numam-dpdk/drivers/crypto/octeontx/otx_cryptodev_hw_access.c
Anoob Joseph ec54bc9d51 crypto/octeontx: use distinct metabuf pool for each queue
The metabuf pool is shared across all queue pairs belonging to the
PMD. In order to prevent one queue pair from starving another,
use a distinct mempool for each queue pair.

Fixes: 273487f7b381 ("crypto/octeontx: add global resource init")
Cc: stable@dpdk.org

Signed-off-by: Anoob Joseph <anoobj@marvell.com>
Acked-by: Shally Verma <shallyv@marvell.com>
2019-05-01 15:52:55 +02:00

697 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium, Inc
*/
#include <assert.h>
#include <string.h>
#include <unistd.h>
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_cryptodev.h>
#include <rte_errno.h>
#include <rte_mempool.h>
#include <rte_memzone.h>
#include <rte_string_fns.h>
#include "otx_cryptodev_hw_access.h"
#include "otx_cryptodev_mbox.h"
#include "cpt_pmd_logs.h"
#include "cpt_pmd_ops_helper.h"
#include "cpt_hw_types.h"
#define METABUF_POOL_CACHE_SIZE 512
/*
* VF HAL functions
* Access its own BAR0/4 registers by passing VF number as 0.
* OS/PCI maps them accordingly.
*/
static int
otx_cpt_vf_init(struct cpt_vf *cptvf)
{
int ret = 0;
/* Check ready with PF */
/* Gets chip ID / device Id from PF if ready */
ret = otx_cpt_check_pf_ready(cptvf);
if (ret) {
CPT_LOG_ERR("%s: PF not responding to READY msg",
cptvf->dev_name);
ret = -EBUSY;
goto exit;
}
CPT_LOG_DP_DEBUG("%s: %s done", cptvf->dev_name, __func__);
exit:
return ret;
}
/*
* Read Interrupt status of the VF
*
* @param cptvf cptvf structure
*/
static uint64_t
otx_cpt_read_vf_misc_intr_status(struct cpt_vf *cptvf)
{
return CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0));
}
/*
* Clear mailbox interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_mbox_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.mbox = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear instruction NCB read error interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_irde_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.irde = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear NCB result write response error interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_nwrp_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.nwrp = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear swerr interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_swerr_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.swerr = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear hwerr interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_hwerr_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.hwerr = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear translation fault interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_fault_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.fault = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear doorbell overflow interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_dovf_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.dovf = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/* Write to VQX_CTL register
*/
static void
otx_cpt_write_vq_ctl(struct cpt_vf *cptvf, bool val)
{
cptx_vqx_ctl_t vqx_ctl;
vqx_ctl.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_CTL(0, 0));
vqx_ctl.s.ena = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_CTL(0, 0), vqx_ctl.u);
}
/* Write to VQX_INPROG register
*/
static void
otx_cpt_write_vq_inprog(struct cpt_vf *cptvf, uint8_t val)
{
cptx_vqx_inprog_t vqx_inprg;
vqx_inprg.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_INPROG(0, 0));
vqx_inprg.s.inflight = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
}
/* Write to VQX_DONE_WAIT NUMWAIT register
*/
static void
otx_cpt_write_vq_done_numwait(struct cpt_vf *cptvf, uint32_t val)
{
cptx_vqx_done_wait_t vqx_dwait;
vqx_dwait.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DONE_WAIT(0, 0));
vqx_dwait.s.num_wait = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u);
}
/* Write to VQX_DONE_WAIT NUM_WAIT register
*/
static void
otx_cpt_write_vq_done_timewait(struct cpt_vf *cptvf, uint16_t val)
{
cptx_vqx_done_wait_t vqx_dwait;
vqx_dwait.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DONE_WAIT(0, 0));
vqx_dwait.s.time_wait = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u);
}
/* Write to VQX_SADDR register
*/
static void
otx_cpt_write_vq_saddr(struct cpt_vf *cptvf, uint64_t val)
{
cptx_vqx_saddr_t vqx_saddr;
vqx_saddr.u = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
}
static void
otx_cpt_vfvq_init(struct cpt_vf *cptvf)
{
uint64_t base_addr = 0;
/* Disable the VQ */
otx_cpt_write_vq_ctl(cptvf, 0);
/* Reset the doorbell */
otx_cpt_write_vq_doorbell(cptvf, 0);
/* Clear inflight */
otx_cpt_write_vq_inprog(cptvf, 0);
/* Write VQ SADDR */
base_addr = (uint64_t)(cptvf->cqueue.chead[0].dma_addr);
otx_cpt_write_vq_saddr(cptvf, base_addr);
/* Configure timerhold / coalescence */
otx_cpt_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
otx_cpt_write_vq_done_numwait(cptvf, CPT_COUNT_THOLD);
/* Enable the VQ */
otx_cpt_write_vq_ctl(cptvf, 1);
}
static int
cpt_vq_init(struct cpt_vf *cptvf, uint8_t group)
{
int err;
/* Convey VQ LEN to PF */
err = otx_cpt_send_vq_size_msg(cptvf);
if (err) {
CPT_LOG_ERR("%s: PF not responding to QLEN msg",
cptvf->dev_name);
err = -EBUSY;
goto cleanup;
}
/* CPT VF device initialization */
otx_cpt_vfvq_init(cptvf);
/* Send msg to PF to assign currnet Q to required group */
cptvf->vfgrp = group;
err = otx_cpt_send_vf_grp_msg(cptvf, group);
if (err) {
CPT_LOG_ERR("%s: PF not responding to VF_GRP msg",
cptvf->dev_name);
err = -EBUSY;
goto cleanup;
}
CPT_LOG_DP_DEBUG("%s: %s done", cptvf->dev_name, __func__);
return 0;
cleanup:
return err;
}
void
otx_cpt_poll_misc(struct cpt_vf *cptvf)
{
uint64_t intr;
intr = otx_cpt_read_vf_misc_intr_status(cptvf);
if (!intr)
return;
/* Check for MISC interrupt types */
if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
CPT_LOG_DP_DEBUG("%s: Mailbox interrupt 0x%lx on CPT VF %d",
cptvf->dev_name, (unsigned int long)intr, cptvf->vfid);
otx_cpt_handle_mbox_intr(cptvf);
otx_cpt_clear_mbox_intr(cptvf);
} else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
otx_cpt_clear_irde_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Instruction NCB read error interrupt "
"0x%lx on CPT VF %d", cptvf->dev_name,
(unsigned int long)intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
otx_cpt_clear_nwrp_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: NCB response write error interrupt 0x%lx"
" on CPT VF %d", cptvf->dev_name,
(unsigned int long)intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_SWERR_MASK)) {
otx_cpt_clear_swerr_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Software error interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_HWERR_MASK)) {
otx_cpt_clear_hwerr_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Hardware error interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_FAULT_MASK)) {
otx_cpt_clear_fault_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Translation fault interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
otx_cpt_clear_dovf_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Doorbell overflow interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else
CPT_LOG_DP_ERR("%s: Unhandled interrupt 0x%lx in CPT VF %d",
cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
}
int
otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name)
{
memset(cptvf, 0, sizeof(struct cpt_vf));
/* Bar0 base address */
cptvf->reg_base = reg_base;
/* Save device name */
strlcpy(cptvf->dev_name, name, (sizeof(cptvf->dev_name)));
cptvf->pdev = pdev;
/* To clear if there are any pending mbox msgs */
otx_cpt_poll_misc(cptvf);
if (otx_cpt_vf_init(cptvf)) {
CPT_LOG_ERR("Failed to initialize CPT VF device");
return -1;
}
return 0;
}
int
otx_cpt_deinit_device(void *dev)
{
struct cpt_vf *cptvf = (struct cpt_vf *)dev;
/* Do misc work one last time */
otx_cpt_poll_misc(cptvf);
return 0;
}
static int
otx_cpt_metabuf_mempool_create(const struct rte_cryptodev *dev,
struct cpt_instance *instance, uint8_t qp_id,
int nb_elements)
{
char mempool_name[RTE_MEMPOOL_NAMESIZE];
int sg_mlen, lb_mlen, max_mlen, ret;
struct cpt_qp_meta_info *meta_info;
struct rte_mempool *pool;
/* Get meta len for scatter gather mode */
sg_mlen = cpt_pmd_ops_helper_get_mlen_sg_mode();
/* Extra 32B saved for future considerations */
sg_mlen += 4 * sizeof(uint64_t);
/* Get meta len for linear buffer (direct) mode */
lb_mlen = cpt_pmd_ops_helper_get_mlen_direct_mode();
/* Extra 32B saved for future considerations */
lb_mlen += 4 * sizeof(uint64_t);
/* Check max requirement for meta buffer */
max_mlen = RTE_MAX(lb_mlen, sg_mlen);
/* Allocate mempool */
snprintf(mempool_name, RTE_MEMPOOL_NAMESIZE, "otx_cpt_mb_%u:%u",
dev->data->dev_id, qp_id);
pool = rte_mempool_create_empty(mempool_name, nb_elements, max_mlen,
METABUF_POOL_CACHE_SIZE, 0,
rte_socket_id(), 0);
if (pool == NULL) {
CPT_LOG_ERR("Could not create mempool for metabuf");
return rte_errno;
}
ret = rte_mempool_set_ops_byname(pool, RTE_MBUF_DEFAULT_MEMPOOL_OPS,
NULL);
if (ret) {
CPT_LOG_ERR("Could not set mempool ops");
goto mempool_free;
}
ret = rte_mempool_populate_default(pool);
if (ret <= 0) {
CPT_LOG_ERR("Could not populate metabuf pool");
goto mempool_free;
}
meta_info = &instance->meta_info;
meta_info->pool = pool;
meta_info->lb_mlen = lb_mlen;
meta_info->sg_mlen = sg_mlen;
return 0;
mempool_free:
rte_mempool_free(pool);
return ret;
}
static void
otx_cpt_metabuf_mempool_destroy(struct cpt_instance *instance)
{
struct cpt_qp_meta_info *meta_info = &instance->meta_info;
rte_mempool_free(meta_info->pool);
meta_info->pool = NULL;
meta_info->lb_mlen = 0;
meta_info->sg_mlen = 0;
}
int
otx_cpt_get_resource(const struct rte_cryptodev *dev, uint8_t group,
struct cpt_instance **instance, uint16_t qp_id)
{
int ret = -ENOENT, len, qlen, i;
int chunk_len, chunks, chunk_size;
struct cpt_vf *cptvf = dev->data->dev_private;
struct cpt_instance *cpt_instance;
struct command_chunk *chunk_head = NULL, *chunk_prev = NULL;
struct command_chunk *chunk = NULL;
uint8_t *mem;
const struct rte_memzone *rz;
uint64_t dma_addr = 0, alloc_len, used_len;
uint64_t *next_ptr;
uint64_t pg_sz = sysconf(_SC_PAGESIZE);
CPT_LOG_DP_DEBUG("Initializing cpt resource %s", cptvf->dev_name);
cpt_instance = &cptvf->instance;
memset(&cptvf->cqueue, 0, sizeof(cptvf->cqueue));
memset(&cptvf->pqueue, 0, sizeof(cptvf->pqueue));
/* Chunks are of fixed size buffers */
chunks = DEFAULT_CMD_QCHUNKS;
chunk_len = DEFAULT_CMD_QCHUNK_SIZE;
qlen = chunks * chunk_len;
/* Chunk size includes 8 bytes of next chunk ptr */
chunk_size = chunk_len * CPT_INST_SIZE + CPT_NEXT_CHUNK_PTR_SIZE;
/* For command chunk structures */
len = chunks * RTE_ALIGN(sizeof(struct command_chunk), 8);
/* For pending queue */
len += qlen * RTE_ALIGN(sizeof(struct rid), 8);
/* So that instruction queues start as pg size aligned */
len = RTE_ALIGN(len, pg_sz);
/* For Instruction queues */
len += chunks * RTE_ALIGN(chunk_size, 128);
/* Wastage after instruction queues */
len = RTE_ALIGN(len, pg_sz);
rz = rte_memzone_reserve_aligned(cptvf->dev_name, len, cptvf->node,
RTE_MEMZONE_SIZE_HINT_ONLY |
RTE_MEMZONE_256MB,
RTE_CACHE_LINE_SIZE);
if (!rz) {
ret = rte_errno;
goto exit;
}
mem = rz->addr;
dma_addr = rz->phys_addr;
alloc_len = len;
memset(mem, 0, len);
cpt_instance->rsvd = (uintptr_t)rz;
ret = otx_cpt_metabuf_mempool_create(dev, cpt_instance, qp_id, qlen);
if (ret) {
CPT_LOG_ERR("Could not create mempool for metabuf");
goto memzone_free;
}
/* Pending queue setup */
cptvf->pqueue.rid_queue = (struct rid *)mem;
cptvf->pqueue.enq_tail = 0;
cptvf->pqueue.deq_head = 0;
cptvf->pqueue.pending_count = 0;
mem += qlen * RTE_ALIGN(sizeof(struct rid), 8);
len -= qlen * RTE_ALIGN(sizeof(struct rid), 8);
dma_addr += qlen * RTE_ALIGN(sizeof(struct rid), 8);
/* Alignment wastage */
used_len = alloc_len - len;
mem += RTE_ALIGN(used_len, pg_sz) - used_len;
len -= RTE_ALIGN(used_len, pg_sz) - used_len;
dma_addr += RTE_ALIGN(used_len, pg_sz) - used_len;
/* Init instruction queues */
chunk_head = &cptvf->cqueue.chead[0];
i = qlen;
chunk_prev = NULL;
for (i = 0; i < DEFAULT_CMD_QCHUNKS; i++) {
int csize;
chunk = &cptvf->cqueue.chead[i];
chunk->head = mem;
chunk->dma_addr = dma_addr;
csize = RTE_ALIGN(chunk_size, 128);
mem += csize;
dma_addr += csize;
len -= csize;
if (chunk_prev) {
next_ptr = (uint64_t *)(chunk_prev->head +
chunk_size - 8);
*next_ptr = (uint64_t)chunk->dma_addr;
}
chunk_prev = chunk;
}
/* Circular loop */
next_ptr = (uint64_t *)(chunk_prev->head + chunk_size - 8);
*next_ptr = (uint64_t)chunk_head->dma_addr;
assert(!len);
/* This is used for CPT(0)_PF_Q(0..15)_CTL.size config */
cptvf->qsize = chunk_size / 8;
cptvf->cqueue.qhead = chunk_head->head;
cptvf->cqueue.idx = 0;
cptvf->cqueue.cchunk = 0;
if (cpt_vq_init(cptvf, group)) {
CPT_LOG_ERR("Failed to initialize CPT VQ of device %s",
cptvf->dev_name);
ret = -EBUSY;
goto mempool_destroy;
}
*instance = cpt_instance;
CPT_LOG_DP_DEBUG("Crypto device (%s) initialized", cptvf->dev_name);
return 0;
mempool_destroy:
otx_cpt_metabuf_mempool_destroy(cpt_instance);
memzone_free:
rte_memzone_free(rz);
exit:
*instance = NULL;
return ret;
}
int
otx_cpt_put_resource(struct cpt_instance *instance)
{
struct cpt_vf *cptvf = (struct cpt_vf *)instance;
struct rte_memzone *rz;
if (!cptvf) {
CPT_LOG_ERR("Invalid CPTVF handle");
return -EINVAL;
}
CPT_LOG_DP_DEBUG("Releasing cpt device %s", cptvf->dev_name);
otx_cpt_metabuf_mempool_destroy(instance);
rz = (struct rte_memzone *)instance->rsvd;
rte_memzone_free(rz);
return 0;
}
int
otx_cpt_start_device(void *dev)
{
int rc;
struct cpt_vf *cptvf = (struct cpt_vf *)dev;
rc = otx_cpt_send_vf_up(cptvf);
if (rc) {
CPT_LOG_ERR("Failed to mark CPT VF device %s UP, rc = %d",
cptvf->dev_name, rc);
return -EFAULT;
}
if ((cptvf->vftype != SE_TYPE) && (cptvf->vftype != AE_TYPE)) {
CPT_LOG_ERR("Fatal error, unexpected vf type %u, for CPT VF "
"device %s", cptvf->vftype, cptvf->dev_name);
return -ENOENT;
}
return 0;
}
void
otx_cpt_stop_device(void *dev)
{
int rc;
uint32_t pending, retries = 5;
struct cpt_vf *cptvf = (struct cpt_vf *)dev;
/* Wait for pending entries to complete */
pending = otx_cpt_read_vq_doorbell(cptvf);
while (pending) {
CPT_LOG_DP_DEBUG("%s: Waiting for pending %u cmds to complete",
cptvf->dev_name, pending);
sleep(1);
pending = otx_cpt_read_vq_doorbell(cptvf);
retries--;
if (!retries)
break;
}
if (!retries && pending) {
CPT_LOG_ERR("%s: Timeout waiting for commands(%u)",
cptvf->dev_name, pending);
return;
}
rc = otx_cpt_send_vf_down(cptvf);
if (rc) {
CPT_LOG_ERR("Failed to bring down vf %s, rc %d",
cptvf->dev_name, rc);
return;
}
}