numam-dpdk/drivers/net/txgbe/txgbe_flow.c
Ferruh Yigit 295968d174 ethdev: add namespace
Add 'RTE_ETH' namespace to all enums & macros in a backward compatible
way. The macros for backward compatibility can be removed in next LTS.
Also updated some struct names to have 'rte_eth' prefix.

All internal components switched to using new names.

Syntax fixed on lines that this patch touches.

Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Tyler Retzlaff <roretzla@linux.microsoft.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
Acked-by: Wisam Jaddo <wisamm@nvidia.com>
Acked-by: Rosen Xu <rosen.xu@intel.com>
Acked-by: Chenbo Xia <chenbo.xia@intel.com>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
2021-10-22 18:15:38 +02:00

3154 lines
88 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2020 Beijing WangXun Technology Co., Ltd.
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <sys/queue.h>
#include <rte_bus_pci.h>
#include <rte_malloc.h>
#include <rte_flow.h>
#include <rte_flow_driver.h>
#include "txgbe_ethdev.h"
#define TXGBE_MIN_N_TUPLE_PRIO 1
#define TXGBE_MAX_N_TUPLE_PRIO 7
#define TXGBE_MAX_FLX_SOURCE_OFF 62
/* ntuple filter list structure */
struct txgbe_ntuple_filter_ele {
TAILQ_ENTRY(txgbe_ntuple_filter_ele) entries;
struct rte_eth_ntuple_filter filter_info;
};
/* ethertype filter list structure */
struct txgbe_ethertype_filter_ele {
TAILQ_ENTRY(txgbe_ethertype_filter_ele) entries;
struct rte_eth_ethertype_filter filter_info;
};
/* syn filter list structure */
struct txgbe_eth_syn_filter_ele {
TAILQ_ENTRY(txgbe_eth_syn_filter_ele) entries;
struct rte_eth_syn_filter filter_info;
};
/* fdir filter list structure */
struct txgbe_fdir_rule_ele {
TAILQ_ENTRY(txgbe_fdir_rule_ele) entries;
struct txgbe_fdir_rule filter_info;
};
/* l2_tunnel filter list structure */
struct txgbe_eth_l2_tunnel_conf_ele {
TAILQ_ENTRY(txgbe_eth_l2_tunnel_conf_ele) entries;
struct txgbe_l2_tunnel_conf filter_info;
};
/* rss filter list structure */
struct txgbe_rss_conf_ele {
TAILQ_ENTRY(txgbe_rss_conf_ele) entries;
struct txgbe_rte_flow_rss_conf filter_info;
};
/* txgbe_flow memory list structure */
struct txgbe_flow_mem {
TAILQ_ENTRY(txgbe_flow_mem) entries;
struct rte_flow *flow;
};
TAILQ_HEAD(txgbe_ntuple_filter_list, txgbe_ntuple_filter_ele);
TAILQ_HEAD(txgbe_ethertype_filter_list, txgbe_ethertype_filter_ele);
TAILQ_HEAD(txgbe_syn_filter_list, txgbe_eth_syn_filter_ele);
TAILQ_HEAD(txgbe_fdir_rule_filter_list, txgbe_fdir_rule_ele);
TAILQ_HEAD(txgbe_l2_tunnel_filter_list, txgbe_eth_l2_tunnel_conf_ele);
TAILQ_HEAD(txgbe_rss_filter_list, txgbe_rss_conf_ele);
TAILQ_HEAD(txgbe_flow_mem_list, txgbe_flow_mem);
static struct txgbe_ntuple_filter_list filter_ntuple_list;
static struct txgbe_ethertype_filter_list filter_ethertype_list;
static struct txgbe_syn_filter_list filter_syn_list;
static struct txgbe_fdir_rule_filter_list filter_fdir_list;
static struct txgbe_l2_tunnel_filter_list filter_l2_tunnel_list;
static struct txgbe_rss_filter_list filter_rss_list;
static struct txgbe_flow_mem_list txgbe_flow_list;
/**
* Endless loop will never happen with below assumption
* 1. there is at least one no-void item(END)
* 2. cur is before END.
*/
static inline
const struct rte_flow_item *next_no_void_pattern(
const struct rte_flow_item pattern[],
const struct rte_flow_item *cur)
{
const struct rte_flow_item *next =
cur ? cur + 1 : &pattern[0];
while (1) {
if (next->type != RTE_FLOW_ITEM_TYPE_VOID)
return next;
next++;
}
}
static inline
const struct rte_flow_action *next_no_void_action(
const struct rte_flow_action actions[],
const struct rte_flow_action *cur)
{
const struct rte_flow_action *next =
cur ? cur + 1 : &actions[0];
while (1) {
if (next->type != RTE_FLOW_ACTION_TYPE_VOID)
return next;
next++;
}
}
/**
* Please aware there's an assumption for all the parsers.
* rte_flow_item is using big endian, rte_flow_attr and
* rte_flow_action are using CPU order.
* Because the pattern is used to describe the packets,
* normally the packets should use network order.
*/
/**
* Parse the rule to see if it is a n-tuple rule.
* And get the n-tuple filter info BTW.
* pattern:
* The first not void item can be ETH or IPV4.
* The second not void item must be IPV4 if the first one is ETH.
* The third not void item must be UDP or TCP.
* The next not void item must be END.
* action:
* The first not void action should be QUEUE.
* The next not void action should be END.
* pattern example:
* ITEM Spec Mask
* ETH NULL NULL
* IPV4 src_addr 192.168.1.20 0xFFFFFFFF
* dst_addr 192.167.3.50 0xFFFFFFFF
* next_proto_id 17 0xFF
* UDP/TCP/ src_port 80 0xFFFF
* SCTP dst_port 80 0xFFFF
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*
* Special case for flow action type RTE_FLOW_ACTION_TYPE_SECURITY.
*
*/
static int
cons_parse_ntuple_filter(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_ntuple_filter *filter,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_action *act;
const struct rte_flow_item_ipv4 *ipv4_spec;
const struct rte_flow_item_ipv4 *ipv4_mask;
const struct rte_flow_item_tcp *tcp_spec;
const struct rte_flow_item_tcp *tcp_mask;
const struct rte_flow_item_udp *udp_spec;
const struct rte_flow_item_udp *udp_mask;
const struct rte_flow_item_sctp *sctp_spec;
const struct rte_flow_item_sctp *sctp_mask;
const struct rte_flow_item_eth *eth_spec;
const struct rte_flow_item_eth *eth_mask;
const struct rte_flow_item_vlan *vlan_spec;
const struct rte_flow_item_vlan *vlan_mask;
struct rte_flow_item_eth eth_null;
struct rte_flow_item_vlan vlan_null;
if (!pattern) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
memset(&eth_null, 0, sizeof(struct rte_flow_item_eth));
memset(&vlan_null, 0, sizeof(struct rte_flow_item_vlan));
#ifdef RTE_LIB_SECURITY
/**
* Special case for flow action type RTE_FLOW_ACTION_TYPE_SECURITY
*/
act = next_no_void_action(actions, NULL);
if (act->type == RTE_FLOW_ACTION_TYPE_SECURITY) {
const void *conf = act->conf;
/* check if the next not void item is END */
act = next_no_void_action(actions, act);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* get the IP pattern*/
item = next_no_void_pattern(pattern, NULL);
while (item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_IPV6) {
if (item->last ||
item->type == RTE_FLOW_ITEM_TYPE_END) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "IP pattern missing.");
return -rte_errno;
}
item = next_no_void_pattern(pattern, item);
}
filter->proto = IPPROTO_ESP;
return txgbe_crypto_add_ingress_sa_from_flow(conf, item->spec,
item->type == RTE_FLOW_ITEM_TYPE_IPV6);
}
#endif
/* the first not void item can be MAC or IPv4 */
item = next_no_void_pattern(pattern, NULL);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH &&
item->type != RTE_FLOW_ITEM_TYPE_IPV4) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
/* Skip Ethernet */
if (item->type == RTE_FLOW_ITEM_TYPE_ETH) {
eth_spec = item->spec;
eth_mask = item->mask;
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* if the first item is MAC, the content should be NULL */
if ((item->spec && memcmp(eth_spec, &eth_null,
sizeof(struct rte_flow_item_eth))) ||
(item->mask && memcmp(eth_mask, &eth_null,
sizeof(struct rte_flow_item_eth)))) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
/* check if the next not void item is IPv4 or Vlan */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_VLAN) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
}
if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
vlan_spec = item->spec;
vlan_mask = item->mask;
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* the content should be NULL */
if ((item->spec && memcmp(vlan_spec, &vlan_null,
sizeof(struct rte_flow_item_vlan))) ||
(item->mask && memcmp(vlan_mask, &vlan_null,
sizeof(struct rte_flow_item_vlan)))) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
/* check if the next not void item is IPv4 */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_IPV4) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
}
if (item->mask) {
/* get the IPv4 info */
if (!item->spec || !item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid ntuple mask");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
ipv4_mask = item->mask;
/**
* Only support src & dst addresses, protocol,
* others should be masked.
*/
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.type_of_service ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.fragment_offset ||
ipv4_mask->hdr.time_to_live ||
ipv4_mask->hdr.hdr_checksum) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
if ((ipv4_mask->hdr.src_addr != 0 &&
ipv4_mask->hdr.src_addr != UINT32_MAX) ||
(ipv4_mask->hdr.dst_addr != 0 &&
ipv4_mask->hdr.dst_addr != UINT32_MAX) ||
(ipv4_mask->hdr.next_proto_id != UINT8_MAX &&
ipv4_mask->hdr.next_proto_id != 0)) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
filter->dst_ip_mask = ipv4_mask->hdr.dst_addr;
filter->src_ip_mask = ipv4_mask->hdr.src_addr;
filter->proto_mask = ipv4_mask->hdr.next_proto_id;
ipv4_spec = item->spec;
filter->dst_ip = ipv4_spec->hdr.dst_addr;
filter->src_ip = ipv4_spec->hdr.src_addr;
filter->proto = ipv4_spec->hdr.next_proto_id;
}
/* check if the next not void item is TCP or UDP */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_TCP &&
item->type != RTE_FLOW_ITEM_TYPE_UDP &&
item->type != RTE_FLOW_ITEM_TYPE_SCTP &&
item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
if (item->type != RTE_FLOW_ITEM_TYPE_END &&
(!item->spec && !item->mask)) {
goto action;
}
/* get the TCP/UDP/SCTP info */
if (item->type != RTE_FLOW_ITEM_TYPE_END &&
(!item->spec || !item->mask)) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid ntuple mask");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
if (item->type == RTE_FLOW_ITEM_TYPE_TCP) {
tcp_mask = item->mask;
/**
* Only support src & dst ports, tcp flags,
* others should be masked.
*/
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
if ((tcp_mask->hdr.src_port != 0 &&
tcp_mask->hdr.src_port != UINT16_MAX) ||
(tcp_mask->hdr.dst_port != 0 &&
tcp_mask->hdr.dst_port != UINT16_MAX)) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
filter->dst_port_mask = tcp_mask->hdr.dst_port;
filter->src_port_mask = tcp_mask->hdr.src_port;
if (tcp_mask->hdr.tcp_flags == 0xFF) {
filter->flags |= RTE_NTUPLE_FLAGS_TCP_FLAG;
} else if (!tcp_mask->hdr.tcp_flags) {
filter->flags &= ~RTE_NTUPLE_FLAGS_TCP_FLAG;
} else {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
tcp_spec = item->spec;
filter->dst_port = tcp_spec->hdr.dst_port;
filter->src_port = tcp_spec->hdr.src_port;
filter->tcp_flags = tcp_spec->hdr.tcp_flags;
} else if (item->type == RTE_FLOW_ITEM_TYPE_UDP) {
udp_mask = item->mask;
/**
* Only support src & dst ports,
* others should be masked.
*/
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
if ((udp_mask->hdr.src_port != 0 &&
udp_mask->hdr.src_port != UINT16_MAX) ||
(udp_mask->hdr.dst_port != 0 &&
udp_mask->hdr.dst_port != UINT16_MAX)) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
filter->dst_port_mask = udp_mask->hdr.dst_port;
filter->src_port_mask = udp_mask->hdr.src_port;
udp_spec = item->spec;
filter->dst_port = udp_spec->hdr.dst_port;
filter->src_port = udp_spec->hdr.src_port;
} else if (item->type == RTE_FLOW_ITEM_TYPE_SCTP) {
sctp_mask = item->mask;
/**
* Only support src & dst ports,
* others should be masked.
*/
if (sctp_mask->hdr.tag ||
sctp_mask->hdr.cksum) {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
filter->dst_port_mask = sctp_mask->hdr.dst_port;
filter->src_port_mask = sctp_mask->hdr.src_port;
sctp_spec = item->spec;
filter->dst_port = sctp_spec->hdr.dst_port;
filter->src_port = sctp_spec->hdr.src_port;
} else {
goto action;
}
/* check if the next not void item is END */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
action:
/**
* n-tuple only supports forwarding,
* check if the first not void action is QUEUE.
*/
act = next_no_void_action(actions, NULL);
if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
filter->queue =
((const struct rte_flow_action_queue *)act->conf)->index;
/* check if the next not void item is END */
act = next_no_void_action(actions, act);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* not supported */
if (attr->egress) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* not supported */
if (attr->transfer) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
if (attr->priority > 0xFFFF) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Error priority.");
return -rte_errno;
}
filter->priority = (uint16_t)attr->priority;
if (attr->priority < TXGBE_MIN_N_TUPLE_PRIO ||
attr->priority > TXGBE_MAX_N_TUPLE_PRIO)
filter->priority = 1;
return 0;
}
/* a specific function for txgbe because the flags is specific */
static int
txgbe_parse_ntuple_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_ntuple_filter *filter,
struct rte_flow_error *error)
{
int ret;
ret = cons_parse_ntuple_filter(attr, pattern, actions, filter, error);
if (ret)
return ret;
#ifdef RTE_LIB_SECURITY
/* ESP flow not really a flow */
if (filter->proto == IPPROTO_ESP)
return 0;
#endif
/* txgbe doesn't support tcp flags */
if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Not supported by ntuple filter");
return -rte_errno;
}
/* txgbe doesn't support many priorities */
if (filter->priority < TXGBE_MIN_N_TUPLE_PRIO ||
filter->priority > TXGBE_MAX_N_TUPLE_PRIO) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Priority not supported by ntuple filter");
return -rte_errno;
}
if (filter->queue >= dev->data->nb_rx_queues) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Not supported by ntuple filter");
return -rte_errno;
}
/* fixed value for txgbe */
filter->flags = RTE_5TUPLE_FLAGS;
return 0;
}
/**
* Parse the rule to see if it is a ethertype rule.
* And get the ethertype filter info BTW.
* pattern:
* The first not void item can be ETH.
* The next not void item must be END.
* action:
* The first not void action should be QUEUE.
* The next not void action should be END.
* pattern example:
* ITEM Spec Mask
* ETH type 0x0807 0xFFFF
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*/
static int
cons_parse_ethertype_filter(const struct rte_flow_attr *attr,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions,
struct rte_eth_ethertype_filter *filter,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_action *act;
const struct rte_flow_item_eth *eth_spec;
const struct rte_flow_item_eth *eth_mask;
const struct rte_flow_action_queue *act_q;
if (!pattern) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
item = next_no_void_pattern(pattern, NULL);
/* The first non-void item should be MAC. */
if (item->type != RTE_FLOW_ITEM_TYPE_ETH) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ethertype filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* Get the MAC info. */
if (!item->spec || !item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ethertype filter");
return -rte_errno;
}
eth_spec = item->spec;
eth_mask = item->mask;
/* Mask bits of source MAC address must be full of 0.
* Mask bits of destination MAC address must be full
* of 1 or full of 0.
*/
if (!rte_is_zero_ether_addr(&eth_mask->src) ||
(!rte_is_zero_ether_addr(&eth_mask->dst) &&
!rte_is_broadcast_ether_addr(&eth_mask->dst))) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid ether address mask");
return -rte_errno;
}
if ((eth_mask->type & UINT16_MAX) != UINT16_MAX) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid ethertype mask");
return -rte_errno;
}
/* If mask bits of destination MAC address
* are full of 1, set RTE_ETHTYPE_FLAGS_MAC.
*/
if (rte_is_broadcast_ether_addr(&eth_mask->dst)) {
filter->mac_addr = eth_spec->dst;
filter->flags |= RTE_ETHTYPE_FLAGS_MAC;
} else {
filter->flags &= ~RTE_ETHTYPE_FLAGS_MAC;
}
filter->ether_type = rte_be_to_cpu_16(eth_spec->type);
/* Check if the next non-void item is END. */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ethertype filter.");
return -rte_errno;
}
/* Parse action */
act = next_no_void_action(actions, NULL);
if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE &&
act->type != RTE_FLOW_ACTION_TYPE_DROP) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
if (act->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
act_q = (const struct rte_flow_action_queue *)act->conf;
filter->queue = act_q->index;
} else {
filter->flags |= RTE_ETHTYPE_FLAGS_DROP;
}
/* Check if the next non-void item is END */
act = next_no_void_action(actions, act);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* Parse attr */
/* Must be input direction */
if (!attr->ingress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* Not supported */
if (attr->egress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* Not supported */
if (attr->transfer) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
/* Not supported */
if (attr->priority) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
}
/* Not supported */
if (attr->group) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
attr, "Not support group.");
return -rte_errno;
}
return 0;
}
static int
txgbe_parse_ethertype_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_ethertype_filter *filter,
struct rte_flow_error *error)
{
int ret;
ret = cons_parse_ethertype_filter(attr, pattern,
actions, filter, error);
if (ret)
return ret;
if (filter->queue >= dev->data->nb_rx_queues) {
memset(filter, 0, sizeof(struct rte_eth_ethertype_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "queue index much too big");
return -rte_errno;
}
if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
filter->ether_type == RTE_ETHER_TYPE_IPV6) {
memset(filter, 0, sizeof(struct rte_eth_ethertype_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "IPv4/IPv6 not supported by ethertype filter");
return -rte_errno;
}
if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
memset(filter, 0, sizeof(struct rte_eth_ethertype_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "mac compare is unsupported");
return -rte_errno;
}
if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
memset(filter, 0, sizeof(struct rte_eth_ethertype_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "drop option is unsupported");
return -rte_errno;
}
return 0;
}
/**
* Parse the rule to see if it is a TCP SYN rule.
* And get the TCP SYN filter info BTW.
* pattern:
* The first not void item must be ETH.
* The second not void item must be IPV4 or IPV6.
* The third not void item must be TCP.
* The next not void item must be END.
* action:
* The first not void action should be QUEUE.
* The next not void action should be END.
* pattern example:
* ITEM Spec Mask
* ETH NULL NULL
* IPV4/IPV6 NULL NULL
* TCP tcp_flags 0x02 0xFF
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*/
static int
cons_parse_syn_filter(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_syn_filter *filter,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_action *act;
const struct rte_flow_item_tcp *tcp_spec;
const struct rte_flow_item_tcp *tcp_mask;
const struct rte_flow_action_queue *act_q;
if (!pattern) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
/* the first not void item should be MAC or IPv4 or IPv6 or TCP */
item = next_no_void_pattern(pattern, NULL);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH &&
item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_IPV6 &&
item->type != RTE_FLOW_ITEM_TYPE_TCP) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* Skip Ethernet */
if (item->type == RTE_FLOW_ITEM_TYPE_ETH) {
/* if the item is MAC, the content should be NULL */
if (item->spec || item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid SYN address mask");
return -rte_errno;
}
/* check if the next not void item is IPv4 or IPv6 */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_IPV6) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
}
/* Skip IP */
if (item->type == RTE_FLOW_ITEM_TYPE_IPV4 ||
item->type == RTE_FLOW_ITEM_TYPE_IPV6) {
/* if the item is IP, the content should be NULL */
if (item->spec || item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid SYN mask");
return -rte_errno;
}
/* check if the next not void item is TCP */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_TCP) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
}
/* Get the TCP info. Only support SYN. */
if (!item->spec || !item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid SYN mask");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
tcp_spec = item->spec;
tcp_mask = item->mask;
if (!(tcp_spec->hdr.tcp_flags & RTE_TCP_SYN_FLAG) ||
tcp_mask->hdr.src_port ||
tcp_mask->hdr.dst_port ||
tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.tcp_flags != RTE_TCP_SYN_FLAG ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
/* check if the next not void item is END */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
/* check if the first not void action is QUEUE. */
act = next_no_void_action(actions, NULL);
if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
act_q = (const struct rte_flow_action_queue *)act->conf;
filter->queue = act_q->index;
if (filter->queue >= TXGBE_MAX_RX_QUEUE_NUM) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* check if the next not void item is END */
act = next_no_void_action(actions, act);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* not supported */
if (attr->egress) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* not supported */
if (attr->transfer) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
/* Support 2 priorities, the lowest or highest. */
if (!attr->priority) {
filter->hig_pri = 0;
} else if (attr->priority == (uint32_t)~0U) {
filter->hig_pri = 1;
} else {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
}
return 0;
}
static int
txgbe_parse_syn_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_syn_filter *filter,
struct rte_flow_error *error)
{
int ret;
ret = cons_parse_syn_filter(attr, pattern,
actions, filter, error);
if (filter->queue >= dev->data->nb_rx_queues)
return -rte_errno;
if (ret)
return ret;
return 0;
}
/**
* Parse the rule to see if it is a L2 tunnel rule.
* And get the L2 tunnel filter info BTW.
* Only support E-tag now.
* pattern:
* The first not void item can be E_TAG.
* The next not void item must be END.
* action:
* The first not void action should be VF or PF.
* The next not void action should be END.
* pattern example:
* ITEM Spec Mask
* E_TAG grp 0x1 0x3
e_cid_base 0x309 0xFFF
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*/
static int
cons_parse_l2_tn_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct txgbe_l2_tunnel_conf *filter,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_item_e_tag *e_tag_spec;
const struct rte_flow_item_e_tag *e_tag_mask;
const struct rte_flow_action *act;
const struct rte_flow_action_vf *act_vf;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
if (!pattern) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
/* The first not void item should be e-tag. */
item = next_no_void_pattern(pattern, NULL);
if (item->type != RTE_FLOW_ITEM_TYPE_E_TAG) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by L2 tunnel filter");
return -rte_errno;
}
if (!item->spec || !item->mask) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by L2 tunnel filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
e_tag_spec = item->spec;
e_tag_mask = item->mask;
/* Only care about GRP and E cid base. */
if (e_tag_mask->epcp_edei_in_ecid_b ||
e_tag_mask->in_ecid_e ||
e_tag_mask->ecid_e ||
e_tag_mask->rsvd_grp_ecid_b != rte_cpu_to_be_16(0x3FFF)) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by L2 tunnel filter");
return -rte_errno;
}
filter->l2_tunnel_type = RTE_ETH_L2_TUNNEL_TYPE_E_TAG;
/**
* grp and e_cid_base are bit fields and only use 14 bits.
* e-tag id is taken as little endian by HW.
*/
filter->tunnel_id = rte_be_to_cpu_16(e_tag_spec->rsvd_grp_ecid_b);
/* check if the next not void item is END */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by L2 tunnel filter");
return -rte_errno;
}
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* not supported */
if (attr->egress) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* not supported */
if (attr->transfer) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
/* not supported */
if (attr->priority) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
}
/* check if the first not void action is VF or PF. */
act = next_no_void_action(actions, NULL);
if (act->type != RTE_FLOW_ACTION_TYPE_VF &&
act->type != RTE_FLOW_ACTION_TYPE_PF) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
if (act->type == RTE_FLOW_ACTION_TYPE_VF) {
act_vf = (const struct rte_flow_action_vf *)act->conf;
filter->pool = act_vf->id;
} else {
filter->pool = pci_dev->max_vfs;
}
/* check if the next not void item is END */
act = next_no_void_action(actions, act);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
return 0;
}
static int
txgbe_parse_l2_tn_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct txgbe_l2_tunnel_conf *l2_tn_filter,
struct rte_flow_error *error)
{
int ret = 0;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
uint16_t vf_num;
ret = cons_parse_l2_tn_filter(dev, attr, pattern,
actions, l2_tn_filter, error);
vf_num = pci_dev->max_vfs;
if (l2_tn_filter->pool > vf_num)
return -rte_errno;
return ret;
}
/* Parse to get the attr and action info of flow director rule. */
static int
txgbe_parse_fdir_act_attr(const struct rte_flow_attr *attr,
const struct rte_flow_action actions[],
struct txgbe_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_action *act;
const struct rte_flow_action_queue *act_q;
const struct rte_flow_action_mark *mark;
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* not supported */
if (attr->egress) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* not supported */
if (attr->transfer) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
/* not supported */
if (attr->priority) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
}
/* check if the first not void action is QUEUE or DROP. */
act = next_no_void_action(actions, NULL);
if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE &&
act->type != RTE_FLOW_ACTION_TYPE_DROP) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
if (act->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
act_q = (const struct rte_flow_action_queue *)act->conf;
rule->queue = act_q->index;
} else { /* drop */
/* signature mode does not support drop action. */
if (rule->mode == RTE_FDIR_MODE_SIGNATURE) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
rule->fdirflags = TXGBE_FDIRPICMD_DROP;
}
/* check if the next not void item is MARK */
act = next_no_void_action(actions, act);
if (act->type != RTE_FLOW_ACTION_TYPE_MARK &&
act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
rule->soft_id = 0;
if (act->type == RTE_FLOW_ACTION_TYPE_MARK) {
mark = (const struct rte_flow_action_mark *)act->conf;
rule->soft_id = mark->id;
act = next_no_void_action(actions, act);
}
/* check if the next not void item is END */
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
return 0;
}
/* search next no void pattern and skip fuzzy */
static inline
const struct rte_flow_item *next_no_fuzzy_pattern(
const struct rte_flow_item pattern[],
const struct rte_flow_item *cur)
{
const struct rte_flow_item *next =
next_no_void_pattern(pattern, cur);
while (1) {
if (next->type != RTE_FLOW_ITEM_TYPE_FUZZY)
return next;
next = next_no_void_pattern(pattern, next);
}
}
static inline uint8_t signature_match(const struct rte_flow_item pattern[])
{
const struct rte_flow_item_fuzzy *spec, *last, *mask;
const struct rte_flow_item *item;
uint32_t sh, lh, mh;
int i = 0;
while (1) {
item = pattern + i;
if (item->type == RTE_FLOW_ITEM_TYPE_END)
break;
if (item->type == RTE_FLOW_ITEM_TYPE_FUZZY) {
spec = item->spec;
last = item->last;
mask = item->mask;
if (!spec || !mask)
return 0;
sh = spec->thresh;
if (!last)
lh = sh;
else
lh = last->thresh;
mh = mask->thresh;
sh = sh & mh;
lh = lh & mh;
if (!sh || sh > lh)
return 0;
return 1;
}
i++;
}
return 0;
}
/**
* Parse the rule to see if it is a IP or MAC VLAN flow director rule.
* And get the flow director filter info BTW.
* UDP/TCP/SCTP PATTERN:
* The first not void item can be ETH or IPV4 or IPV6
* The second not void item must be IPV4 or IPV6 if the first one is ETH.
* The next not void item could be UDP or TCP or SCTP (optional)
* The next not void item could be RAW (for flexbyte, optional)
* The next not void item must be END.
* A Fuzzy Match pattern can appear at any place before END.
* Fuzzy Match is optional for IPV4 but is required for IPV6
* MAC VLAN PATTERN:
* The first not void item must be ETH.
* The second not void item must be MAC VLAN.
* The next not void item must be END.
* ACTION:
* The first not void action should be QUEUE or DROP.
* The second not void optional action should be MARK,
* mark_id is a uint32_t number.
* The next not void action should be END.
* UDP/TCP/SCTP pattern example:
* ITEM Spec Mask
* ETH NULL NULL
* IPV4 src_addr 192.168.1.20 0xFFFFFFFF
* dst_addr 192.167.3.50 0xFFFFFFFF
* UDP/TCP/SCTP src_port 80 0xFFFF
* dst_port 80 0xFFFF
* FLEX relative 0 0x1
* search 0 0x1
* reserved 0 0
* offset 12 0xFFFFFFFF
* limit 0 0xFFFF
* length 2 0xFFFF
* pattern[0] 0x86 0xFF
* pattern[1] 0xDD 0xFF
* END
* MAC VLAN pattern example:
* ITEM Spec Mask
* ETH dst_addr
{0xAC, 0x7B, 0xA1, {0xFF, 0xFF, 0xFF,
0x2C, 0x6D, 0x36} 0xFF, 0xFF, 0xFF}
* MAC VLAN tci 0x2016 0xEFFF
* END
* Other members in mask and spec should set to 0x00.
* Item->last should be NULL.
*/
static int
txgbe_parse_fdir_filter_normal(struct rte_eth_dev *dev __rte_unused,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct txgbe_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_item_eth *eth_mask;
const struct rte_flow_item_ipv4 *ipv4_spec;
const struct rte_flow_item_ipv4 *ipv4_mask;
const struct rte_flow_item_ipv6 *ipv6_spec;
const struct rte_flow_item_ipv6 *ipv6_mask;
const struct rte_flow_item_tcp *tcp_spec;
const struct rte_flow_item_tcp *tcp_mask;
const struct rte_flow_item_udp *udp_spec;
const struct rte_flow_item_udp *udp_mask;
const struct rte_flow_item_sctp *sctp_spec;
const struct rte_flow_item_sctp *sctp_mask;
const struct rte_flow_item_raw *raw_mask;
const struct rte_flow_item_raw *raw_spec;
u32 ptype = 0;
uint8_t j;
if (!pattern) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
/**
* Some fields may not be provided. Set spec to 0 and mask to default
* value. So, we need not do anything for the not provided fields later.
*/
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
memset(&rule->mask, 0xFF, sizeof(struct txgbe_hw_fdir_mask));
rule->mask.vlan_tci_mask = 0;
rule->mask.flex_bytes_mask = 0;
/**
* The first not void item should be
* MAC or IPv4 or TCP or UDP or SCTP.
*/
item = next_no_fuzzy_pattern(pattern, NULL);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH &&
item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_IPV6 &&
item->type != RTE_FLOW_ITEM_TYPE_TCP &&
item->type != RTE_FLOW_ITEM_TYPE_UDP &&
item->type != RTE_FLOW_ITEM_TYPE_SCTP) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
if (signature_match(pattern))
rule->mode = RTE_FDIR_MODE_SIGNATURE;
else
rule->mode = RTE_FDIR_MODE_PERFECT;
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* Get the MAC info. */
if (item->type == RTE_FLOW_ITEM_TYPE_ETH) {
/**
* Only support vlan and dst MAC address,
* others should be masked.
*/
if (item->spec && !item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
if (item->mask) {
rule->b_mask = TRUE;
eth_mask = item->mask;
/* Ether type should be masked. */
if (eth_mask->type ||
rule->mode == RTE_FDIR_MODE_SIGNATURE) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/* If ethernet has meaning, it means MAC VLAN mode. */
rule->mode = RTE_FDIR_MODE_PERFECT_MAC_VLAN;
/**
* src MAC address must be masked,
* and don't support dst MAC address mask.
*/
for (j = 0; j < RTE_ETHER_ADDR_LEN; j++) {
if (eth_mask->src.addr_bytes[j] ||
eth_mask->dst.addr_bytes[j] != 0xFF) {
memset(rule, 0,
sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* When no VLAN, considered as full mask. */
rule->mask.vlan_tci_mask = rte_cpu_to_be_16(0xEFFF);
}
/*** If both spec and mask are item,
* it means don't care about ETH.
* Do nothing.
*/
/**
* Check if the next not void item is vlan or ipv4.
* IPv6 is not supported.
*/
item = next_no_fuzzy_pattern(pattern, item);
if (rule->mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
if (item->type != RTE_FLOW_ITEM_TYPE_VLAN) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
} else {
if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_VLAN) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
}
/* Get the IPV4 info. */
if (item->type == RTE_FLOW_ITEM_TYPE_IPV4) {
/**
* Set the flow type even if there's no content
* as we must have a flow type.
*/
rule->input.flow_type = TXGBE_ATR_FLOW_TYPE_IPV4;
ptype = txgbe_ptype_table[TXGBE_PT_IPV4];
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/**
* Only care about src & dst addresses,
* others should be masked.
*/
if (!item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->b_mask = TRUE;
ipv4_mask = item->mask;
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.type_of_service ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.fragment_offset ||
ipv4_mask->hdr.time_to_live ||
ipv4_mask->hdr.next_proto_id ||
ipv4_mask->hdr.hdr_checksum) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->mask.dst_ipv4_mask = ipv4_mask->hdr.dst_addr;
rule->mask.src_ipv4_mask = ipv4_mask->hdr.src_addr;
if (item->spec) {
rule->b_spec = TRUE;
ipv4_spec = item->spec;
rule->input.dst_ip[0] =
ipv4_spec->hdr.dst_addr;
rule->input.src_ip[0] =
ipv4_spec->hdr.src_addr;
}
/**
* Check if the next not void item is
* TCP or UDP or SCTP or END.
*/
item = next_no_fuzzy_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_TCP &&
item->type != RTE_FLOW_ITEM_TYPE_UDP &&
item->type != RTE_FLOW_ITEM_TYPE_SCTP &&
item->type != RTE_FLOW_ITEM_TYPE_END &&
item->type != RTE_FLOW_ITEM_TYPE_RAW) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* Get the IPV6 info. */
if (item->type == RTE_FLOW_ITEM_TYPE_IPV6) {
/**
* Set the flow type even if there's no content
* as we must have a flow type.
*/
rule->input.flow_type = TXGBE_ATR_FLOW_TYPE_IPV6;
ptype = txgbe_ptype_table[TXGBE_PT_IPV6];
/**
* 1. must signature match
* 2. not support last
* 3. mask must not null
*/
if (rule->mode != RTE_FDIR_MODE_SIGNATURE ||
item->last ||
!item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
rule->b_mask = TRUE;
ipv6_mask = item->mask;
if (ipv6_mask->hdr.vtc_flow ||
ipv6_mask->hdr.payload_len ||
ipv6_mask->hdr.proto ||
ipv6_mask->hdr.hop_limits) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/* check src addr mask */
for (j = 0; j < 16; j++) {
if (ipv6_mask->hdr.src_addr[j] == UINT8_MAX) {
rule->mask.src_ipv6_mask |= 1 << j;
} else if (ipv6_mask->hdr.src_addr[j] != 0) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* check dst addr mask */
for (j = 0; j < 16; j++) {
if (ipv6_mask->hdr.dst_addr[j] == UINT8_MAX) {
rule->mask.dst_ipv6_mask |= 1 << j;
} else if (ipv6_mask->hdr.dst_addr[j] != 0) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
if (item->spec) {
rule->b_spec = TRUE;
ipv6_spec = item->spec;
rte_memcpy(rule->input.src_ip,
ipv6_spec->hdr.src_addr, 16);
rte_memcpy(rule->input.dst_ip,
ipv6_spec->hdr.dst_addr, 16);
}
/**
* Check if the next not void item is
* TCP or UDP or SCTP or END.
*/
item = next_no_fuzzy_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_TCP &&
item->type != RTE_FLOW_ITEM_TYPE_UDP &&
item->type != RTE_FLOW_ITEM_TYPE_SCTP &&
item->type != RTE_FLOW_ITEM_TYPE_END &&
item->type != RTE_FLOW_ITEM_TYPE_RAW) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* Get the TCP info. */
if (item->type == RTE_FLOW_ITEM_TYPE_TCP) {
/**
* Set the flow type even if there's no content
* as we must have a flow type.
*/
rule->input.flow_type |= TXGBE_ATR_L4TYPE_TCP;
ptype = txgbe_ptype_table[TXGBE_PT_IPV4_TCP];
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/**
* Only care about src & dst ports,
* others should be masked.
*/
if (!item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->b_mask = TRUE;
tcp_mask = item->mask;
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.tcp_flags ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->mask.src_port_mask = tcp_mask->hdr.src_port;
rule->mask.dst_port_mask = tcp_mask->hdr.dst_port;
if (item->spec) {
rule->b_spec = TRUE;
tcp_spec = item->spec;
rule->input.src_port =
tcp_spec->hdr.src_port;
rule->input.dst_port =
tcp_spec->hdr.dst_port;
}
item = next_no_fuzzy_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_RAW &&
item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* Get the UDP info */
if (item->type == RTE_FLOW_ITEM_TYPE_UDP) {
/**
* Set the flow type even if there's no content
* as we must have a flow type.
*/
rule->input.flow_type |= TXGBE_ATR_L4TYPE_UDP;
ptype = txgbe_ptype_table[TXGBE_PT_IPV4_UDP];
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/**
* Only care about src & dst ports,
* others should be masked.
*/
if (!item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->b_mask = TRUE;
udp_mask = item->mask;
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->mask.src_port_mask = udp_mask->hdr.src_port;
rule->mask.dst_port_mask = udp_mask->hdr.dst_port;
if (item->spec) {
rule->b_spec = TRUE;
udp_spec = item->spec;
rule->input.src_port =
udp_spec->hdr.src_port;
rule->input.dst_port =
udp_spec->hdr.dst_port;
}
item = next_no_fuzzy_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_RAW &&
item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* Get the SCTP info */
if (item->type == RTE_FLOW_ITEM_TYPE_SCTP) {
/**
* Set the flow type even if there's no content
* as we must have a flow type.
*/
rule->input.flow_type |= TXGBE_ATR_L4TYPE_SCTP;
ptype = txgbe_ptype_table[TXGBE_PT_IPV4_SCTP];
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/**
* Only care about src & dst ports,
* others should be masked.
*/
if (!item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->b_mask = TRUE;
sctp_mask = item->mask;
if (sctp_mask->hdr.tag ||
sctp_mask->hdr.cksum) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->mask.src_port_mask = sctp_mask->hdr.src_port;
rule->mask.dst_port_mask = sctp_mask->hdr.dst_port;
if (item->spec) {
rule->b_spec = TRUE;
sctp_spec = item->spec;
rule->input.src_port =
sctp_spec->hdr.src_port;
rule->input.dst_port =
sctp_spec->hdr.dst_port;
}
/* others even sctp port is not supported */
sctp_mask = item->mask;
if (sctp_mask &&
(sctp_mask->hdr.src_port ||
sctp_mask->hdr.dst_port ||
sctp_mask->hdr.tag ||
sctp_mask->hdr.cksum)) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
item = next_no_fuzzy_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_RAW &&
item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* Get the flex byte info */
if (item->type == RTE_FLOW_ITEM_TYPE_RAW) {
/* Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* mask should not be null */
if (!item->mask || !item->spec) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
raw_mask = item->mask;
/* check mask */
if (raw_mask->relative != 0x1 ||
raw_mask->search != 0x1 ||
raw_mask->reserved != 0x0 ||
(uint32_t)raw_mask->offset != 0xffffffff ||
raw_mask->limit != 0xffff ||
raw_mask->length != 0xffff) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
raw_spec = item->spec;
/* check spec */
if (raw_spec->relative != 0 ||
raw_spec->search != 0 ||
raw_spec->reserved != 0 ||
raw_spec->offset > TXGBE_MAX_FLX_SOURCE_OFF ||
raw_spec->offset % 2 ||
raw_spec->limit != 0 ||
raw_spec->length != 2 ||
/* pattern can't be 0xffff */
(raw_spec->pattern[0] == 0xff &&
raw_spec->pattern[1] == 0xff)) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/* check pattern mask */
if (raw_mask->pattern[0] != 0xff ||
raw_mask->pattern[1] != 0xff) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->mask.flex_bytes_mask = 0xffff;
rule->input.flex_bytes =
(((uint16_t)raw_spec->pattern[1]) << 8) |
raw_spec->pattern[0];
rule->flex_bytes_offset = raw_spec->offset;
}
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
/* check if the next not void item is END */
item = next_no_fuzzy_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
rule->input.pkt_type = cpu_to_be16(txgbe_encode_ptype(ptype));
return txgbe_parse_fdir_act_attr(attr, actions, rule, error);
}
/**
* Parse the rule to see if it is a VxLAN or NVGRE flow director rule.
* And get the flow director filter info BTW.
* VxLAN PATTERN:
* The first not void item must be ETH.
* The second not void item must be IPV4/ IPV6.
* The third not void item must be NVGRE.
* The next not void item must be END.
* NVGRE PATTERN:
* The first not void item must be ETH.
* The second not void item must be IPV4/ IPV6.
* The third not void item must be NVGRE.
* The next not void item must be END.
* ACTION:
* The first not void action should be QUEUE or DROP.
* The second not void optional action should be MARK,
* mark_id is a uint32_t number.
* The next not void action should be END.
* VxLAN pattern example:
* ITEM Spec Mask
* ETH NULL NULL
* IPV4/IPV6 NULL NULL
* UDP NULL NULL
* VxLAN vni{0x00, 0x32, 0x54} {0xFF, 0xFF, 0xFF}
* MAC VLAN tci 0x2016 0xEFFF
* END
* NEGRV pattern example:
* ITEM Spec Mask
* ETH NULL NULL
* IPV4/IPV6 NULL NULL
* NVGRE protocol 0x6558 0xFFFF
* tni{0x00, 0x32, 0x54} {0xFF, 0xFF, 0xFF}
* MAC VLAN tci 0x2016 0xEFFF
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*/
static int
txgbe_parse_fdir_filter_tunnel(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct txgbe_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_item_eth *eth_mask;
uint32_t j;
if (!pattern) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
/**
* Some fields may not be provided. Set spec to 0 and mask to default
* value. So, we need not do anything for the not provided fields later.
*/
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
memset(&rule->mask, 0xFF, sizeof(struct txgbe_hw_fdir_mask));
rule->mask.vlan_tci_mask = 0;
/**
* The first not void item should be
* MAC or IPv4 or IPv6 or UDP or VxLAN.
*/
item = next_no_void_pattern(pattern, NULL);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH &&
item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_IPV6 &&
item->type != RTE_FLOW_ITEM_TYPE_UDP &&
item->type != RTE_FLOW_ITEM_TYPE_VXLAN &&
item->type != RTE_FLOW_ITEM_TYPE_NVGRE) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
rule->mode = RTE_FDIR_MODE_PERFECT_TUNNEL;
/* Skip MAC. */
if (item->type == RTE_FLOW_ITEM_TYPE_ETH) {
/* Only used to describe the protocol stack. */
if (item->spec || item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/* Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* Check if the next not void item is IPv4 or IPv6. */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_IPV6) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* Skip IP. */
if (item->type == RTE_FLOW_ITEM_TYPE_IPV4 ||
item->type == RTE_FLOW_ITEM_TYPE_IPV6) {
/* Only used to describe the protocol stack. */
if (item->spec || item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* Check if the next not void item is UDP or NVGRE. */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_UDP &&
item->type != RTE_FLOW_ITEM_TYPE_NVGRE) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* Skip UDP. */
if (item->type == RTE_FLOW_ITEM_TYPE_UDP) {
/* Only used to describe the protocol stack. */
if (item->spec || item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* Check if the next not void item is VxLAN. */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_VXLAN) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* check if the next not void item is MAC */
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/**
* Only support vlan and dst MAC address,
* others should be masked.
*/
if (!item->mask) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
rule->b_mask = TRUE;
eth_mask = item->mask;
/* Ether type should be masked. */
if (eth_mask->type) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/* src MAC address should be masked. */
for (j = 0; j < RTE_ETHER_ADDR_LEN; j++) {
if (eth_mask->src.addr_bytes[j]) {
memset(rule, 0,
sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
rule->mask.mac_addr_byte_mask = 0;
for (j = 0; j < ETH_ADDR_LEN; j++) {
/* It's a per byte mask. */
if (eth_mask->dst.addr_bytes[j] == 0xFF) {
rule->mask.mac_addr_byte_mask |= 0x1 << j;
} else if (eth_mask->dst.addr_bytes[j]) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
}
/* When no vlan, considered as full mask. */
rule->mask.vlan_tci_mask = rte_cpu_to_be_16(0xEFFF);
/**
* Check if the next not void item is vlan or ipv4.
* IPv6 is not supported.
*/
item = next_no_void_pattern(pattern, item);
if (item->type != RTE_FLOW_ITEM_TYPE_VLAN &&
item->type != RTE_FLOW_ITEM_TYPE_IPV4) {
memset(rule, 0, sizeof(struct txgbe_fdir_rule));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by fdir filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/**
* If the tags is 0, it means don't care about the VLAN.
* Do nothing.
*/
return txgbe_parse_fdir_act_attr(attr, actions, rule, error);
}
static int
txgbe_parse_fdir_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct txgbe_fdir_rule *rule,
struct rte_flow_error *error)
{
int ret;
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
enum rte_fdir_mode fdir_mode = dev->data->dev_conf.fdir_conf.mode;
ret = txgbe_parse_fdir_filter_normal(dev, attr, pattern,
actions, rule, error);
if (!ret)
goto step_next;
ret = txgbe_parse_fdir_filter_tunnel(attr, pattern,
actions, rule, error);
if (ret)
return ret;
step_next:
if (hw->mac.type == txgbe_mac_raptor &&
rule->fdirflags == TXGBE_FDIRPICMD_DROP &&
(rule->input.src_port != 0 || rule->input.dst_port != 0))
return -ENOTSUP;
if (fdir_mode == RTE_FDIR_MODE_NONE ||
fdir_mode != rule->mode)
return -ENOTSUP;
if (rule->queue >= dev->data->nb_rx_queues)
return -ENOTSUP;
return ret;
}
static int
txgbe_parse_rss_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_action actions[],
struct txgbe_rte_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
const struct rte_flow_action *act;
const struct rte_flow_action_rss *rss;
uint16_t n;
/**
* rss only supports forwarding,
* check if the first not void action is RSS.
*/
act = next_no_void_action(actions, NULL);
if (act->type != RTE_FLOW_ACTION_TYPE_RSS) {
memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
rss = (const struct rte_flow_action_rss *)act->conf;
if (!rss || !rss->queue_num) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"no valid queues");
return -rte_errno;
}
for (n = 0; n < rss->queue_num; n++) {
if (rss->queue[n] >= dev->data->nb_rx_queues) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"queue id > max number of queues");
return -rte_errno;
}
}
if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT)
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act,
"non-default RSS hash functions are not supported");
if (rss->level)
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act,
"a nonzero RSS encapsulation level is not supported");
if (rss->key_len && rss->key_len != RTE_DIM(rss_conf->key))
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act,
"RSS hash key must be exactly 40 bytes");
if (rss->queue_num > RTE_DIM(rss_conf->queue))
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act,
"too many queues for RSS context");
if (txgbe_rss_conf_init(rss_conf, rss))
return rte_flow_error_set
(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act,
"RSS context initialization failure");
/* check if the next not void item is END */
act = next_no_void_action(actions, act);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* not supported */
if (attr->egress) {
memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* not supported */
if (attr->transfer) {
memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
if (attr->priority > 0xFFFF) {
memset(rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Error priority.");
return -rte_errno;
}
return 0;
}
/* remove the rss filter */
static void
txgbe_clear_rss_filter(struct rte_eth_dev *dev)
{
struct txgbe_filter_info *filter_info = TXGBE_DEV_FILTER(dev);
if (filter_info->rss_info.conf.queue_num)
txgbe_config_rss_filter(dev, &filter_info->rss_info, FALSE);
}
void
txgbe_filterlist_init(void)
{
TAILQ_INIT(&filter_ntuple_list);
TAILQ_INIT(&filter_ethertype_list);
TAILQ_INIT(&filter_syn_list);
TAILQ_INIT(&filter_fdir_list);
TAILQ_INIT(&filter_l2_tunnel_list);
TAILQ_INIT(&filter_rss_list);
TAILQ_INIT(&txgbe_flow_list);
}
void
txgbe_filterlist_flush(void)
{
struct txgbe_ntuple_filter_ele *ntuple_filter_ptr;
struct txgbe_ethertype_filter_ele *ethertype_filter_ptr;
struct txgbe_eth_syn_filter_ele *syn_filter_ptr;
struct txgbe_eth_l2_tunnel_conf_ele *l2_tn_filter_ptr;
struct txgbe_fdir_rule_ele *fdir_rule_ptr;
struct txgbe_flow_mem *txgbe_flow_mem_ptr;
struct txgbe_rss_conf_ele *rss_filter_ptr;
while ((ntuple_filter_ptr = TAILQ_FIRST(&filter_ntuple_list))) {
TAILQ_REMOVE(&filter_ntuple_list,
ntuple_filter_ptr,
entries);
rte_free(ntuple_filter_ptr);
}
while ((ethertype_filter_ptr = TAILQ_FIRST(&filter_ethertype_list))) {
TAILQ_REMOVE(&filter_ethertype_list,
ethertype_filter_ptr,
entries);
rte_free(ethertype_filter_ptr);
}
while ((syn_filter_ptr = TAILQ_FIRST(&filter_syn_list))) {
TAILQ_REMOVE(&filter_syn_list,
syn_filter_ptr,
entries);
rte_free(syn_filter_ptr);
}
while ((l2_tn_filter_ptr = TAILQ_FIRST(&filter_l2_tunnel_list))) {
TAILQ_REMOVE(&filter_l2_tunnel_list,
l2_tn_filter_ptr,
entries);
rte_free(l2_tn_filter_ptr);
}
while ((fdir_rule_ptr = TAILQ_FIRST(&filter_fdir_list))) {
TAILQ_REMOVE(&filter_fdir_list,
fdir_rule_ptr,
entries);
rte_free(fdir_rule_ptr);
}
while ((rss_filter_ptr = TAILQ_FIRST(&filter_rss_list))) {
TAILQ_REMOVE(&filter_rss_list,
rss_filter_ptr,
entries);
rte_free(rss_filter_ptr);
}
while ((txgbe_flow_mem_ptr = TAILQ_FIRST(&txgbe_flow_list))) {
TAILQ_REMOVE(&txgbe_flow_list,
txgbe_flow_mem_ptr,
entries);
rte_free(txgbe_flow_mem_ptr->flow);
rte_free(txgbe_flow_mem_ptr);
}
}
/**
* Create or destroy a flow rule.
* Theorically one rule can match more than one filters.
* We will let it use the filter which it hit first.
* So, the sequence matters.
*/
static struct rte_flow *
txgbe_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
int ret;
struct rte_eth_ntuple_filter ntuple_filter;
struct rte_eth_ethertype_filter ethertype_filter;
struct rte_eth_syn_filter syn_filter;
struct txgbe_fdir_rule fdir_rule;
struct txgbe_l2_tunnel_conf l2_tn_filter;
struct txgbe_hw_fdir_info *fdir_info = TXGBE_DEV_FDIR(dev);
struct txgbe_rte_flow_rss_conf rss_conf;
struct rte_flow *flow = NULL;
struct txgbe_ntuple_filter_ele *ntuple_filter_ptr;
struct txgbe_ethertype_filter_ele *ethertype_filter_ptr;
struct txgbe_eth_syn_filter_ele *syn_filter_ptr;
struct txgbe_eth_l2_tunnel_conf_ele *l2_tn_filter_ptr;
struct txgbe_fdir_rule_ele *fdir_rule_ptr;
struct txgbe_rss_conf_ele *rss_filter_ptr;
struct txgbe_flow_mem *txgbe_flow_mem_ptr;
uint8_t first_mask = FALSE;
flow = rte_zmalloc("txgbe_rte_flow", sizeof(struct rte_flow), 0);
if (!flow) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return (struct rte_flow *)flow;
}
txgbe_flow_mem_ptr = rte_zmalloc("txgbe_flow_mem",
sizeof(struct txgbe_flow_mem), 0);
if (!txgbe_flow_mem_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
rte_free(flow);
return NULL;
}
txgbe_flow_mem_ptr->flow = flow;
TAILQ_INSERT_TAIL(&txgbe_flow_list,
txgbe_flow_mem_ptr, entries);
memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter));
ret = txgbe_parse_ntuple_filter(dev, attr, pattern,
actions, &ntuple_filter, error);
#ifdef RTE_LIB_SECURITY
/* ESP flow not really a flow*/
if (ntuple_filter.proto == IPPROTO_ESP)
return flow;
#endif
if (!ret) {
ret = txgbe_add_del_ntuple_filter(dev, &ntuple_filter, TRUE);
if (!ret) {
ntuple_filter_ptr = rte_zmalloc("txgbe_ntuple_filter",
sizeof(struct txgbe_ntuple_filter_ele), 0);
if (!ntuple_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
rte_memcpy(&ntuple_filter_ptr->filter_info,
&ntuple_filter,
sizeof(struct rte_eth_ntuple_filter));
TAILQ_INSERT_TAIL(&filter_ntuple_list,
ntuple_filter_ptr, entries);
flow->rule = ntuple_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_NTUPLE;
return flow;
}
goto out;
}
memset(&ethertype_filter, 0, sizeof(struct rte_eth_ethertype_filter));
ret = txgbe_parse_ethertype_filter(dev, attr, pattern,
actions, &ethertype_filter, error);
if (!ret) {
ret = txgbe_add_del_ethertype_filter(dev,
&ethertype_filter, TRUE);
if (!ret) {
ethertype_filter_ptr =
rte_zmalloc("txgbe_ethertype_filter",
sizeof(struct txgbe_ethertype_filter_ele), 0);
if (!ethertype_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
rte_memcpy(&ethertype_filter_ptr->filter_info,
&ethertype_filter,
sizeof(struct rte_eth_ethertype_filter));
TAILQ_INSERT_TAIL(&filter_ethertype_list,
ethertype_filter_ptr, entries);
flow->rule = ethertype_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_ETHERTYPE;
return flow;
}
goto out;
}
memset(&syn_filter, 0, sizeof(struct rte_eth_syn_filter));
ret = txgbe_parse_syn_filter(dev, attr, pattern,
actions, &syn_filter, error);
if (!ret) {
ret = txgbe_syn_filter_set(dev, &syn_filter, TRUE);
if (!ret) {
syn_filter_ptr = rte_zmalloc("txgbe_syn_filter",
sizeof(struct txgbe_eth_syn_filter_ele), 0);
if (!syn_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
rte_memcpy(&syn_filter_ptr->filter_info,
&syn_filter,
sizeof(struct rte_eth_syn_filter));
TAILQ_INSERT_TAIL(&filter_syn_list,
syn_filter_ptr,
entries);
flow->rule = syn_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_SYN;
return flow;
}
goto out;
}
memset(&fdir_rule, 0, sizeof(struct txgbe_fdir_rule));
ret = txgbe_parse_fdir_filter(dev, attr, pattern,
actions, &fdir_rule, error);
if (!ret) {
/* A mask cannot be deleted. */
if (fdir_rule.b_mask) {
if (!fdir_info->mask_added) {
/* It's the first time the mask is set. */
rte_memcpy(&fdir_info->mask,
&fdir_rule.mask,
sizeof(struct txgbe_hw_fdir_mask));
fdir_info->flex_bytes_offset =
fdir_rule.flex_bytes_offset;
if (fdir_rule.mask.flex_bytes_mask)
txgbe_fdir_set_flexbytes_offset(dev,
fdir_rule.flex_bytes_offset);
ret = txgbe_fdir_set_input_mask(dev);
if (ret)
goto out;
fdir_info->mask_added = TRUE;
first_mask = TRUE;
} else {
/**
* Only support one global mask,
* all the masks should be the same.
*/
ret = memcmp(&fdir_info->mask,
&fdir_rule.mask,
sizeof(struct txgbe_hw_fdir_mask));
if (ret)
goto out;
if (fdir_info->flex_bytes_offset !=
fdir_rule.flex_bytes_offset)
goto out;
}
}
if (fdir_rule.b_spec) {
ret = txgbe_fdir_filter_program(dev, &fdir_rule,
FALSE, FALSE);
if (!ret) {
fdir_rule_ptr = rte_zmalloc("txgbe_fdir_filter",
sizeof(struct txgbe_fdir_rule_ele), 0);
if (!fdir_rule_ptr) {
PMD_DRV_LOG(ERR,
"failed to allocate memory");
goto out;
}
rte_memcpy(&fdir_rule_ptr->filter_info,
&fdir_rule,
sizeof(struct txgbe_fdir_rule));
TAILQ_INSERT_TAIL(&filter_fdir_list,
fdir_rule_ptr, entries);
flow->rule = fdir_rule_ptr;
flow->filter_type = RTE_ETH_FILTER_FDIR;
return flow;
}
if (ret) {
/**
* clean the mask_added flag if fail to
* program
**/
if (first_mask)
fdir_info->mask_added = FALSE;
goto out;
}
}
goto out;
}
memset(&l2_tn_filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
ret = txgbe_parse_l2_tn_filter(dev, attr, pattern,
actions, &l2_tn_filter, error);
if (!ret) {
ret = txgbe_dev_l2_tunnel_filter_add(dev, &l2_tn_filter, FALSE);
if (!ret) {
l2_tn_filter_ptr = rte_zmalloc("txgbe_l2_tn_filter",
sizeof(struct txgbe_eth_l2_tunnel_conf_ele), 0);
if (!l2_tn_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
rte_memcpy(&l2_tn_filter_ptr->filter_info,
&l2_tn_filter,
sizeof(struct txgbe_l2_tunnel_conf));
TAILQ_INSERT_TAIL(&filter_l2_tunnel_list,
l2_tn_filter_ptr, entries);
flow->rule = l2_tn_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_L2_TUNNEL;
return flow;
}
}
memset(&rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf));
ret = txgbe_parse_rss_filter(dev, attr,
actions, &rss_conf, error);
if (!ret) {
ret = txgbe_config_rss_filter(dev, &rss_conf, TRUE);
if (!ret) {
rss_filter_ptr = rte_zmalloc("txgbe_rss_filter",
sizeof(struct txgbe_rss_conf_ele), 0);
if (!rss_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
txgbe_rss_conf_init(&rss_filter_ptr->filter_info,
&rss_conf.conf);
TAILQ_INSERT_TAIL(&filter_rss_list,
rss_filter_ptr, entries);
flow->rule = rss_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_HASH;
return flow;
}
}
out:
TAILQ_REMOVE(&txgbe_flow_list,
txgbe_flow_mem_ptr, entries);
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow.");
rte_free(txgbe_flow_mem_ptr);
rte_free(flow);
return NULL;
}
/**
* Check if the flow rule is supported by txgbe.
* It only checks the format. Don't guarantee the rule can be programmed into
* the HW. Because there can be no enough room for the rule.
*/
static int
txgbe_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct rte_eth_ntuple_filter ntuple_filter;
struct rte_eth_ethertype_filter ethertype_filter;
struct rte_eth_syn_filter syn_filter;
struct txgbe_l2_tunnel_conf l2_tn_filter;
struct txgbe_fdir_rule fdir_rule;
struct txgbe_rte_flow_rss_conf rss_conf;
int ret = 0;
memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter));
ret = txgbe_parse_ntuple_filter(dev, attr, pattern,
actions, &ntuple_filter, error);
if (!ret)
return 0;
memset(&ethertype_filter, 0, sizeof(struct rte_eth_ethertype_filter));
ret = txgbe_parse_ethertype_filter(dev, attr, pattern,
actions, &ethertype_filter, error);
if (!ret)
return 0;
memset(&syn_filter, 0, sizeof(struct rte_eth_syn_filter));
ret = txgbe_parse_syn_filter(dev, attr, pattern,
actions, &syn_filter, error);
if (!ret)
return 0;
memset(&fdir_rule, 0, sizeof(struct txgbe_fdir_rule));
ret = txgbe_parse_fdir_filter(dev, attr, pattern,
actions, &fdir_rule, error);
if (!ret)
return 0;
memset(&l2_tn_filter, 0, sizeof(struct txgbe_l2_tunnel_conf));
ret = txgbe_parse_l2_tn_filter(dev, attr, pattern,
actions, &l2_tn_filter, error);
if (!ret)
return 0;
memset(&rss_conf, 0, sizeof(struct txgbe_rte_flow_rss_conf));
ret = txgbe_parse_rss_filter(dev, attr,
actions, &rss_conf, error);
return ret;
}
/* Destroy a flow rule on txgbe. */
static int
txgbe_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error)
{
int ret = 0;
struct rte_flow *pmd_flow = flow;
enum rte_filter_type filter_type = pmd_flow->filter_type;
struct rte_eth_ntuple_filter ntuple_filter;
struct rte_eth_ethertype_filter ethertype_filter;
struct rte_eth_syn_filter syn_filter;
struct txgbe_fdir_rule fdir_rule;
struct txgbe_l2_tunnel_conf l2_tn_filter;
struct txgbe_ntuple_filter_ele *ntuple_filter_ptr;
struct txgbe_ethertype_filter_ele *ethertype_filter_ptr;
struct txgbe_eth_syn_filter_ele *syn_filter_ptr;
struct txgbe_eth_l2_tunnel_conf_ele *l2_tn_filter_ptr;
struct txgbe_fdir_rule_ele *fdir_rule_ptr;
struct txgbe_flow_mem *txgbe_flow_mem_ptr;
struct txgbe_hw_fdir_info *fdir_info = TXGBE_DEV_FDIR(dev);
struct txgbe_rss_conf_ele *rss_filter_ptr;
switch (filter_type) {
case RTE_ETH_FILTER_NTUPLE:
ntuple_filter_ptr = (struct txgbe_ntuple_filter_ele *)
pmd_flow->rule;
rte_memcpy(&ntuple_filter,
&ntuple_filter_ptr->filter_info,
sizeof(struct rte_eth_ntuple_filter));
ret = txgbe_add_del_ntuple_filter(dev, &ntuple_filter, FALSE);
if (!ret) {
TAILQ_REMOVE(&filter_ntuple_list,
ntuple_filter_ptr, entries);
rte_free(ntuple_filter_ptr);
}
break;
case RTE_ETH_FILTER_ETHERTYPE:
ethertype_filter_ptr = (struct txgbe_ethertype_filter_ele *)
pmd_flow->rule;
rte_memcpy(&ethertype_filter,
&ethertype_filter_ptr->filter_info,
sizeof(struct rte_eth_ethertype_filter));
ret = txgbe_add_del_ethertype_filter(dev,
&ethertype_filter, FALSE);
if (!ret) {
TAILQ_REMOVE(&filter_ethertype_list,
ethertype_filter_ptr, entries);
rte_free(ethertype_filter_ptr);
}
break;
case RTE_ETH_FILTER_SYN:
syn_filter_ptr = (struct txgbe_eth_syn_filter_ele *)
pmd_flow->rule;
rte_memcpy(&syn_filter,
&syn_filter_ptr->filter_info,
sizeof(struct rte_eth_syn_filter));
ret = txgbe_syn_filter_set(dev, &syn_filter, FALSE);
if (!ret) {
TAILQ_REMOVE(&filter_syn_list,
syn_filter_ptr, entries);
rte_free(syn_filter_ptr);
}
break;
case RTE_ETH_FILTER_FDIR:
fdir_rule_ptr = (struct txgbe_fdir_rule_ele *)pmd_flow->rule;
rte_memcpy(&fdir_rule,
&fdir_rule_ptr->filter_info,
sizeof(struct txgbe_fdir_rule));
ret = txgbe_fdir_filter_program(dev, &fdir_rule, TRUE, FALSE);
if (!ret) {
TAILQ_REMOVE(&filter_fdir_list,
fdir_rule_ptr, entries);
rte_free(fdir_rule_ptr);
if (TAILQ_EMPTY(&filter_fdir_list))
fdir_info->mask_added = false;
}
break;
case RTE_ETH_FILTER_L2_TUNNEL:
l2_tn_filter_ptr = (struct txgbe_eth_l2_tunnel_conf_ele *)
pmd_flow->rule;
rte_memcpy(&l2_tn_filter, &l2_tn_filter_ptr->filter_info,
sizeof(struct txgbe_l2_tunnel_conf));
ret = txgbe_dev_l2_tunnel_filter_del(dev, &l2_tn_filter);
if (!ret) {
TAILQ_REMOVE(&filter_l2_tunnel_list,
l2_tn_filter_ptr, entries);
rte_free(l2_tn_filter_ptr);
}
break;
case RTE_ETH_FILTER_HASH:
rss_filter_ptr = (struct txgbe_rss_conf_ele *)
pmd_flow->rule;
ret = txgbe_config_rss_filter(dev,
&rss_filter_ptr->filter_info, FALSE);
if (!ret) {
TAILQ_REMOVE(&filter_rss_list,
rss_filter_ptr, entries);
rte_free(rss_filter_ptr);
}
break;
default:
PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
filter_type);
ret = -EINVAL;
break;
}
if (ret) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to destroy flow");
return ret;
}
TAILQ_FOREACH(txgbe_flow_mem_ptr, &txgbe_flow_list, entries) {
if (txgbe_flow_mem_ptr->flow == pmd_flow) {
TAILQ_REMOVE(&txgbe_flow_list,
txgbe_flow_mem_ptr, entries);
rte_free(txgbe_flow_mem_ptr);
}
}
rte_free(flow);
return ret;
}
/* Destroy all flow rules associated with a port on txgbe. */
static int
txgbe_flow_flush(struct rte_eth_dev *dev,
struct rte_flow_error *error)
{
int ret = 0;
txgbe_clear_all_ntuple_filter(dev);
txgbe_clear_all_ethertype_filter(dev);
txgbe_clear_syn_filter(dev);
ret = txgbe_clear_all_fdir_filter(dev);
if (ret < 0) {
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to flush rule");
return ret;
}
ret = txgbe_clear_all_l2_tn_filter(dev);
if (ret < 0) {
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to flush rule");
return ret;
}
txgbe_clear_rss_filter(dev);
txgbe_filterlist_flush();
return 0;
}
const struct rte_flow_ops txgbe_flow_ops = {
.validate = txgbe_flow_validate,
.create = txgbe_flow_create,
.destroy = txgbe_flow_destroy,
.flush = txgbe_flow_flush,
};