* @vector the MSIX vector for this queue
* @type RX/TX/MISC
*/
static void
ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
{
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
u32 ivar, index;
vector |= IXGBE_IVAR_ALLOC_VAL;
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
if (type == -1)
entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
else
entry += (type * 64);
index = (entry >> 2) & 0x1F;
ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
ivar &= ~(0xFF << (8 * (entry & 0x3)));
ivar |= (vector << (8 * (entry & 0x3)));
IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
if (type == -1) { /* MISC IVAR */
index = (entry & 1) * 8;
ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
ivar &= ~(0xFF << index);
ivar |= (vector << index);
IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
} else { /* RX/TX IVARS */
index = (16 * (entry & 1)) + (8 * type);
ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
ivar &= ~(0xFF << index);
ivar |= (vector << index);
IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
}
break;
default:
break;
}
}
void __rte_cold
ixgbe_set_rx_function(struct rte_eth_dev *dev)
{
uint16_t i, rx_using_sse;
struct ixgbe_adapter *adapter = dev->data->dev_private;
/*
* In order to allow Vector Rx there are a few configuration
* conditions to be met and Rx Bulk Allocation should be allowed.
*/
if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
!adapter->rx_bulk_alloc_allowed) {
PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
"preconditions",
dev->data->port_id);
adapter->rx_vec_allowed = false;
}
/*
* Initialize the appropriate LRO callback.
*
* If all queues satisfy the bulk allocation preconditions
* (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
* Otherwise use a single allocation version.
*/
if (dev->data->lro) {
if (adapter->rx_bulk_alloc_allowed) {
PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
"allocation version");
dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
} else {
PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
"allocation version");
dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
}
} else if (dev->data->scattered_rx) {
/*
* Set the non-LRO scattered callback: there are Vector and
* single allocation versions.
*/
if (adapter->rx_vec_allowed) {
PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
"callback (port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
} else if (adapter->rx_bulk_alloc_allowed) {
PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
"allocation callback (port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
} else {
PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
"single allocation) "
"Scattered Rx callback "
"(port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
}
/*
* Below we set "simple" callbacks according to port/queues parameters.
* If parameters allow we are going to choose between the following
* callbacks:
* - Vector
* - Bulk Allocation
* - Single buffer allocation (the simplest one)
*/
} else if (adapter->rx_vec_allowed) {
PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
"burst size no less than %d (port=%d).",
RTE_IXGBE_DESCS_PER_LOOP,
dev->data->port_id);
dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
} else if (adapter->rx_bulk_alloc_allowed) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function "
"will be used on port=%d.",
dev->data->port_id);
dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
} else {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
"satisfied, or Scattered Rx is requested "
"(port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = ixgbe_recv_pkts;
}
/* Propagate information about RX function choice through all queues. */
rx_using_sse =
(dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
rxq->rx_using_sse = rx_using_sse;
#ifdef RTE_LIBRTE_SECURITY
rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_SECURITY);
#endif
}
}
/**
* ixgbe_set_rsc - configure RSC related port HW registers
*
* Configures the port's RSC related registers according to the 4.6.7.2 chapter
* of 82599 Spec (x540 configuration is virtually the same).
*
* @dev port handle
*
* Returns 0 in case of success or a non-zero error code
*/
static int
ixgbe_set_rsc(struct rte_eth_dev *dev)
{
struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_dev_info dev_info = { 0 };
bool rsc_capable = false;
uint16_t i;
uint32_t rdrxctl;
uint32_t rfctl;
/* Sanity check */
dev->dev_ops->dev_infos_get(dev, &dev_info);
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
rsc_capable = true;
if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
"support it");
return -EINVAL;
}
/* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
if ((rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) &&
(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
/*
* According to chapter of 4.6.7.2.1 of the Spec Rev.
* 3.0 RSC configuration requires HW CRC stripping being
* enabled. If user requested both HW CRC stripping off
* and RSC on - return an error.
*/
PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
"is disabled");
return -EINVAL;
}
/* RFCTL configuration */
rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
if ((rsc_capable) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
/*
* Since NFS packets coalescing is not supported - clear
* RFCTL.NFSW_DIS and RFCTL.NFSR_DIS when RSC is
* enabled.
*/
rfctl &= ~(IXGBE_RFCTL_RSC_DIS | IXGBE_RFCTL_NFSW_DIS |
IXGBE_RFCTL_NFSR_DIS);
else
rfctl |= IXGBE_RFCTL_RSC_DIS;
IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
/* If LRO hasn't been requested - we are done here. */
if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
return 0;
/* Set RDRXCTL.RSCACKC bit */
rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
/* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
uint32_t srrctl =
IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
uint32_t rscctl =
IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
uint32_t psrtype =
IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
uint32_t eitr =
IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
/*
* ixgbe PMD doesn't support header-split at the moment.
*
* Following the 4.6.7.2.1 chapter of the 82599/x540
* Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
* should be configured even if header split is not
* enabled. We will configure it 128 bytes following the
* recommendation in the spec.
*/
srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
IXGBE_SRRCTL_BSIZEHDR_MASK;
/*
* TODO: Consider setting the Receive Descriptor Minimum
* Threshold Size for an RSC case. This is not an obviously
* beneficiary option but the one worth considering...
*/
rscctl |= IXGBE_RSCCTL_RSCEN;
rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
psrtype |= IXGBE_PSRTYPE_TCPHDR;
/*
* RSC: Set ITR interval corresponding to 2K ints/s.
*
* Full-sized RSC aggregations for a 10Gb/s link will
* arrive at about 20K aggregation/s rate.
*
* 2K inst/s rate will make only 10% of the
* aggregations to be closed due to the interrupt timer
* expiration for a streaming at wire-speed case.
*
* For a sparse streaming case this setting will yield
* at most 500us latency for a single RSC aggregation.
*/
eitr &= ~IXGBE_EITR_ITR_INT_MASK;
eitr |= IXGBE_EITR_INTERVAL_US(IXGBE_QUEUE_ITR_INTERVAL_DEFAULT);
eitr |= IXGBE_EITR_CNT_WDIS;
IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
/*
* RSC requires the mapping of the queue to the
* interrupt vector.
*/
ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
}
dev->data->lro = 1;
PMD_INIT_LOG(DEBUG, "enabling LRO mode");
return 0;
}
/*
* Initializes Receive Unit.
*/
int __rte_cold
ixgbe_dev_rx_init(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct ixgbe_rx_queue *rxq;
uint64_t bus_addr;
uint32_t rxctrl;
uint32_t fctrl;
uint32_t hlreg0;
uint32_t maxfrs;
uint32_t srrctl;
uint32_t rdrxctl;
uint32_t rxcsum;
uint16_t buf_size;
uint16_t i;
struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
int rc;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Make sure receives are disabled while setting
* up the RX context (registers, descriptor rings, etc.).
*/
rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
/* Enable receipt of broadcasted frames */
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
fctrl |= IXGBE_FCTRL_BAM;
fctrl |= IXGBE_FCTRL_DPF;
fctrl |= IXGBE_FCTRL_PMCF;
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
/*
* Configure CRC stripping, if any.
*/
hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
else
hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
/*
* Configure jumbo frame support, if any.
*/
if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
hlreg0 |= IXGBE_HLREG0_JUMBOEN;
maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
maxfrs &= 0x0000FFFF;
maxfrs |= (rx_conf->max_rx_pkt_len << 16);
IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
} else
hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
/*
* If loopback mode is configured, set LPBK bit.
*/
if (dev->data->dev_conf.lpbk_mode != 0) {
rc = ixgbe_check_supported_loopback_mode(dev);
if (rc < 0) {
PMD_INIT_LOG(ERR, "Unsupported loopback mode");
return rc;
}
hlreg0 |= IXGBE_HLREG0_LPBK;
} else {
hlreg0 &= ~IXGBE_HLREG0_LPBK;
}
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
/*
* Assume no header split and no VLAN strip support
* on any Rx queue first .
*/
rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
/* Setup RX queues */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
/*
* Reset crc_len in case it was changed after queue setup by a
* call to configure.
*/
if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = RTE_ETHER_CRC_LEN;
else
rxq->crc_len = 0;
/* Setup the Base and Length of the Rx Descriptor Rings */
bus_addr = rxq->rx_ring_phys_addr;
IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
(uint32_t)(bus_addr >> 32));
IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
/* Configure the SRRCTL register */
srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= IXGBE_SRRCTL_DROP_EN;
/*
* Configure the RX buffer size in the BSIZEPACKET field of
* the SRRCTL register of the queue.
* The value is in 1 KB resolution. Valid values can be from
* 1 KB to 16 KB.
*/
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
RTE_PKTMBUF_HEADROOM);
srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
IXGBE_SRRCTL_BSIZEPKT_MASK);
IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
IXGBE_SRRCTL_BSIZEPKT_SHIFT);
/* It adds dual VLAN length for supporting dual VLAN */
if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * IXGBE_VLAN_TAG_SIZE > buf_size)
dev->data->scattered_rx = 1;
if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
}
if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)
dev->data->scattered_rx = 1;
/*
* Device configured with multiple RX queues.
*/
ixgbe_dev_mq_rx_configure(dev);
/*
* Setup the Checksum Register.
* Disable Full-Packet Checksum which is mutually exclusive with RSS.
* Enable IP/L4 checkum computation by hardware if requested to do so.
*/
rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
rxcsum |= IXGBE_RXCSUM_PCSD;
if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM)
rxcsum |= IXGBE_RXCSUM_IPPCSE;
else
rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
if (hw->mac.type == ixgbe_mac_82599EB ||
hw->mac.type == ixgbe_mac_X540) {
rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
else
rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
}
rc = ixgbe_set_rsc(dev);
if (rc)
return rc;
ixgbe_set_rx_function(dev);
return 0;
}
/*
* Initializes Transmit Unit.
*/
void __rte_cold
ixgbe_dev_tx_init(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct ixgbe_tx_queue *txq;
uint64_t bus_addr;
uint32_t hlreg0;
uint32_t txctrl;
uint16_t i;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Enable TX CRC (checksum offload requirement) and hw padding
* (TSO requirement)
*/
hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
/* Setup the Base and Length of the Tx Descriptor Rings */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
(uint32_t)(bus_addr >> 32));
IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
/* Setup the HW Tx Head and TX Tail descriptor pointers */
IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
/*
* Disable Tx Head Writeback RO bit, since this hoses
* bookkeeping if things aren't delivered in order.
*/
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
txctrl = IXGBE_READ_REG(hw,
IXGBE_DCA_TXCTRL(txq->reg_idx));
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
txctrl);
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_X550EM_a:
default:
txctrl = IXGBE_READ_REG(hw,
IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
txctrl);
break;
}
}
/* Device configured with multiple TX queues. */
ixgbe_dev_mq_tx_configure(dev);
}
/*
* Check if requested loopback mode is supported
*/
int
ixgbe_check_supported_loopback_mode(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_TX_RX)
if (hw->mac.type == ixgbe_mac_82599EB ||
hw->mac.type == ixgbe_mac_X540 ||
hw->mac.type == ixgbe_mac_X550 ||
hw->mac.type == ixgbe_mac_X550EM_x ||
hw->mac.type == ixgbe_mac_X550EM_a)
return 0;
return -ENOTSUP;
}
/*
* Set up link for 82599 loopback mode Tx->Rx.
*/
static inline void __rte_cold
ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
{
PMD_INIT_FUNC_TRACE();
if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
IXGBE_SUCCESS) {
PMD_INIT_LOG(ERR, "Could not enable loopback mode");
/* ignore error */
return;
}
}
/* Restart link */
IXGBE_WRITE_REG(hw,
IXGBE_AUTOC,
IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
ixgbe_reset_pipeline_82599(hw);
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
msec_delay(50);
}
/*
* Start Transmit and Receive Units.
*/
int __rte_cold
ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct ixgbe_tx_queue *txq;
struct ixgbe_rx_queue *rxq;
uint32_t txdctl;
uint32_t dmatxctl;
uint32_t rxctrl;
uint16_t i;
int ret = 0;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
/* Setup Transmit Threshold Registers */
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
txdctl |= txq->pthresh & 0x7F;
txdctl |= ((txq->hthresh & 0x7F) << 8);
txdctl |= ((txq->wthresh & 0x7F) << 16);
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
}
if (hw->mac.type != ixgbe_mac_82598EB) {
dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
dmatxctl |= IXGBE_DMATXCTL_TE;
IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq->tx_deferred_start) {
ret = ixgbe_dev_tx_queue_start(dev, i);
if (ret < 0)
return ret;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (!rxq->rx_deferred_start) {
ret = ixgbe_dev_rx_queue_start(dev, i);
if (ret < 0)
return ret;
}
}
/* Enable Receive engine */
rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
if (hw->mac.type == ixgbe_mac_82598EB)
rxctrl |= IXGBE_RXCTRL_DMBYPS;
rxctrl |= IXGBE_RXCTRL_RXEN;
hw->mac.ops.enable_rx_dma(hw, rxctrl);
/* If loopback mode is enabled, set up the link accordingly */
if (dev->data->dev_conf.lpbk_mode != 0) {
if (hw->mac.type == ixgbe_mac_82599EB)
ixgbe_setup_loopback_link_82599(hw);
else if (hw->mac.type == ixgbe_mac_X540 ||
hw->mac.type == ixgbe_mac_X550 ||
hw->mac.type == ixgbe_mac_X550EM_x ||
hw->mac.type == ixgbe_mac_X550EM_a)
ixgbe_setup_loopback_link_x540_x550(hw, true);
}
#ifdef RTE_LIBRTE_SECURITY
if ((dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_SECURITY) ||
(dev->data->dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_SECURITY)) {
ret = ixgbe_crypto_enable_ipsec(dev);
if (ret != 0) {
PMD_DRV_LOG(ERR,
"ixgbe_crypto_enable_ipsec fails with %d.",
ret);
return ret;
}
}
#endif
return 0;
}
/*
* Start Receive Units for specified queue.
*/
int __rte_cold
ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ixgbe_hw *hw;
struct ixgbe_rx_queue *rxq;
uint32_t rxdctl;
int poll_ms;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
rxq = dev->data->rx_queues[rx_queue_id];
/* Allocate buffers for descriptor rings */
if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
rx_queue_id);
return -1;
}
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
rxdctl |= IXGBE_RXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
/* Wait until RX Enable ready */
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_ms(1);
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
} while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
rte_wmb();
IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
/*
* Stop Receive Units for specified queue.
*/
int __rte_cold
ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ixgbe_hw *hw;
struct ixgbe_adapter *adapter = dev->data->dev_private;
struct ixgbe_rx_queue *rxq;
uint32_t rxdctl;
int poll_ms;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
rxq = dev->data->rx_queues[rx_queue_id];
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
rxdctl &= ~IXGBE_RXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
/* Wait until RX Enable bit clear */
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_ms(1);
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
} while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
rte_delay_us(RTE_IXGBE_WAIT_100_US);
ixgbe_rx_queue_release_mbufs(rxq);
ixgbe_reset_rx_queue(adapter, rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
/*
* Start Transmit Units for specified queue.
*/
int __rte_cold
ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ixgbe_hw *hw;
struct ixgbe_tx_queue *txq;
uint32_t txdctl;
int poll_ms;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
txq = dev->data->tx_queues[tx_queue_id];
IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
txdctl |= IXGBE_TXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
/* Wait until TX Enable ready */
if (hw->mac.type == ixgbe_mac_82599EB) {
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_ms(1);
txdctl = IXGBE_READ_REG(hw,
IXGBE_TXDCTL(txq->reg_idx));
} while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
tx_queue_id);
}
rte_wmb();
IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
/*
* Stop Transmit Units for specified queue.
*/
int __rte_cold
ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ixgbe_hw *hw;
struct ixgbe_tx_queue *txq;
uint32_t txdctl;
uint32_t txtdh, txtdt;
int poll_ms;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
txq = dev->data->tx_queues[tx_queue_id];
/* Wait until TX queue is empty */
if (hw->mac.type == ixgbe_mac_82599EB) {
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_us(RTE_IXGBE_WAIT_100_US);
txtdh = IXGBE_READ_REG(hw,
IXGBE_TDH(txq->reg_idx));
txtdt = IXGBE_READ_REG(hw,
IXGBE_TDT(txq->reg_idx));
} while (--poll_ms && (txtdh != txtdt));
if (!poll_ms)
PMD_INIT_LOG(ERR,
"Tx Queue %d is not empty when stopping.",
tx_queue_id);
}
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
txdctl &= ~IXGBE_TXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
/* Wait until TX Enable bit clear */
if (hw->mac.type == ixgbe_mac_82599EB) {
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_ms(1);
txdctl = IXGBE_READ_REG(hw,
IXGBE_TXDCTL(txq->reg_idx));
} while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
tx_queue_id);
}
if (txq->ops != NULL) {
txq->ops->release_mbufs(txq);
txq->ops->reset(txq);
}
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
void
ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct ixgbe_rx_queue *rxq;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mb_pool;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = rxq->drop_en;
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
qinfo->conf.offloads = rxq->offloads;
}
void
ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct ixgbe_tx_queue *txq;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
qinfo->conf.offloads = txq->offloads;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
}
/*
* [VF] Initializes Receive Unit.
*/
int __rte_cold
ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct ixgbe_rx_queue *rxq;
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
uint64_t bus_addr;
uint32_t srrctl, psrtype = 0;
uint16_t buf_size;
uint16_t i;
int ret;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
"it should be power of 2");
return -1;
}
if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
"it should be equal to or less than %d",
hw->mac.max_rx_queues);
return -1;
}
/*
* When the VF driver issues a IXGBE_VF_RESET request, the PF driver
* disables the VF receipt of packets if the PF MTU is > 1500.
* This is done to deal with 82599 limitations that imposes
* the PF and all VFs to share the same MTU.
* Then, the PF driver enables again the VF receipt of packet when
* the VF driver issues a IXGBE_VF_SET_LPE request.
* In the meantime, the VF device cannot be used, even if the VF driver
* and the Guest VM network stack are ready to accept packets with a
* size up to the PF MTU.
* As a work-around to this PF behaviour, force the call to
* ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
* VF packets received can work in all cases.
*/
ixgbevf_rlpml_set_vf(hw,
(uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len);
/*
* Assume no header split and no VLAN strip support
* on any Rx queue first .
*/
rxmode->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
/* Setup RX queues */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
/* Allocate buffers for descriptor rings */
ret = ixgbe_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
/* Setup the Base and Length of the Rx Descriptor Rings */
bus_addr = rxq->rx_ring_phys_addr;
IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
(uint32_t)(bus_addr >> 32));
IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
/* Configure the SRRCTL register */
srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= IXGBE_SRRCTL_DROP_EN;
/*
* Configure the RX buffer size in the BSIZEPACKET field of
* the SRRCTL register of the queue.
* The value is in 1 KB resolution. Valid values can be from
* 1 KB to 16 KB.
*/
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
RTE_PKTMBUF_HEADROOM);
srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
IXGBE_SRRCTL_BSIZEPKT_MASK);
/*
* VF modification to write virtual function SRRCTL register
*/
IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
IXGBE_SRRCTL_BSIZEPKT_SHIFT);
if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ||
/* It adds dual VLAN length for supporting dual VLAN */
(rxmode->max_rx_pkt_len +
2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
if (!dev->data->scattered_rx)
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
dev->data->scattered_rx = 1;
}
if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
rxmode->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
}
/* Set RQPL for VF RSS according to max Rx queue */
psrtype |= (dev->data->nb_rx_queues >> 1) <<
IXGBE_PSRTYPE_RQPL_SHIFT;
IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
ixgbe_set_rx_function(dev);
return 0;
}
/*
* [VF] Initializes Transmit Unit.
*/
void __rte_cold
ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct ixgbe_tx_queue *txq;
uint64_t bus_addr;
uint32_t txctrl;
uint16_t i;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup the Base and Length of the Tx Descriptor Rings */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
(uint32_t)(bus_addr >> 32));
IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
/* Setup the HW Tx Head and TX Tail descriptor pointers */
IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
/*
* Disable Tx Head Writeback RO bit, since this hoses
* bookkeeping if things aren't delivered in order.
*/
txctrl = IXGBE_READ_REG(hw,
IXGBE_VFDCA_TXCTRL(i));
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
txctrl);
}
}
/*
* [VF] Start Transmit and Receive Units.
*/
void __rte_cold
ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
{
struct ixgbe_hw *hw;
struct ixgbe_tx_queue *txq;
struct ixgbe_rx_queue *rxq;
uint32_t txdctl;
uint32_t rxdctl;
uint16_t i;
int poll_ms;
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
/* Setup Transmit Threshold Registers */
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
txdctl |= txq->pthresh & 0x7F;
txdctl |= ((txq->hthresh & 0x7F) << 8);
txdctl |= ((txq->wthresh & 0x7F) << 16);
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
txdctl |= IXGBE_TXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
poll_ms = 10;
/* Wait until TX Enable ready */
do {
rte_delay_ms(1);
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
} while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
rxdctl |= IXGBE_RXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
/* Wait until RX Enable ready */
poll_ms = 10;
do {
rte_delay_ms(1);
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
} while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
if (!poll_ms)
PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
rte_wmb();
IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
}
}
int
ixgbe_rss_conf_init(struct ixgbe_rte_flow_rss_conf *out,
const struct rte_flow_action_rss *in)
{
if (in->key_len > RTE_DIM(out->key) ||
in->queue_num > RTE_DIM(out->queue))
return -EINVAL;
out->conf = (struct rte_flow_action_rss){
.func = in->func,
.level = in->level,
.types = in->types,
.key_len = in->key_len,
.queue_num = in->queue_num,
.key = memcpy(out->key, in->key, in->key_len),
.queue = memcpy(out->queue, in->queue,
sizeof(*in->queue) * in->queue_num),
};
return 0;
}
int
ixgbe_action_rss_same(const struct rte_flow_action_rss *comp,
const struct rte_flow_action_rss *with)
{
return (comp->func == with->func &&
comp->level == with->level &&
comp->types == with->types &&
comp->key_len == with->key_len &&
comp->queue_num == with->queue_num &&
!memcmp(comp->key, with->key, with->key_len) &&
!memcmp(comp->queue, with->queue,
sizeof(*with->queue) * with->queue_num));
}
int
ixgbe_config_rss_filter(struct rte_eth_dev *dev,
struct ixgbe_rte_flow_rss_conf *conf, bool add)
{
struct ixgbe_hw *hw;
uint32_t reta;
uint16_t i;
uint16_t j;
uint16_t sp_reta_size;
uint32_t reta_reg;
struct rte_eth_rss_conf rss_conf = {
.rss_key = conf->conf.key_len ?
(void *)(uintptr_t)conf->conf.key : NULL,
.rss_key_len = conf->conf.key_len,
.rss_hf = conf->conf.types,
};
struct ixgbe_filter_info *filter_info =
IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
if (!add) {
if (ixgbe_action_rss_same(&filter_info->rss_info.conf,
&conf->conf)) {
ixgbe_rss_disable(dev);
memset(&filter_info->rss_info, 0,
sizeof(struct ixgbe_rte_flow_rss_conf));
return 0;
}
return -EINVAL;
}
if (filter_info->rss_info.conf.queue_num)
return -EINVAL;
/* Fill in redirection table
* The byte-swap is needed because NIC registers are in
* little-endian order.
*/
reta = 0;
for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
if (j == conf->conf.queue_num)
j = 0;
reta = (reta << 8) | conf->conf.queue[j];
if ((i & 3) == 3)
IXGBE_WRITE_REG(hw, reta_reg,
rte_bswap32(reta));
}
/* Configure the RSS key and the RSS protocols used to compute
* the RSS hash of input packets.
*/
if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
ixgbe_rss_disable(dev);
return 0;
}
if (rss_conf.rss_key == NULL)
rss_conf.rss_key = rss_intel_key; /* Default hash key */
ixgbe_hw_rss_hash_set(hw, &rss_conf);
if (ixgbe_rss_conf_init(&filter_info->rss_info, &conf->conf))
return -EINVAL;
return 0;
}
/* Stubs needed for linkage when CONFIG_RTE_ARCH_PPC_64 is set */
#if defined(RTE_ARCH_PPC_64)
int
ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
{
return -1;
}
uint16_t
ixgbe_recv_pkts_vec(
void __rte_unused *rx_queue,
struct rte_mbuf __rte_unused **rx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
uint16_t
ixgbe_recv_scattered_pkts_vec(
void __rte_unused *rx_queue,
struct rte_mbuf __rte_unused **rx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
int
ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
{
return -1;
}
uint16_t
ixgbe_xmit_fixed_burst_vec(void __rte_unused *tx_queue,
struct rte_mbuf __rte_unused **tx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
int
ixgbe_txq_vec_setup(struct ixgbe_tx_queue __rte_unused *txq)
{
return -1;
}
void
ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue __rte_unused *rxq)
{
return;
}
#endif