numam-dpdk/drivers/net/mlx4/mlx4.c
Adrien Mazarguil 3d555728c9 net/mlx4: separate Rx/Tx definitions
Except for a minor documentation update on internal structure definitions
to make them more Doxygen-friendly, there is no impact on functionality.

Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
2017-10-06 02:49:48 +02:00

3037 lines
74 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2012 6WIND S.A.
* Copyright 2012 Mellanox
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* System headers. */
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <assert.h>
#include <net/if.h>
#include <dirent.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <linux/ethtool.h>
#include <linux/sockios.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ethdev_pci.h>
#include <rte_dev.h>
#include <rte_mbuf.h>
#include <rte_errno.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_flow.h>
#include <rte_kvargs.h>
#include <rte_interrupts.h>
#include <rte_branch_prediction.h>
#include <rte_common.h>
/* Generated configuration header. */
#include "mlx4_autoconf.h"
/* PMD headers. */
#include "mlx4.h"
#include "mlx4_flow.h"
#include "mlx4_rxtx.h"
#include "mlx4_utils.h"
/** Configuration structure for device arguments. */
struct mlx4_conf {
struct {
uint32_t present; /**< Bit-field for existing ports. */
uint32_t enabled; /**< Bit-field for user-enabled ports. */
} ports;
};
/* Available parameters list. */
const char *pmd_mlx4_init_params[] = {
MLX4_PMD_PORT_KVARG,
NULL,
};
/* Allocate a buffer on the stack and fill it with a printf format string. */
#define MKSTR(name, ...) \
char name[snprintf(NULL, 0, __VA_ARGS__) + 1]; \
\
snprintf(name, sizeof(name), __VA_ARGS__)
/**
* Get interface name from private structure.
*
* @param[in] priv
* Pointer to private structure.
* @param[out] ifname
* Interface name output buffer.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
priv_get_ifname(const struct priv *priv, char (*ifname)[IF_NAMESIZE])
{
DIR *dir;
struct dirent *dent;
unsigned int dev_type = 0;
unsigned int dev_port_prev = ~0u;
char match[IF_NAMESIZE] = "";
{
MKSTR(path, "%s/device/net", priv->ctx->device->ibdev_path);
dir = opendir(path);
if (dir == NULL) {
rte_errno = errno;
return -rte_errno;
}
}
while ((dent = readdir(dir)) != NULL) {
char *name = dent->d_name;
FILE *file;
unsigned int dev_port;
int r;
if ((name[0] == '.') &&
((name[1] == '\0') ||
((name[1] == '.') && (name[2] == '\0'))))
continue;
MKSTR(path, "%s/device/net/%s/%s",
priv->ctx->device->ibdev_path, name,
(dev_type ? "dev_id" : "dev_port"));
file = fopen(path, "rb");
if (file == NULL) {
if (errno != ENOENT)
continue;
/*
* Switch to dev_id when dev_port does not exist as
* is the case with Linux kernel versions < 3.15.
*/
try_dev_id:
match[0] = '\0';
if (dev_type)
break;
dev_type = 1;
dev_port_prev = ~0u;
rewinddir(dir);
continue;
}
r = fscanf(file, (dev_type ? "%x" : "%u"), &dev_port);
fclose(file);
if (r != 1)
continue;
/*
* Switch to dev_id when dev_port returns the same value for
* all ports. May happen when using a MOFED release older than
* 3.0 with a Linux kernel >= 3.15.
*/
if (dev_port == dev_port_prev)
goto try_dev_id;
dev_port_prev = dev_port;
if (dev_port == (priv->port - 1u))
snprintf(match, sizeof(match), "%s", name);
}
closedir(dir);
if (match[0] == '\0') {
rte_errno = ENODEV;
return -rte_errno;
}
strncpy(*ifname, match, sizeof(*ifname));
return 0;
}
/**
* Read from sysfs entry.
*
* @param[in] priv
* Pointer to private structure.
* @param[in] entry
* Entry name relative to sysfs path.
* @param[out] buf
* Data output buffer.
* @param size
* Buffer size.
*
* @return
* Number of bytes read on success, negative errno value otherwise and
* rte_errno is set.
*/
static int
priv_sysfs_read(const struct priv *priv, const char *entry,
char *buf, size_t size)
{
char ifname[IF_NAMESIZE];
FILE *file;
int ret;
ret = priv_get_ifname(priv, &ifname);
if (ret)
return ret;
MKSTR(path, "%s/device/net/%s/%s", priv->ctx->device->ibdev_path,
ifname, entry);
file = fopen(path, "rb");
if (file == NULL) {
rte_errno = errno;
return -rte_errno;
}
ret = fread(buf, 1, size, file);
if ((size_t)ret < size && ferror(file)) {
rte_errno = EIO;
ret = -rte_errno;
} else {
ret = size;
}
fclose(file);
return ret;
}
/**
* Write to sysfs entry.
*
* @param[in] priv
* Pointer to private structure.
* @param[in] entry
* Entry name relative to sysfs path.
* @param[in] buf
* Data buffer.
* @param size
* Buffer size.
*
* @return
* Number of bytes written on success, negative errno value otherwise and
* rte_errno is set.
*/
static int
priv_sysfs_write(const struct priv *priv, const char *entry,
char *buf, size_t size)
{
char ifname[IF_NAMESIZE];
FILE *file;
int ret;
ret = priv_get_ifname(priv, &ifname);
if (ret)
return ret;
MKSTR(path, "%s/device/net/%s/%s", priv->ctx->device->ibdev_path,
ifname, entry);
file = fopen(path, "wb");
if (file == NULL) {
rte_errno = errno;
return -rte_errno;
}
ret = fwrite(buf, 1, size, file);
if ((size_t)ret < size || ferror(file)) {
rte_errno = EIO;
ret = -rte_errno;
} else {
ret = size;
}
fclose(file);
return ret;
}
/**
* Get unsigned long sysfs property.
*
* @param priv
* Pointer to private structure.
* @param[in] name
* Entry name relative to sysfs path.
* @param[out] value
* Value output buffer.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
priv_get_sysfs_ulong(struct priv *priv, const char *name, unsigned long *value)
{
int ret;
unsigned long value_ret;
char value_str[32];
ret = priv_sysfs_read(priv, name, value_str, (sizeof(value_str) - 1));
if (ret < 0) {
DEBUG("cannot read %s value from sysfs: %s",
name, strerror(rte_errno));
return ret;
}
value_str[ret] = '\0';
errno = 0;
value_ret = strtoul(value_str, NULL, 0);
if (errno) {
rte_errno = errno;
DEBUG("invalid %s value `%s': %s", name, value_str,
strerror(rte_errno));
return -rte_errno;
}
*value = value_ret;
return 0;
}
/**
* Set unsigned long sysfs property.
*
* @param priv
* Pointer to private structure.
* @param[in] name
* Entry name relative to sysfs path.
* @param value
* Value to set.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
priv_set_sysfs_ulong(struct priv *priv, const char *name, unsigned long value)
{
int ret;
MKSTR(value_str, "%lu", value);
ret = priv_sysfs_write(priv, name, value_str, (sizeof(value_str) - 1));
if (ret < 0) {
DEBUG("cannot write %s `%s' (%lu) to sysfs: %s",
name, value_str, value, strerror(rte_errno));
return ret;
}
return 0;
}
/**
* Perform ifreq ioctl() on associated Ethernet device.
*
* @param[in] priv
* Pointer to private structure.
* @param req
* Request number to pass to ioctl().
* @param[out] ifr
* Interface request structure output buffer.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
priv_ifreq(const struct priv *priv, int req, struct ifreq *ifr)
{
int sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
int ret;
if (sock == -1) {
rte_errno = errno;
return -rte_errno;
}
ret = priv_get_ifname(priv, &ifr->ifr_name);
if (!ret && ioctl(sock, req, ifr) == -1) {
rte_errno = errno;
ret = -rte_errno;
}
close(sock);
return ret;
}
/**
* Get device MTU.
*
* @param priv
* Pointer to private structure.
* @param[out] mtu
* MTU value output buffer.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
priv_get_mtu(struct priv *priv, uint16_t *mtu)
{
unsigned long ulong_mtu = 0;
int ret = priv_get_sysfs_ulong(priv, "mtu", &ulong_mtu);
if (ret)
return ret;
*mtu = ulong_mtu;
return 0;
}
/**
* DPDK callback to change the MTU.
*
* @param priv
* Pointer to Ethernet device structure.
* @param mtu
* MTU value to set.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
{
struct priv *priv = dev->data->dev_private;
uint16_t new_mtu;
int ret = priv_set_sysfs_ulong(priv, "mtu", mtu);
if (ret)
return ret;
ret = priv_get_mtu(priv, &new_mtu);
if (ret)
return ret;
if (new_mtu == mtu) {
priv->mtu = mtu;
return 0;
}
rte_errno = EINVAL;
return -rte_errno;
}
/**
* Set device flags.
*
* @param priv
* Pointer to private structure.
* @param keep
* Bitmask for flags that must remain untouched.
* @param flags
* Bitmask for flags to modify.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
priv_set_flags(struct priv *priv, unsigned int keep, unsigned int flags)
{
unsigned long tmp = 0;
int ret = priv_get_sysfs_ulong(priv, "flags", &tmp);
if (ret)
return ret;
tmp &= keep;
tmp |= (flags & (~keep));
return priv_set_sysfs_ulong(priv, "flags", tmp);
}
/* Device configuration. */
static int
txq_setup(struct rte_eth_dev *dev, struct txq *txq, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf);
static void
txq_cleanup(struct txq *txq);
static int
rxq_setup(struct rte_eth_dev *dev, struct rxq *rxq, uint16_t desc,
unsigned int socket, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp);
static void
rxq_cleanup(struct rxq *rxq);
static void
priv_mac_addr_del(struct priv *priv);
/**
* DPDK callback for Ethernet device configuration.
*
* Prepare the driver for a given number of TX and RX queues.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_dev_configure(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int rxqs_n = dev->data->nb_rx_queues;
unsigned int txqs_n = dev->data->nb_tx_queues;
priv->rxqs = (void *)dev->data->rx_queues;
priv->txqs = (void *)dev->data->tx_queues;
if (txqs_n != priv->txqs_n) {
INFO("%p: TX queues number update: %u -> %u",
(void *)dev, priv->txqs_n, txqs_n);
priv->txqs_n = txqs_n;
}
if (rxqs_n != priv->rxqs_n) {
INFO("%p: Rx queues number update: %u -> %u",
(void *)dev, priv->rxqs_n, rxqs_n);
priv->rxqs_n = rxqs_n;
}
return 0;
}
static uint16_t mlx4_tx_burst(void *, struct rte_mbuf **, uint16_t);
static uint16_t removed_rx_burst(void *, struct rte_mbuf **, uint16_t);
/* TX queues handling. */
/**
* Allocate TX queue elements.
*
* @param txq
* Pointer to TX queue structure.
* @param elts_n
* Number of elements to allocate.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
txq_alloc_elts(struct txq *txq, unsigned int elts_n)
{
unsigned int i;
struct txq_elt (*elts)[elts_n] =
rte_calloc_socket("TXQ", 1, sizeof(*elts), 0, txq->socket);
int ret = 0;
if (elts == NULL) {
ERROR("%p: can't allocate packets array", (void *)txq);
ret = ENOMEM;
goto error;
}
for (i = 0; (i != elts_n); ++i) {
struct txq_elt *elt = &(*elts)[i];
elt->buf = NULL;
}
DEBUG("%p: allocated and configured %u WRs", (void *)txq, elts_n);
txq->elts_n = elts_n;
txq->elts = elts;
txq->elts_head = 0;
txq->elts_tail = 0;
txq->elts_comp = 0;
/*
* Request send completion every MLX4_PMD_TX_PER_COMP_REQ packets or
* at least 4 times per ring.
*/
txq->elts_comp_cd_init =
((MLX4_PMD_TX_PER_COMP_REQ < (elts_n / 4)) ?
MLX4_PMD_TX_PER_COMP_REQ : (elts_n / 4));
txq->elts_comp_cd = txq->elts_comp_cd_init;
assert(ret == 0);
return 0;
error:
rte_free(elts);
DEBUG("%p: failed, freed everything", (void *)txq);
assert(ret > 0);
rte_errno = ret;
return -rte_errno;
}
/**
* Free TX queue elements.
*
* @param txq
* Pointer to TX queue structure.
*/
static void
txq_free_elts(struct txq *txq)
{
unsigned int elts_n = txq->elts_n;
unsigned int elts_head = txq->elts_head;
unsigned int elts_tail = txq->elts_tail;
struct txq_elt (*elts)[elts_n] = txq->elts;
DEBUG("%p: freeing WRs", (void *)txq);
txq->elts_n = 0;
txq->elts_head = 0;
txq->elts_tail = 0;
txq->elts_comp = 0;
txq->elts_comp_cd = 0;
txq->elts_comp_cd_init = 0;
txq->elts = NULL;
if (elts == NULL)
return;
while (elts_tail != elts_head) {
struct txq_elt *elt = &(*elts)[elts_tail];
assert(elt->buf != NULL);
rte_pktmbuf_free(elt->buf);
#ifndef NDEBUG
/* Poisoning. */
memset(elt, 0x77, sizeof(*elt));
#endif
if (++elts_tail == elts_n)
elts_tail = 0;
}
rte_free(elts);
}
/**
* Clean up a TX queue.
*
* Destroy objects, free allocated memory and reset the structure for reuse.
*
* @param txq
* Pointer to TX queue structure.
*/
static void
txq_cleanup(struct txq *txq)
{
size_t i;
DEBUG("cleaning up %p", (void *)txq);
txq_free_elts(txq);
if (txq->qp != NULL)
claim_zero(ibv_destroy_qp(txq->qp));
if (txq->cq != NULL)
claim_zero(ibv_destroy_cq(txq->cq));
for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
if (txq->mp2mr[i].mp == NULL)
break;
assert(txq->mp2mr[i].mr != NULL);
claim_zero(ibv_dereg_mr(txq->mp2mr[i].mr));
}
memset(txq, 0, sizeof(*txq));
}
/**
* Manage TX completions.
*
* When sending a burst, mlx4_tx_burst() posts several WRs.
* To improve performance, a completion event is only required once every
* MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
* for other WRs, but this information would not be used anyway.
*
* @param txq
* Pointer to TX queue structure.
*
* @return
* 0 on success, -1 on failure.
*/
static int
txq_complete(struct txq *txq)
{
unsigned int elts_comp = txq->elts_comp;
unsigned int elts_tail = txq->elts_tail;
const unsigned int elts_n = txq->elts_n;
struct ibv_wc wcs[elts_comp];
int wcs_n;
if (unlikely(elts_comp == 0))
return 0;
wcs_n = ibv_poll_cq(txq->cq, elts_comp, wcs);
if (unlikely(wcs_n == 0))
return 0;
if (unlikely(wcs_n < 0)) {
DEBUG("%p: ibv_poll_cq() failed (wcs_n=%d)",
(void *)txq, wcs_n);
return -1;
}
elts_comp -= wcs_n;
assert(elts_comp <= txq->elts_comp);
/*
* Assume WC status is successful as nothing can be done about it
* anyway.
*/
elts_tail += wcs_n * txq->elts_comp_cd_init;
if (elts_tail >= elts_n)
elts_tail -= elts_n;
txq->elts_tail = elts_tail;
txq->elts_comp = elts_comp;
return 0;
}
struct mlx4_check_mempool_data {
int ret;
char *start;
char *end;
};
/* Called by mlx4_check_mempool() when iterating the memory chunks. */
static void mlx4_check_mempool_cb(struct rte_mempool *mp,
void *opaque, struct rte_mempool_memhdr *memhdr,
unsigned mem_idx)
{
struct mlx4_check_mempool_data *data = opaque;
(void)mp;
(void)mem_idx;
/* It already failed, skip the next chunks. */
if (data->ret != 0)
return;
/* It is the first chunk. */
if (data->start == NULL && data->end == NULL) {
data->start = memhdr->addr;
data->end = data->start + memhdr->len;
return;
}
if (data->end == memhdr->addr) {
data->end += memhdr->len;
return;
}
if (data->start == (char *)memhdr->addr + memhdr->len) {
data->start -= memhdr->len;
return;
}
/* Error, mempool is not virtually contigous. */
data->ret = -1;
}
/**
* Check if a mempool can be used: it must be virtually contiguous.
*
* @param[in] mp
* Pointer to memory pool.
* @param[out] start
* Pointer to the start address of the mempool virtual memory area
* @param[out] end
* Pointer to the end address of the mempool virtual memory area
*
* @return
* 0 on success (mempool is virtually contiguous), -1 on error.
*/
static int mlx4_check_mempool(struct rte_mempool *mp, uintptr_t *start,
uintptr_t *end)
{
struct mlx4_check_mempool_data data;
memset(&data, 0, sizeof(data));
rte_mempool_mem_iter(mp, mlx4_check_mempool_cb, &data);
*start = (uintptr_t)data.start;
*end = (uintptr_t)data.end;
return data.ret;
}
/* For best performance, this function should not be inlined. */
static struct ibv_mr *mlx4_mp2mr(struct ibv_pd *, struct rte_mempool *)
__rte_noinline;
/**
* Register mempool as a memory region.
*
* @param pd
* Pointer to protection domain.
* @param mp
* Pointer to memory pool.
*
* @return
* Memory region pointer, NULL in case of error and rte_errno is set.
*/
static struct ibv_mr *
mlx4_mp2mr(struct ibv_pd *pd, struct rte_mempool *mp)
{
const struct rte_memseg *ms = rte_eal_get_physmem_layout();
uintptr_t start;
uintptr_t end;
unsigned int i;
struct ibv_mr *mr;
if (mlx4_check_mempool(mp, &start, &end) != 0) {
rte_errno = EINVAL;
ERROR("mempool %p: not virtually contiguous",
(void *)mp);
return NULL;
}
DEBUG("mempool %p area start=%p end=%p size=%zu",
(void *)mp, (void *)start, (void *)end,
(size_t)(end - start));
/* Round start and end to page boundary if found in memory segments. */
for (i = 0; (i < RTE_MAX_MEMSEG) && (ms[i].addr != NULL); ++i) {
uintptr_t addr = (uintptr_t)ms[i].addr;
size_t len = ms[i].len;
unsigned int align = ms[i].hugepage_sz;
if ((start > addr) && (start < addr + len))
start = RTE_ALIGN_FLOOR(start, align);
if ((end > addr) && (end < addr + len))
end = RTE_ALIGN_CEIL(end, align);
}
DEBUG("mempool %p using start=%p end=%p size=%zu for MR",
(void *)mp, (void *)start, (void *)end,
(size_t)(end - start));
mr = ibv_reg_mr(pd,
(void *)start,
end - start,
IBV_ACCESS_LOCAL_WRITE);
if (!mr)
rte_errno = errno ? errno : EINVAL;
return mr;
}
/**
* Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which
* the cloned mbuf is allocated is returned instead.
*
* @param buf
* Pointer to mbuf.
*
* @return
* Memory pool where data is located for given mbuf.
*/
static struct rte_mempool *
txq_mb2mp(struct rte_mbuf *buf)
{
if (unlikely(RTE_MBUF_INDIRECT(buf)))
return rte_mbuf_from_indirect(buf)->pool;
return buf->pool;
}
/**
* Get Memory Region (MR) <-> Memory Pool (MP) association from txq->mp2mr[].
* Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
* remove an entry first.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] mp
* Memory Pool for which a Memory Region lkey must be returned.
*
* @return
* mr->lkey on success, (uint32_t)-1 on failure.
*/
static uint32_t
txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
{
unsigned int i;
struct ibv_mr *mr;
for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
if (unlikely(txq->mp2mr[i].mp == NULL)) {
/* Unknown MP, add a new MR for it. */
break;
}
if (txq->mp2mr[i].mp == mp) {
assert(txq->mp2mr[i].lkey != (uint32_t)-1);
assert(txq->mp2mr[i].mr->lkey == txq->mp2mr[i].lkey);
return txq->mp2mr[i].lkey;
}
}
/* Add a new entry, register MR first. */
DEBUG("%p: discovered new memory pool \"%s\" (%p)",
(void *)txq, mp->name, (void *)mp);
mr = mlx4_mp2mr(txq->priv->pd, mp);
if (unlikely(mr == NULL)) {
DEBUG("%p: unable to configure MR, ibv_reg_mr() failed.",
(void *)txq);
return (uint32_t)-1;
}
if (unlikely(i == RTE_DIM(txq->mp2mr))) {
/* Table is full, remove oldest entry. */
DEBUG("%p: MR <-> MP table full, dropping oldest entry.",
(void *)txq);
--i;
claim_zero(ibv_dereg_mr(txq->mp2mr[0].mr));
memmove(&txq->mp2mr[0], &txq->mp2mr[1],
(sizeof(txq->mp2mr) - sizeof(txq->mp2mr[0])));
}
/* Store the new entry. */
txq->mp2mr[i].mp = mp;
txq->mp2mr[i].mr = mr;
txq->mp2mr[i].lkey = mr->lkey;
DEBUG("%p: new MR lkey for MP \"%s\" (%p): 0x%08" PRIu32,
(void *)txq, mp->name, (void *)mp, txq->mp2mr[i].lkey);
return txq->mp2mr[i].lkey;
}
struct txq_mp2mr_mbuf_check_data {
int ret;
};
/**
* Callback function for rte_mempool_obj_iter() to check whether a given
* mempool object looks like a mbuf.
*
* @param[in] mp
* The mempool pointer
* @param[in] arg
* Context data (struct txq_mp2mr_mbuf_check_data). Contains the
* return value.
* @param[in] obj
* Object address.
* @param index
* Object index, unused.
*/
static void
txq_mp2mr_mbuf_check(struct rte_mempool *mp, void *arg, void *obj,
uint32_t index __rte_unused)
{
struct txq_mp2mr_mbuf_check_data *data = arg;
struct rte_mbuf *buf = obj;
/*
* Check whether mbuf structure fits element size and whether mempool
* pointer is valid.
*/
if (sizeof(*buf) > mp->elt_size || buf->pool != mp)
data->ret = -1;
}
/**
* Iterator function for rte_mempool_walk() to register existing mempools and
* fill the MP to MR cache of a TX queue.
*
* @param[in] mp
* Memory Pool to register.
* @param *arg
* Pointer to TX queue structure.
*/
static void
txq_mp2mr_iter(struct rte_mempool *mp, void *arg)
{
struct txq *txq = arg;
struct txq_mp2mr_mbuf_check_data data = {
.ret = 0,
};
/* Register mempool only if the first element looks like a mbuf. */
if (rte_mempool_obj_iter(mp, txq_mp2mr_mbuf_check, &data) == 0 ||
data.ret == -1)
return;
txq_mp2mr(txq, mp);
}
/**
* DPDK callback for TX.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static uint16_t
mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
struct ibv_send_wr *wr_head = NULL;
struct ibv_send_wr **wr_next = &wr_head;
struct ibv_send_wr *wr_bad = NULL;
unsigned int elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
unsigned int elts_comp_cd = txq->elts_comp_cd;
unsigned int elts_comp = 0;
unsigned int i;
unsigned int max;
int err;
assert(elts_comp_cd != 0);
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
assert(max >= 1);
assert(max <= elts_n);
/* Always leave one free entry in the ring. */
--max;
if (max == 0)
return 0;
if (max > pkts_n)
max = pkts_n;
for (i = 0; (i != max); ++i) {
struct rte_mbuf *buf = pkts[i];
unsigned int elts_head_next =
(((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
struct txq_elt *elt = &(*txq->elts)[elts_head];
struct ibv_send_wr *wr = &elt->wr;
unsigned int segs = buf->nb_segs;
unsigned int sent_size = 0;
uint32_t send_flags = 0;
/* Clean up old buffer. */
if (likely(elt->buf != NULL)) {
struct rte_mbuf *tmp = elt->buf;
#ifndef NDEBUG
/* Poisoning. */
memset(elt, 0x66, sizeof(*elt));
#endif
/* Faster than rte_pktmbuf_free(). */
do {
struct rte_mbuf *next = tmp->next;
rte_pktmbuf_free_seg(tmp);
tmp = next;
} while (tmp != NULL);
}
/* Request TX completion. */
if (unlikely(--elts_comp_cd == 0)) {
elts_comp_cd = txq->elts_comp_cd_init;
++elts_comp;
send_flags |= IBV_SEND_SIGNALED;
}
if (likely(segs == 1)) {
struct ibv_sge *sge = &elt->sge;
uintptr_t addr;
uint32_t length;
uint32_t lkey;
/* Retrieve buffer information. */
addr = rte_pktmbuf_mtod(buf, uintptr_t);
length = buf->data_len;
/* Retrieve Memory Region key for this memory pool. */
lkey = txq_mp2mr(txq, txq_mb2mp(buf));
if (unlikely(lkey == (uint32_t)-1)) {
/* MR does not exist. */
DEBUG("%p: unable to get MP <-> MR"
" association", (void *)txq);
/* Clean up TX element. */
elt->buf = NULL;
goto stop;
}
/* Update element. */
elt->buf = buf;
if (txq->priv->vf)
rte_prefetch0((volatile void *)
(uintptr_t)addr);
RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
sge->addr = addr;
sge->length = length;
sge->lkey = lkey;
sent_size += length;
} else {
err = -1;
goto stop;
}
if (sent_size <= txq->max_inline)
send_flags |= IBV_SEND_INLINE;
elts_head = elts_head_next;
/* Increment sent bytes counter. */
txq->stats.obytes += sent_size;
/* Set up WR. */
wr->sg_list = &elt->sge;
wr->num_sge = segs;
wr->opcode = IBV_WR_SEND;
wr->send_flags = send_flags;
*wr_next = wr;
wr_next = &wr->next;
}
stop:
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Increment sent packets counter. */
txq->stats.opackets += i;
/* Ring QP doorbell. */
*wr_next = NULL;
assert(wr_head);
err = ibv_post_send(txq->qp, wr_head, &wr_bad);
if (unlikely(err)) {
uint64_t obytes = 0;
uint64_t opackets = 0;
/* Rewind bad WRs. */
while (wr_bad != NULL) {
int j;
/* Force completion request if one was lost. */
if (wr_bad->send_flags & IBV_SEND_SIGNALED) {
elts_comp_cd = 1;
--elts_comp;
}
++opackets;
for (j = 0; j < wr_bad->num_sge; ++j)
obytes += wr_bad->sg_list[j].length;
elts_head = (elts_head ? elts_head : elts_n) - 1;
wr_bad = wr_bad->next;
}
txq->stats.opackets -= opackets;
txq->stats.obytes -= obytes;
i -= opackets;
DEBUG("%p: ibv_post_send() failed, %" PRIu64 " packets"
" (%" PRIu64 " bytes) rejected: %s",
(void *)txq,
opackets,
obytes,
(err <= -1) ? "Internal error" : strerror(err));
}
txq->elts_head = elts_head;
txq->elts_comp += elts_comp;
txq->elts_comp_cd = elts_comp_cd;
return i;
}
/**
* Configure a TX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param txq
* Pointer to TX queue structure.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
txq_setup(struct rte_eth_dev *dev, struct txq *txq, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct priv *priv = dev->data->dev_private;
struct txq tmpl = {
.priv = priv,
.socket = socket
};
union {
struct ibv_qp_init_attr init;
struct ibv_qp_attr mod;
} attr;
int ret;
(void)conf; /* Thresholds configuration (ignored). */
if (priv == NULL) {
rte_errno = EINVAL;
goto error;
}
if (desc == 0) {
rte_errno = EINVAL;
ERROR("%p: invalid number of Tx descriptors", (void *)dev);
goto error;
}
/* MRs will be registered in mp2mr[] later. */
tmpl.cq = ibv_create_cq(priv->ctx, desc, NULL, NULL, 0);
if (tmpl.cq == NULL) {
rte_errno = ENOMEM;
ERROR("%p: CQ creation failure: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
DEBUG("priv->device_attr.max_qp_wr is %d",
priv->device_attr.max_qp_wr);
DEBUG("priv->device_attr.max_sge is %d",
priv->device_attr.max_sge);
attr.init = (struct ibv_qp_init_attr){
/* CQ to be associated with the send queue. */
.send_cq = tmpl.cq,
/* CQ to be associated with the receive queue. */
.recv_cq = tmpl.cq,
.cap = {
/* Max number of outstanding WRs. */
.max_send_wr = ((priv->device_attr.max_qp_wr < desc) ?
priv->device_attr.max_qp_wr :
desc),
/* Max number of scatter/gather elements in a WR. */
.max_send_sge = 1,
.max_inline_data = MLX4_PMD_MAX_INLINE,
},
.qp_type = IBV_QPT_RAW_PACKET,
/*
* Do *NOT* enable this, completions events are managed per
* Tx burst.
*/
.sq_sig_all = 0,
};
tmpl.qp = ibv_create_qp(priv->pd, &attr.init);
if (tmpl.qp == NULL) {
rte_errno = errno ? errno : EINVAL;
ERROR("%p: QP creation failure: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
/* ibv_create_qp() updates this value. */
tmpl.max_inline = attr.init.cap.max_inline_data;
attr.mod = (struct ibv_qp_attr){
/* Move the QP to this state. */
.qp_state = IBV_QPS_INIT,
/* Primary port number. */
.port_num = priv->port
};
ret = ibv_modify_qp(tmpl.qp, &attr.mod, IBV_QP_STATE | IBV_QP_PORT);
if (ret) {
rte_errno = ret;
ERROR("%p: QP state to IBV_QPS_INIT failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
ret = txq_alloc_elts(&tmpl, desc);
if (ret) {
rte_errno = ret;
ERROR("%p: TXQ allocation failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
attr.mod = (struct ibv_qp_attr){
.qp_state = IBV_QPS_RTR
};
ret = ibv_modify_qp(tmpl.qp, &attr.mod, IBV_QP_STATE);
if (ret) {
rte_errno = ret;
ERROR("%p: QP state to IBV_QPS_RTR failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
attr.mod.qp_state = IBV_QPS_RTS;
ret = ibv_modify_qp(tmpl.qp, &attr.mod, IBV_QP_STATE);
if (ret) {
rte_errno = ret;
ERROR("%p: QP state to IBV_QPS_RTS failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
/* Clean up txq in case we're reinitializing it. */
DEBUG("%p: cleaning-up old txq just in case", (void *)txq);
txq_cleanup(txq);
*txq = tmpl;
DEBUG("%p: txq updated with %p", (void *)txq, (void *)&tmpl);
/* Pre-register known mempools. */
rte_mempool_walk(txq_mp2mr_iter, txq);
return 0;
error:
ret = rte_errno;
txq_cleanup(&tmpl);
rte_errno = ret;
assert(rte_errno > 0);
return -rte_errno;
}
/**
* DPDK callback to configure a TX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct priv *priv = dev->data->dev_private;
struct txq *txq = (*priv->txqs)[idx];
int ret;
DEBUG("%p: configuring queue %u for %u descriptors",
(void *)dev, idx, desc);
if (idx >= priv->txqs_n) {
rte_errno = EOVERFLOW;
ERROR("%p: queue index out of range (%u >= %u)",
(void *)dev, idx, priv->txqs_n);
return -rte_errno;
}
if (txq != NULL) {
DEBUG("%p: reusing already allocated queue index %u (%p)",
(void *)dev, idx, (void *)txq);
if (priv->started) {
rte_errno = EEXIST;
return -rte_errno;
}
(*priv->txqs)[idx] = NULL;
txq_cleanup(txq);
} else {
txq = rte_calloc_socket("TXQ", 1, sizeof(*txq), 0, socket);
if (txq == NULL) {
rte_errno = ENOMEM;
ERROR("%p: unable to allocate queue index %u",
(void *)dev, idx);
return -rte_errno;
}
}
ret = txq_setup(dev, txq, desc, socket, conf);
if (ret)
rte_free(txq);
else {
txq->stats.idx = idx;
DEBUG("%p: adding TX queue %p to list",
(void *)dev, (void *)txq);
(*priv->txqs)[idx] = txq;
/* Update send callback. */
dev->tx_pkt_burst = mlx4_tx_burst;
}
return ret;
}
/**
* DPDK callback to release a TX queue.
*
* @param dpdk_txq
* Generic TX queue pointer.
*/
static void
mlx4_tx_queue_release(void *dpdk_txq)
{
struct txq *txq = (struct txq *)dpdk_txq;
struct priv *priv;
unsigned int i;
if (txq == NULL)
return;
priv = txq->priv;
for (i = 0; (i != priv->txqs_n); ++i)
if ((*priv->txqs)[i] == txq) {
DEBUG("%p: removing TX queue %p from list",
(void *)priv->dev, (void *)txq);
(*priv->txqs)[i] = NULL;
break;
}
txq_cleanup(txq);
rte_free(txq);
}
/* RX queues handling. */
/**
* Allocate RX queue elements.
*
* @param rxq
* Pointer to RX queue structure.
* @param elts_n
* Number of elements to allocate.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
rxq_alloc_elts(struct rxq *rxq, unsigned int elts_n)
{
unsigned int i;
struct rxq_elt (*elts)[elts_n] =
rte_calloc_socket("RXQ elements", 1, sizeof(*elts), 0,
rxq->socket);
if (elts == NULL) {
rte_errno = ENOMEM;
ERROR("%p: can't allocate packets array", (void *)rxq);
goto error;
}
/* For each WR (packet). */
for (i = 0; (i != elts_n); ++i) {
struct rxq_elt *elt = &(*elts)[i];
struct ibv_recv_wr *wr = &elt->wr;
struct ibv_sge *sge = &(*elts)[i].sge;
struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
if (buf == NULL) {
rte_errno = ENOMEM;
ERROR("%p: empty mbuf pool", (void *)rxq);
goto error;
}
elt->buf = buf;
wr->next = &(*elts)[(i + 1)].wr;
wr->sg_list = sge;
wr->num_sge = 1;
/* Headroom is reserved by rte_pktmbuf_alloc(). */
assert(buf->data_off == RTE_PKTMBUF_HEADROOM);
/* Buffer is supposed to be empty. */
assert(rte_pktmbuf_data_len(buf) == 0);
assert(rte_pktmbuf_pkt_len(buf) == 0);
/* sge->addr must be able to store a pointer. */
assert(sizeof(sge->addr) >= sizeof(uintptr_t));
/* SGE keeps its headroom. */
sge->addr = (uintptr_t)
((uint8_t *)buf->buf_addr + RTE_PKTMBUF_HEADROOM);
sge->length = (buf->buf_len - RTE_PKTMBUF_HEADROOM);
sge->lkey = rxq->mr->lkey;
/* Redundant check for tailroom. */
assert(sge->length == rte_pktmbuf_tailroom(buf));
}
/* The last WR pointer must be NULL. */
(*elts)[(i - 1)].wr.next = NULL;
DEBUG("%p: allocated and configured %u single-segment WRs",
(void *)rxq, elts_n);
rxq->elts_n = elts_n;
rxq->elts_head = 0;
rxq->elts = elts;
return 0;
error:
if (elts != NULL) {
for (i = 0; (i != RTE_DIM(*elts)); ++i)
rte_pktmbuf_free_seg((*elts)[i].buf);
rte_free(elts);
}
DEBUG("%p: failed, freed everything", (void *)rxq);
assert(rte_errno > 0);
return -rte_errno;
}
/**
* Free RX queue elements.
*
* @param rxq
* Pointer to RX queue structure.
*/
static void
rxq_free_elts(struct rxq *rxq)
{
unsigned int i;
unsigned int elts_n = rxq->elts_n;
struct rxq_elt (*elts)[elts_n] = rxq->elts;
DEBUG("%p: freeing WRs", (void *)rxq);
rxq->elts_n = 0;
rxq->elts = NULL;
if (elts == NULL)
return;
for (i = 0; (i != RTE_DIM(*elts)); ++i)
rte_pktmbuf_free_seg((*elts)[i].buf);
rte_free(elts);
}
/**
* Unregister a MAC address.
*
* @param priv
* Pointer to private structure.
*/
static void
priv_mac_addr_del(struct priv *priv)
{
#ifndef NDEBUG
uint8_t (*mac)[ETHER_ADDR_LEN] = &priv->mac.addr_bytes;
#endif
if (!priv->mac_flow)
return;
DEBUG("%p: removing MAC address %02x:%02x:%02x:%02x:%02x:%02x",
(void *)priv,
(*mac)[0], (*mac)[1], (*mac)[2], (*mac)[3], (*mac)[4], (*mac)[5]);
claim_zero(ibv_destroy_flow(priv->mac_flow));
priv->mac_flow = NULL;
}
/**
* Register a MAC address.
*
* The MAC address is registered in queue 0.
*
* @param priv
* Pointer to private structure.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
priv_mac_addr_add(struct priv *priv)
{
uint8_t (*mac)[ETHER_ADDR_LEN] = &priv->mac.addr_bytes;
struct rxq *rxq;
struct ibv_flow *flow;
/* If device isn't started, this is all we need to do. */
if (!priv->started)
return 0;
if (priv->isolated)
return 0;
if (*priv->rxqs && (*priv->rxqs)[0])
rxq = (*priv->rxqs)[0];
else
return 0;
/* Allocate flow specification on the stack. */
struct __attribute__((packed)) {
struct ibv_flow_attr attr;
struct ibv_flow_spec_eth spec;
} data;
struct ibv_flow_attr *attr = &data.attr;
struct ibv_flow_spec_eth *spec = &data.spec;
if (priv->mac_flow)
priv_mac_addr_del(priv);
/*
* No padding must be inserted by the compiler between attr and spec.
* This layout is expected by libibverbs.
*/
assert(((uint8_t *)attr + sizeof(*attr)) == (uint8_t *)spec);
*attr = (struct ibv_flow_attr){
.type = IBV_FLOW_ATTR_NORMAL,
.priority = 3,
.num_of_specs = 1,
.port = priv->port,
.flags = 0
};
*spec = (struct ibv_flow_spec_eth){
.type = IBV_FLOW_SPEC_ETH,
.size = sizeof(*spec),
.val = {
.dst_mac = {
(*mac)[0], (*mac)[1], (*mac)[2],
(*mac)[3], (*mac)[4], (*mac)[5]
},
},
.mask = {
.dst_mac = "\xff\xff\xff\xff\xff\xff",
}
};
DEBUG("%p: adding MAC address %02x:%02x:%02x:%02x:%02x:%02x",
(void *)priv,
(*mac)[0], (*mac)[1], (*mac)[2], (*mac)[3], (*mac)[4], (*mac)[5]);
/* Create related flow. */
flow = ibv_create_flow(rxq->qp, attr);
if (flow == NULL) {
rte_errno = errno ? errno : EINVAL;
ERROR("%p: flow configuration failed, errno=%d: %s",
(void *)rxq, rte_errno, strerror(errno));
return -rte_errno;
}
assert(priv->mac_flow == NULL);
priv->mac_flow = flow;
return 0;
}
/**
* Clean up a RX queue.
*
* Destroy objects, free allocated memory and reset the structure for reuse.
*
* @param rxq
* Pointer to RX queue structure.
*/
static void
rxq_cleanup(struct rxq *rxq)
{
DEBUG("cleaning up %p", (void *)rxq);
rxq_free_elts(rxq);
if (rxq->qp != NULL)
claim_zero(ibv_destroy_qp(rxq->qp));
if (rxq->cq != NULL)
claim_zero(ibv_destroy_cq(rxq->cq));
if (rxq->channel != NULL)
claim_zero(ibv_destroy_comp_channel(rxq->channel));
if (rxq->mr != NULL)
claim_zero(ibv_dereg_mr(rxq->mr));
memset(rxq, 0, sizeof(*rxq));
}
/**
* DPDK callback for RX.
*
* The following function doesn't manage scattered packets.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
static uint16_t
mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = (struct rxq *)dpdk_rxq;
struct rxq_elt (*elts)[rxq->elts_n] = rxq->elts;
const unsigned int elts_n = rxq->elts_n;
unsigned int elts_head = rxq->elts_head;
struct ibv_wc wcs[pkts_n];
struct ibv_recv_wr *wr_head = NULL;
struct ibv_recv_wr **wr_next = &wr_head;
struct ibv_recv_wr *wr_bad = NULL;
unsigned int i;
unsigned int pkts_ret = 0;
int ret;
ret = ibv_poll_cq(rxq->cq, pkts_n, wcs);
if (unlikely(ret == 0))
return 0;
if (unlikely(ret < 0)) {
DEBUG("rxq=%p, ibv_poll_cq() failed (wc_n=%d)",
(void *)rxq, ret);
return 0;
}
assert(ret <= (int)pkts_n);
/* For each work completion. */
for (i = 0; i != (unsigned int)ret; ++i) {
struct ibv_wc *wc = &wcs[i];
struct rxq_elt *elt = &(*elts)[elts_head];
struct ibv_recv_wr *wr = &elt->wr;
uint32_t len = wc->byte_len;
struct rte_mbuf *seg = elt->buf;
struct rte_mbuf *rep;
/* Sanity checks. */
assert(wr->sg_list == &elt->sge);
assert(wr->num_sge == 1);
assert(elts_head < rxq->elts_n);
assert(rxq->elts_head < rxq->elts_n);
/*
* Fetch initial bytes of packet descriptor into a
* cacheline while allocating rep.
*/
rte_mbuf_prefetch_part1(seg);
rte_mbuf_prefetch_part2(seg);
/* Link completed WRs together for repost. */
*wr_next = wr;
wr_next = &wr->next;
if (unlikely(wc->status != IBV_WC_SUCCESS)) {
/* Whatever, just repost the offending WR. */
DEBUG("rxq=%p: bad work completion status (%d): %s",
(void *)rxq, wc->status,
ibv_wc_status_str(wc->status));
/* Increment dropped packets counter. */
++rxq->stats.idropped;
goto repost;
}
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
/*
* Unable to allocate a replacement mbuf,
* repost WR.
*/
DEBUG("rxq=%p: can't allocate a new mbuf",
(void *)rxq);
/* Increase out of memory counters. */
++rxq->stats.rx_nombuf;
++rxq->priv->dev->data->rx_mbuf_alloc_failed;
goto repost;
}
/* Reconfigure sge to use rep instead of seg. */
elt->sge.addr = (uintptr_t)rep->buf_addr + RTE_PKTMBUF_HEADROOM;
assert(elt->sge.lkey == rxq->mr->lkey);
elt->buf = rep;
/* Update seg information. */
seg->data_off = RTE_PKTMBUF_HEADROOM;
seg->nb_segs = 1;
seg->port = rxq->port_id;
seg->next = NULL;
seg->pkt_len = len;
seg->data_len = len;
seg->packet_type = 0;
seg->ol_flags = 0;
/* Return packet. */
*(pkts++) = seg;
++pkts_ret;
/* Increase bytes counter. */
rxq->stats.ibytes += len;
repost:
if (++elts_head >= elts_n)
elts_head = 0;
continue;
}
if (unlikely(i == 0))
return 0;
/* Repost WRs. */
*wr_next = NULL;
assert(wr_head);
ret = ibv_post_recv(rxq->qp, wr_head, &wr_bad);
if (unlikely(ret)) {
/* Inability to repost WRs is fatal. */
DEBUG("%p: recv_burst(): failed (ret=%d)",
(void *)rxq->priv,
ret);
abort();
}
rxq->elts_head = elts_head;
/* Increase packets counter. */
rxq->stats.ipackets += pkts_ret;
return pkts_ret;
}
/**
* Allocate a Queue Pair.
* Optionally setup inline receive if supported.
*
* @param priv
* Pointer to private structure.
* @param cq
* Completion queue to associate with QP.
* @param desc
* Number of descriptors in QP (hint only).
*
* @return
* QP pointer or NULL in case of error and rte_errno is set.
*/
static struct ibv_qp *
rxq_setup_qp(struct priv *priv, struct ibv_cq *cq, uint16_t desc)
{
struct ibv_qp *qp;
struct ibv_qp_init_attr attr = {
/* CQ to be associated with the send queue. */
.send_cq = cq,
/* CQ to be associated with the receive queue. */
.recv_cq = cq,
.cap = {
/* Max number of outstanding WRs. */
.max_recv_wr = ((priv->device_attr.max_qp_wr < desc) ?
priv->device_attr.max_qp_wr :
desc),
/* Max number of scatter/gather elements in a WR. */
.max_recv_sge = 1,
},
.qp_type = IBV_QPT_RAW_PACKET,
};
qp = ibv_create_qp(priv->pd, &attr);
if (!qp)
rte_errno = errno ? errno : EINVAL;
return qp;
}
/**
* Configure a RX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rxq
* Pointer to RX queue structure.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
rxq_setup(struct rte_eth_dev *dev, struct rxq *rxq, uint16_t desc,
unsigned int socket, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct priv *priv = dev->data->dev_private;
struct rxq tmpl = {
.priv = priv,
.mp = mp,
.socket = socket
};
struct ibv_qp_attr mod;
struct ibv_recv_wr *bad_wr;
unsigned int mb_len;
int ret;
(void)conf; /* Thresholds configuration (ignored). */
mb_len = rte_pktmbuf_data_room_size(mp);
if (desc == 0) {
rte_errno = EINVAL;
ERROR("%p: invalid number of Rx descriptors", (void *)dev);
goto error;
}
/* Enable scattered packets support for this queue if necessary. */
assert(mb_len >= RTE_PKTMBUF_HEADROOM);
if (dev->data->dev_conf.rxmode.max_rx_pkt_len <=
(mb_len - RTE_PKTMBUF_HEADROOM)) {
;
} else if (dev->data->dev_conf.rxmode.enable_scatter) {
WARN("%p: scattered mode has been requested but is"
" not supported, this may lead to packet loss",
(void *)dev);
} else {
WARN("%p: the requested maximum Rx packet size (%u) is"
" larger than a single mbuf (%u) and scattered"
" mode has not been requested",
(void *)dev,
dev->data->dev_conf.rxmode.max_rx_pkt_len,
mb_len - RTE_PKTMBUF_HEADROOM);
}
/* Use the entire RX mempool as the memory region. */
tmpl.mr = mlx4_mp2mr(priv->pd, mp);
if (tmpl.mr == NULL) {
rte_errno = EINVAL;
ERROR("%p: MR creation failure: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
if (dev->data->dev_conf.intr_conf.rxq) {
tmpl.channel = ibv_create_comp_channel(priv->ctx);
if (tmpl.channel == NULL) {
rte_errno = ENOMEM;
ERROR("%p: Rx interrupt completion channel creation"
" failure: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
if (mlx4_fd_set_non_blocking(tmpl.channel->fd) < 0) {
ERROR("%p: unable to make Rx interrupt completion"
" channel non-blocking: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
}
tmpl.cq = ibv_create_cq(priv->ctx, desc, NULL, tmpl.channel, 0);
if (tmpl.cq == NULL) {
rte_errno = ENOMEM;
ERROR("%p: CQ creation failure: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
DEBUG("priv->device_attr.max_qp_wr is %d",
priv->device_attr.max_qp_wr);
DEBUG("priv->device_attr.max_sge is %d",
priv->device_attr.max_sge);
tmpl.qp = rxq_setup_qp(priv, tmpl.cq, desc);
if (tmpl.qp == NULL) {
ERROR("%p: QP creation failure: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
mod = (struct ibv_qp_attr){
/* Move the QP to this state. */
.qp_state = IBV_QPS_INIT,
/* Primary port number. */
.port_num = priv->port
};
ret = ibv_modify_qp(tmpl.qp, &mod, IBV_QP_STATE | IBV_QP_PORT);
if (ret) {
rte_errno = ret;
ERROR("%p: QP state to IBV_QPS_INIT failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
ret = rxq_alloc_elts(&tmpl, desc);
if (ret) {
ERROR("%p: RXQ allocation failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
ret = ibv_post_recv(tmpl.qp, &(*tmpl.elts)[0].wr, &bad_wr);
if (ret) {
rte_errno = ret;
ERROR("%p: ibv_post_recv() failed for WR %p: %s",
(void *)dev,
(void *)bad_wr,
strerror(rte_errno));
goto error;
}
mod = (struct ibv_qp_attr){
.qp_state = IBV_QPS_RTR
};
ret = ibv_modify_qp(tmpl.qp, &mod, IBV_QP_STATE);
if (ret) {
rte_errno = ret;
ERROR("%p: QP state to IBV_QPS_RTR failed: %s",
(void *)dev, strerror(rte_errno));
goto error;
}
/* Save port ID. */
tmpl.port_id = dev->data->port_id;
DEBUG("%p: RTE port ID: %u", (void *)rxq, tmpl.port_id);
/* Clean up rxq in case we're reinitializing it. */
DEBUG("%p: cleaning-up old rxq just in case", (void *)rxq);
rxq_cleanup(rxq);
*rxq = tmpl;
DEBUG("%p: rxq updated with %p", (void *)rxq, (void *)&tmpl);
return 0;
error:
ret = rte_errno;
rxq_cleanup(&tmpl);
rte_errno = ret;
assert(rte_errno > 0);
return -rte_errno;
}
/**
* DPDK callback to configure a RX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct priv *priv = dev->data->dev_private;
struct rxq *rxq = (*priv->rxqs)[idx];
int ret;
DEBUG("%p: configuring queue %u for %u descriptors",
(void *)dev, idx, desc);
if (idx >= priv->rxqs_n) {
rte_errno = EOVERFLOW;
ERROR("%p: queue index out of range (%u >= %u)",
(void *)dev, idx, priv->rxqs_n);
return -rte_errno;
}
if (rxq != NULL) {
DEBUG("%p: reusing already allocated queue index %u (%p)",
(void *)dev, idx, (void *)rxq);
if (priv->started) {
rte_errno = EEXIST;
return -rte_errno;
}
(*priv->rxqs)[idx] = NULL;
if (idx == 0)
priv_mac_addr_del(priv);
rxq_cleanup(rxq);
} else {
rxq = rte_calloc_socket("RXQ", 1, sizeof(*rxq), 0, socket);
if (rxq == NULL) {
rte_errno = ENOMEM;
ERROR("%p: unable to allocate queue index %u",
(void *)dev, idx);
return -rte_errno;
}
}
ret = rxq_setup(dev, rxq, desc, socket, conf, mp);
if (ret)
rte_free(rxq);
else {
rxq->stats.idx = idx;
DEBUG("%p: adding RX queue %p to list",
(void *)dev, (void *)rxq);
(*priv->rxqs)[idx] = rxq;
/* Update receive callback. */
dev->rx_pkt_burst = mlx4_rx_burst;
}
return ret;
}
/**
* DPDK callback to release a RX queue.
*
* @param dpdk_rxq
* Generic RX queue pointer.
*/
static void
mlx4_rx_queue_release(void *dpdk_rxq)
{
struct rxq *rxq = (struct rxq *)dpdk_rxq;
struct priv *priv;
unsigned int i;
if (rxq == NULL)
return;
priv = rxq->priv;
for (i = 0; (i != priv->rxqs_n); ++i)
if ((*priv->rxqs)[i] == rxq) {
DEBUG("%p: removing RX queue %p from list",
(void *)priv->dev, (void *)rxq);
(*priv->rxqs)[i] = NULL;
if (i == 0)
priv_mac_addr_del(priv);
break;
}
rxq_cleanup(rxq);
rte_free(rxq);
}
/**
* DPDK callback to start the device.
*
* Simulate device start by attaching all configured flows.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_dev_start(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
int ret;
if (priv->started)
return 0;
DEBUG("%p: attaching configured flows to all RX queues", (void *)dev);
priv->started = 1;
ret = priv_mac_addr_add(priv);
if (ret)
goto err;
ret = mlx4_intr_install(priv);
if (ret) {
ERROR("%p: interrupt handler installation failed",
(void *)dev);
goto err;
}
ret = mlx4_priv_flow_start(priv);
if (ret) {
ERROR("%p: flow start failed: %s",
(void *)dev, strerror(ret));
goto err;
}
return 0;
err:
/* Rollback. */
priv_mac_addr_del(priv);
priv->started = 0;
return ret;
}
/**
* DPDK callback to stop the device.
*
* Simulate device stop by detaching all configured flows.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_dev_stop(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
if (!priv->started)
return;
DEBUG("%p: detaching flows from all RX queues", (void *)dev);
priv->started = 0;
mlx4_priv_flow_stop(priv);
mlx4_intr_uninstall(priv);
priv_mac_addr_del(priv);
}
/**
* Dummy DPDK callback for TX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static uint16_t
removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_txq;
(void)pkts;
(void)pkts_n;
return 0;
}
/**
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
static uint16_t
removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_rxq;
(void)pkts;
(void)pkts_n;
return 0;
}
/**
* DPDK callback to close the device.
*
* Destroy all queues and objects, free memory.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_dev_close(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
void *tmp;
unsigned int i;
if (priv == NULL)
return;
DEBUG("%p: closing device \"%s\"",
(void *)dev,
((priv->ctx != NULL) ? priv->ctx->device->name : ""));
priv_mac_addr_del(priv);
/*
* Prevent crashes when queues are still in use. This is unfortunately
* still required for DPDK 1.3 because some programs (such as testpmd)
* never release them before closing the device.
*/
dev->rx_pkt_burst = removed_rx_burst;
dev->tx_pkt_burst = removed_tx_burst;
if (priv->rxqs != NULL) {
/* XXX race condition if mlx4_rx_burst() is still running. */
usleep(1000);
for (i = 0; (i != priv->rxqs_n); ++i) {
tmp = (*priv->rxqs)[i];
if (tmp == NULL)
continue;
(*priv->rxqs)[i] = NULL;
rxq_cleanup(tmp);
rte_free(tmp);
}
priv->rxqs_n = 0;
priv->rxqs = NULL;
}
if (priv->txqs != NULL) {
/* XXX race condition if mlx4_tx_burst() is still running. */
usleep(1000);
for (i = 0; (i != priv->txqs_n); ++i) {
tmp = (*priv->txqs)[i];
if (tmp == NULL)
continue;
(*priv->txqs)[i] = NULL;
txq_cleanup(tmp);
rte_free(tmp);
}
priv->txqs_n = 0;
priv->txqs = NULL;
}
if (priv->pd != NULL) {
assert(priv->ctx != NULL);
claim_zero(ibv_dealloc_pd(priv->pd));
claim_zero(ibv_close_device(priv->ctx));
} else
assert(priv->ctx == NULL);
mlx4_intr_uninstall(priv);
memset(priv, 0, sizeof(*priv));
}
/**
* Change the link state (UP / DOWN).
*
* @param priv
* Pointer to Ethernet device private data.
* @param up
* Nonzero for link up, otherwise link down.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
priv_set_link(struct priv *priv, int up)
{
struct rte_eth_dev *dev = priv->dev;
int err;
if (up) {
err = priv_set_flags(priv, ~IFF_UP, IFF_UP);
if (err)
return err;
dev->rx_pkt_burst = mlx4_rx_burst;
} else {
err = priv_set_flags(priv, ~IFF_UP, ~IFF_UP);
if (err)
return err;
dev->rx_pkt_burst = removed_rx_burst;
dev->tx_pkt_burst = removed_tx_burst;
}
return 0;
}
/**
* DPDK callback to bring the link DOWN.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_set_link_down(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
return priv_set_link(priv, 0);
}
/**
* DPDK callback to bring the link UP.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_set_link_up(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
return priv_set_link(priv, 1);
}
/**
* DPDK callback to get information about the device.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] info
* Info structure output buffer.
*/
static void
mlx4_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *info)
{
struct priv *priv = dev->data->dev_private;
unsigned int max;
char ifname[IF_NAMESIZE];
info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
if (priv == NULL)
return;
/* FIXME: we should ask the device for these values. */
info->min_rx_bufsize = 32;
info->max_rx_pktlen = 65536;
/*
* Since we need one CQ per QP, the limit is the minimum number
* between the two values.
*/
max = ((priv->device_attr.max_cq > priv->device_attr.max_qp) ?
priv->device_attr.max_qp : priv->device_attr.max_cq);
/* If max >= 65535 then max = 0, max_rx_queues is uint16_t. */
if (max >= 65535)
max = 65535;
info->max_rx_queues = max;
info->max_tx_queues = max;
/* Last array entry is reserved for broadcast. */
info->max_mac_addrs = 1;
info->rx_offload_capa = 0;
info->tx_offload_capa = 0;
if (priv_get_ifname(priv, &ifname) == 0)
info->if_index = if_nametoindex(ifname);
info->speed_capa =
ETH_LINK_SPEED_1G |
ETH_LINK_SPEED_10G |
ETH_LINK_SPEED_20G |
ETH_LINK_SPEED_40G |
ETH_LINK_SPEED_56G;
}
/**
* DPDK callback to get device statistics.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] stats
* Stats structure output buffer.
*/
static void
mlx4_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct priv *priv = dev->data->dev_private;
struct rte_eth_stats tmp = {0};
unsigned int i;
unsigned int idx;
if (priv == NULL)
return;
/* Add software counters. */
for (i = 0; (i != priv->rxqs_n); ++i) {
struct rxq *rxq = (*priv->rxqs)[i];
if (rxq == NULL)
continue;
idx = rxq->stats.idx;
if (idx < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
tmp.q_ipackets[idx] += rxq->stats.ipackets;
tmp.q_ibytes[idx] += rxq->stats.ibytes;
tmp.q_errors[idx] += (rxq->stats.idropped +
rxq->stats.rx_nombuf);
}
tmp.ipackets += rxq->stats.ipackets;
tmp.ibytes += rxq->stats.ibytes;
tmp.ierrors += rxq->stats.idropped;
tmp.rx_nombuf += rxq->stats.rx_nombuf;
}
for (i = 0; (i != priv->txqs_n); ++i) {
struct txq *txq = (*priv->txqs)[i];
if (txq == NULL)
continue;
idx = txq->stats.idx;
if (idx < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
tmp.q_opackets[idx] += txq->stats.opackets;
tmp.q_obytes[idx] += txq->stats.obytes;
tmp.q_errors[idx] += txq->stats.odropped;
}
tmp.opackets += txq->stats.opackets;
tmp.obytes += txq->stats.obytes;
tmp.oerrors += txq->stats.odropped;
}
*stats = tmp;
}
/**
* DPDK callback to clear device statistics.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_stats_reset(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int i;
unsigned int idx;
if (priv == NULL)
return;
for (i = 0; (i != priv->rxqs_n); ++i) {
if ((*priv->rxqs)[i] == NULL)
continue;
idx = (*priv->rxqs)[i]->stats.idx;
(*priv->rxqs)[i]->stats =
(struct mlx4_rxq_stats){ .idx = idx };
}
for (i = 0; (i != priv->txqs_n); ++i) {
if ((*priv->txqs)[i] == NULL)
continue;
idx = (*priv->txqs)[i]->stats.idx;
(*priv->txqs)[i]->stats =
(struct mlx4_txq_stats){ .idx = idx };
}
}
/**
* DPDK callback to retrieve physical link information.
*
* @param dev
* Pointer to Ethernet device structure.
* @param wait_to_complete
* Wait for request completion (ignored).
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
int
mlx4_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
const struct priv *priv = dev->data->dev_private;
struct ethtool_cmd edata = {
.cmd = ETHTOOL_GSET
};
struct ifreq ifr;
struct rte_eth_link dev_link;
int link_speed = 0;
if (priv == NULL) {
rte_errno = EINVAL;
return -rte_errno;
}
(void)wait_to_complete;
if (priv_ifreq(priv, SIOCGIFFLAGS, &ifr)) {
WARN("ioctl(SIOCGIFFLAGS) failed: %s", strerror(rte_errno));
return -rte_errno;
}
memset(&dev_link, 0, sizeof(dev_link));
dev_link.link_status = ((ifr.ifr_flags & IFF_UP) &&
(ifr.ifr_flags & IFF_RUNNING));
ifr.ifr_data = (void *)&edata;
if (priv_ifreq(priv, SIOCETHTOOL, &ifr)) {
WARN("ioctl(SIOCETHTOOL, ETHTOOL_GSET) failed: %s",
strerror(rte_errno));
return -rte_errno;
}
link_speed = ethtool_cmd_speed(&edata);
if (link_speed == -1)
dev_link.link_speed = 0;
else
dev_link.link_speed = link_speed;
dev_link.link_duplex = ((edata.duplex == DUPLEX_HALF) ?
ETH_LINK_HALF_DUPLEX : ETH_LINK_FULL_DUPLEX);
dev_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
ETH_LINK_SPEED_FIXED);
dev->data->dev_link = dev_link;
return 0;
}
/**
* DPDK callback to get flow control status.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] fc_conf
* Flow control output buffer.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_dev_get_flow_ctrl(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct priv *priv = dev->data->dev_private;
struct ifreq ifr;
struct ethtool_pauseparam ethpause = {
.cmd = ETHTOOL_GPAUSEPARAM
};
int ret;
ifr.ifr_data = (void *)&ethpause;
if (priv_ifreq(priv, SIOCETHTOOL, &ifr)) {
ret = rte_errno;
WARN("ioctl(SIOCETHTOOL, ETHTOOL_GPAUSEPARAM)"
" failed: %s",
strerror(rte_errno));
goto out;
}
fc_conf->autoneg = ethpause.autoneg;
if (ethpause.rx_pause && ethpause.tx_pause)
fc_conf->mode = RTE_FC_FULL;
else if (ethpause.rx_pause)
fc_conf->mode = RTE_FC_RX_PAUSE;
else if (ethpause.tx_pause)
fc_conf->mode = RTE_FC_TX_PAUSE;
else
fc_conf->mode = RTE_FC_NONE;
ret = 0;
out:
assert(ret >= 0);
return -ret;
}
/**
* DPDK callback to modify flow control parameters.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[in] fc_conf
* Flow control parameters.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_dev_set_flow_ctrl(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct priv *priv = dev->data->dev_private;
struct ifreq ifr;
struct ethtool_pauseparam ethpause = {
.cmd = ETHTOOL_SPAUSEPARAM
};
int ret;
ifr.ifr_data = (void *)&ethpause;
ethpause.autoneg = fc_conf->autoneg;
if (((fc_conf->mode & RTE_FC_FULL) == RTE_FC_FULL) ||
(fc_conf->mode & RTE_FC_RX_PAUSE))
ethpause.rx_pause = 1;
else
ethpause.rx_pause = 0;
if (((fc_conf->mode & RTE_FC_FULL) == RTE_FC_FULL) ||
(fc_conf->mode & RTE_FC_TX_PAUSE))
ethpause.tx_pause = 1;
else
ethpause.tx_pause = 0;
if (priv_ifreq(priv, SIOCETHTOOL, &ifr)) {
ret = rte_errno;
WARN("ioctl(SIOCETHTOOL, ETHTOOL_SPAUSEPARAM)"
" failed: %s",
strerror(rte_errno));
goto out;
}
ret = 0;
out:
assert(ret >= 0);
return -ret;
}
const struct rte_flow_ops mlx4_flow_ops = {
.validate = mlx4_flow_validate,
.create = mlx4_flow_create,
.destroy = mlx4_flow_destroy,
.flush = mlx4_flow_flush,
.query = NULL,
.isolate = mlx4_flow_isolate,
};
/**
* Manage filter operations.
*
* @param dev
* Pointer to Ethernet device structure.
* @param filter_type
* Filter type.
* @param filter_op
* Operation to perform.
* @param arg
* Pointer to operation-specific structure.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
switch (filter_type) {
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET)
break;
*(const void **)arg = &mlx4_flow_ops;
return 0;
default:
ERROR("%p: filter type (%d) not supported",
(void *)dev, filter_type);
break;
}
rte_errno = ENOTSUP;
return -rte_errno;
}
static const struct eth_dev_ops mlx4_dev_ops = {
.dev_configure = mlx4_dev_configure,
.dev_start = mlx4_dev_start,
.dev_stop = mlx4_dev_stop,
.dev_set_link_down = mlx4_set_link_down,
.dev_set_link_up = mlx4_set_link_up,
.dev_close = mlx4_dev_close,
.link_update = mlx4_link_update,
.stats_get = mlx4_stats_get,
.stats_reset = mlx4_stats_reset,
.dev_infos_get = mlx4_dev_infos_get,
.rx_queue_setup = mlx4_rx_queue_setup,
.tx_queue_setup = mlx4_tx_queue_setup,
.rx_queue_release = mlx4_rx_queue_release,
.tx_queue_release = mlx4_tx_queue_release,
.flow_ctrl_get = mlx4_dev_get_flow_ctrl,
.flow_ctrl_set = mlx4_dev_set_flow_ctrl,
.mtu_set = mlx4_dev_set_mtu,
.filter_ctrl = mlx4_dev_filter_ctrl,
.rx_queue_intr_enable = mlx4_rx_intr_enable,
.rx_queue_intr_disable = mlx4_rx_intr_disable,
};
/**
* Get PCI information from struct ibv_device.
*
* @param device
* Pointer to Ethernet device structure.
* @param[out] pci_addr
* PCI bus address output buffer.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_ibv_device_to_pci_addr(const struct ibv_device *device,
struct rte_pci_addr *pci_addr)
{
FILE *file;
char line[32];
MKSTR(path, "%s/device/uevent", device->ibdev_path);
file = fopen(path, "rb");
if (file == NULL) {
rte_errno = errno;
return -rte_errno;
}
while (fgets(line, sizeof(line), file) == line) {
size_t len = strlen(line);
int ret;
/* Truncate long lines. */
if (len == (sizeof(line) - 1))
while (line[(len - 1)] != '\n') {
ret = fgetc(file);
if (ret == EOF)
break;
line[(len - 1)] = ret;
}
/* Extract information. */
if (sscanf(line,
"PCI_SLOT_NAME="
"%" SCNx32 ":%" SCNx8 ":%" SCNx8 ".%" SCNx8 "\n",
&pci_addr->domain,
&pci_addr->bus,
&pci_addr->devid,
&pci_addr->function) == 4) {
ret = 0;
break;
}
}
fclose(file);
return 0;
}
/**
* Get MAC address by querying netdevice.
*
* @param[in] priv
* struct priv for the requested device.
* @param[out] mac
* MAC address output buffer.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
priv_get_mac(struct priv *priv, uint8_t (*mac)[ETHER_ADDR_LEN])
{
struct ifreq request;
int ret = priv_ifreq(priv, SIOCGIFHWADDR, &request);
if (ret)
return ret;
memcpy(mac, request.ifr_hwaddr.sa_data, ETHER_ADDR_LEN);
return 0;
}
/**
* Verify and store value for device argument.
*
* @param[in] key
* Key argument to verify.
* @param[in] val
* Value associated with key.
* @param[in, out] conf
* Shared configuration data.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_arg_parse(const char *key, const char *val, struct mlx4_conf *conf)
{
unsigned long tmp;
errno = 0;
tmp = strtoul(val, NULL, 0);
if (errno) {
rte_errno = errno;
WARN("%s: \"%s\" is not a valid integer", key, val);
return -rte_errno;
}
if (strcmp(MLX4_PMD_PORT_KVARG, key) == 0) {
uint32_t ports = rte_log2_u32(conf->ports.present);
if (tmp >= ports) {
ERROR("port index %lu outside range [0,%" PRIu32 ")",
tmp, ports);
return -EINVAL;
}
if (!(conf->ports.present & (1 << tmp))) {
rte_errno = EINVAL;
ERROR("invalid port index %lu", tmp);
return -rte_errno;
}
conf->ports.enabled |= 1 << tmp;
} else {
rte_errno = EINVAL;
WARN("%s: unknown parameter", key);
return -rte_errno;
}
return 0;
}
/**
* Parse device parameters.
*
* @param devargs
* Device arguments structure.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_args(struct rte_devargs *devargs, struct mlx4_conf *conf)
{
struct rte_kvargs *kvlist;
unsigned int arg_count;
int ret = 0;
int i;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, pmd_mlx4_init_params);
if (kvlist == NULL) {
rte_errno = EINVAL;
ERROR("failed to parse kvargs");
return -rte_errno;
}
/* Process parameters. */
for (i = 0; pmd_mlx4_init_params[i]; ++i) {
arg_count = rte_kvargs_count(kvlist, MLX4_PMD_PORT_KVARG);
while (arg_count-- > 0) {
ret = rte_kvargs_process(kvlist,
MLX4_PMD_PORT_KVARG,
(int (*)(const char *,
const char *,
void *))
mlx4_arg_parse,
conf);
if (ret != 0)
goto free_kvlist;
}
}
free_kvlist:
rte_kvargs_free(kvlist);
return ret;
}
static struct rte_pci_driver mlx4_driver;
/**
* DPDK callback to register a PCI device.
*
* This function creates an Ethernet device for each port of a given
* PCI device.
*
* @param[in] pci_drv
* PCI driver structure (mlx4_driver).
* @param[in] pci_dev
* PCI device information.
*
* @return
* 0 on success, negative errno value otherwise and rte_errno is set.
*/
static int
mlx4_pci_probe(struct rte_pci_driver *pci_drv, struct rte_pci_device *pci_dev)
{
struct ibv_device **list;
struct ibv_device *ibv_dev;
int err = 0;
struct ibv_context *attr_ctx = NULL;
struct ibv_device_attr device_attr;
struct mlx4_conf conf = {
.ports.present = 0,
};
unsigned int vf;
int i;
(void)pci_drv;
assert(pci_drv == &mlx4_driver);
list = ibv_get_device_list(&i);
if (list == NULL) {
rte_errno = errno;
assert(rte_errno);
if (rte_errno == ENOSYS)
ERROR("cannot list devices, is ib_uverbs loaded?");
return -rte_errno;
}
assert(i >= 0);
/*
* For each listed device, check related sysfs entry against
* the provided PCI ID.
*/
while (i != 0) {
struct rte_pci_addr pci_addr;
--i;
DEBUG("checking device \"%s\"", list[i]->name);
if (mlx4_ibv_device_to_pci_addr(list[i], &pci_addr))
continue;
if ((pci_dev->addr.domain != pci_addr.domain) ||
(pci_dev->addr.bus != pci_addr.bus) ||
(pci_dev->addr.devid != pci_addr.devid) ||
(pci_dev->addr.function != pci_addr.function))
continue;
vf = (pci_dev->id.device_id ==
PCI_DEVICE_ID_MELLANOX_CONNECTX3VF);
INFO("PCI information matches, using device \"%s\" (VF: %s)",
list[i]->name, (vf ? "true" : "false"));
attr_ctx = ibv_open_device(list[i]);
err = errno;
break;
}
if (attr_ctx == NULL) {
ibv_free_device_list(list);
switch (err) {
case 0:
rte_errno = ENODEV;
ERROR("cannot access device, is mlx4_ib loaded?");
return -rte_errno;
case EINVAL:
rte_errno = EINVAL;
ERROR("cannot use device, are drivers up to date?");
return -rte_errno;
}
assert(err > 0);
rte_errno = err;
return -rte_errno;
}
ibv_dev = list[i];
DEBUG("device opened");
if (ibv_query_device(attr_ctx, &device_attr)) {
rte_errno = ENODEV;
goto error;
}
INFO("%u port(s) detected", device_attr.phys_port_cnt);
conf.ports.present |= (UINT64_C(1) << device_attr.phys_port_cnt) - 1;
if (mlx4_args(pci_dev->device.devargs, &conf)) {
ERROR("failed to process device arguments");
rte_errno = EINVAL;
goto error;
}
/* Use all ports when none are defined */
if (!conf.ports.enabled)
conf.ports.enabled = conf.ports.present;
for (i = 0; i < device_attr.phys_port_cnt; i++) {
uint32_t port = i + 1; /* ports are indexed from one */
struct ibv_context *ctx = NULL;
struct ibv_port_attr port_attr;
struct ibv_pd *pd = NULL;
struct priv *priv = NULL;
struct rte_eth_dev *eth_dev = NULL;
struct ether_addr mac;
/* If port is not enabled, skip. */
if (!(conf.ports.enabled & (1 << i)))
continue;
DEBUG("using port %u", port);
ctx = ibv_open_device(ibv_dev);
if (ctx == NULL) {
rte_errno = ENODEV;
goto port_error;
}
/* Check port status. */
err = ibv_query_port(ctx, port, &port_attr);
if (err) {
rte_errno = err;
ERROR("port query failed: %s", strerror(rte_errno));
goto port_error;
}
if (port_attr.link_layer != IBV_LINK_LAYER_ETHERNET) {
rte_errno = ENOTSUP;
ERROR("port %d is not configured in Ethernet mode",
port);
goto port_error;
}
if (port_attr.state != IBV_PORT_ACTIVE)
DEBUG("port %d is not active: \"%s\" (%d)",
port, ibv_port_state_str(port_attr.state),
port_attr.state);
/* Make asynchronous FD non-blocking to handle interrupts. */
if (mlx4_fd_set_non_blocking(ctx->async_fd) < 0) {
ERROR("cannot make asynchronous FD non-blocking: %s",
strerror(rte_errno));
goto port_error;
}
/* Allocate protection domain. */
pd = ibv_alloc_pd(ctx);
if (pd == NULL) {
rte_errno = ENOMEM;
ERROR("PD allocation failure");
goto port_error;
}
/* from rte_ethdev.c */
priv = rte_zmalloc("ethdev private structure",
sizeof(*priv),
RTE_CACHE_LINE_SIZE);
if (priv == NULL) {
rte_errno = ENOMEM;
ERROR("priv allocation failure");
goto port_error;
}
priv->ctx = ctx;
priv->device_attr = device_attr;
priv->port = port;
priv->pd = pd;
priv->mtu = ETHER_MTU;
priv->vf = vf;
/* Configure the first MAC address by default. */
if (priv_get_mac(priv, &mac.addr_bytes)) {
ERROR("cannot get MAC address, is mlx4_en loaded?"
" (rte_errno: %s)", strerror(rte_errno));
goto port_error;
}
INFO("port %u MAC address is %02x:%02x:%02x:%02x:%02x:%02x",
priv->port,
mac.addr_bytes[0], mac.addr_bytes[1],
mac.addr_bytes[2], mac.addr_bytes[3],
mac.addr_bytes[4], mac.addr_bytes[5]);
/* Register MAC address. */
priv->mac = mac;
if (priv_mac_addr_add(priv))
goto port_error;
#ifndef NDEBUG
{
char ifname[IF_NAMESIZE];
if (priv_get_ifname(priv, &ifname) == 0)
DEBUG("port %u ifname is \"%s\"",
priv->port, ifname);
else
DEBUG("port %u ifname is unknown", priv->port);
}
#endif
/* Get actual MTU if possible. */
priv_get_mtu(priv, &priv->mtu);
DEBUG("port %u MTU is %u", priv->port, priv->mtu);
/* from rte_ethdev.c */
{
char name[RTE_ETH_NAME_MAX_LEN];
snprintf(name, sizeof(name), "%s port %u",
ibv_get_device_name(ibv_dev), port);
eth_dev = rte_eth_dev_allocate(name);
}
if (eth_dev == NULL) {
ERROR("can not allocate rte ethdev");
rte_errno = ENOMEM;
goto port_error;
}
eth_dev->data->dev_private = priv;
eth_dev->data->mac_addrs = &priv->mac;
eth_dev->device = &pci_dev->device;
rte_eth_copy_pci_info(eth_dev, pci_dev);
eth_dev->device->driver = &mlx4_driver.driver;
/* Initialize local interrupt handle for current port. */
priv->intr_handle = (struct rte_intr_handle){
.fd = -1,
.type = RTE_INTR_HANDLE_EXT,
};
/*
* Override ethdev interrupt handle pointer with private
* handle instead of that of the parent PCI device used by
* default. This prevents it from being shared between all
* ports of the same PCI device since each of them is
* associated its own Verbs context.
*
* Rx interrupts in particular require this as the PMD has
* no control over the registration of queue interrupts
* besides setting up eth_dev->intr_handle, the rest is
* handled by rte_intr_rx_ctl().
*/
eth_dev->intr_handle = &priv->intr_handle;
priv->dev = eth_dev;
eth_dev->dev_ops = &mlx4_dev_ops;
eth_dev->data->dev_flags |= RTE_ETH_DEV_DETACHABLE;
/* Bring Ethernet device up. */
DEBUG("forcing Ethernet interface up");
priv_set_flags(priv, ~IFF_UP, IFF_UP);
/* Update link status once if waiting for LSC. */
if (eth_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)
mlx4_link_update(eth_dev, 0);
continue;
port_error:
rte_free(priv);
if (pd)
claim_zero(ibv_dealloc_pd(pd));
if (ctx)
claim_zero(ibv_close_device(ctx));
if (eth_dev)
rte_eth_dev_release_port(eth_dev);
break;
}
if (i == device_attr.phys_port_cnt)
return 0;
/*
* XXX if something went wrong in the loop above, there is a resource
* leak (ctx, pd, priv, dpdk ethdev) but we can do nothing about it as
* long as the dpdk does not provide a way to deallocate a ethdev and a
* way to enumerate the registered ethdevs to free the previous ones.
*/
error:
if (attr_ctx)
claim_zero(ibv_close_device(attr_ctx));
if (list)
ibv_free_device_list(list);
assert(rte_errno >= 0);
return -rte_errno;
}
static const struct rte_pci_id mlx4_pci_id_map[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX3)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX3PRO)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX3VF)
},
{
.vendor_id = 0
}
};
static struct rte_pci_driver mlx4_driver = {
.driver = {
.name = MLX4_DRIVER_NAME
},
.id_table = mlx4_pci_id_map,
.probe = mlx4_pci_probe,
.drv_flags = RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_INTR_RMV,
};
/**
* Driver initialization routine.
*/
RTE_INIT(rte_mlx4_pmd_init);
static void
rte_mlx4_pmd_init(void)
{
/*
* RDMAV_HUGEPAGES_SAFE tells ibv_fork_init() we intend to use
* huge pages. Calling ibv_fork_init() during init allows
* applications to use fork() safely for purposes other than
* using this PMD, which is not supported in forked processes.
*/
setenv("RDMAV_HUGEPAGES_SAFE", "1", 1);
ibv_fork_init();
rte_pci_register(&mlx4_driver);
}
RTE_PMD_EXPORT_NAME(net_mlx4, __COUNTER__);
RTE_PMD_REGISTER_PCI_TABLE(net_mlx4, mlx4_pci_id_map);
RTE_PMD_REGISTER_KMOD_DEP(net_mlx4,
"* ib_uverbs & mlx4_en & mlx4_core & mlx4_ib");