numam-dpdk/lib/sched/rte_red.h
Sean Morrissey 30a1de105a lib: remove unneeded header includes
These header includes have been flagged by the iwyu_tool
and removed.

Signed-off-by: Sean Morrissey <sean.morrissey@intel.com>
2022-02-22 13:10:39 +01:00

411 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef __RTE_RED_H_INCLUDED__
#define __RTE_RED_H_INCLUDED__
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file
* RTE Random Early Detection (RED)
*
*
***/
#include <stdint.h>
#include <limits.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_branch_prediction.h>
#define RTE_RED_SCALING 10 /**< Fraction size for fixed-point */
#define RTE_RED_S (1 << 22) /**< Packet size multiplied by number of leaf queues */
#define RTE_RED_MAX_TH_MAX 1023 /**< Max threshold limit in fixed point format */
#define RTE_RED_WQ_LOG2_MIN 1 /**< Min inverse filter weight value */
#define RTE_RED_WQ_LOG2_MAX 12 /**< Max inverse filter weight value */
#define RTE_RED_MAXP_INV_MIN 1 /**< Min inverse mark probability value */
#define RTE_RED_MAXP_INV_MAX 255 /**< Max inverse mark probability value */
#define RTE_RED_2POW16 (1<<16) /**< 2 power 16 */
#define RTE_RED_INT16_NBITS (sizeof(uint16_t) * CHAR_BIT)
#define RTE_RED_WQ_LOG2_NUM (RTE_RED_WQ_LOG2_MAX - RTE_RED_WQ_LOG2_MIN + 1)
/**
* Externs
*
*/
extern uint32_t rte_red_rand_val;
extern uint32_t rte_red_rand_seed;
extern uint16_t rte_red_log2_1_minus_Wq[RTE_RED_WQ_LOG2_NUM];
extern uint16_t rte_red_pow2_frac_inv[16];
/**
* RED configuration parameters passed by user
*
*/
struct rte_red_params {
uint16_t min_th; /**< Minimum threshold for queue (max_th) */
uint16_t max_th; /**< Maximum threshold for queue (max_th) */
uint16_t maxp_inv; /**< Inverse of packet marking probability maximum value (maxp = 1 / maxp_inv) */
uint16_t wq_log2; /**< Negated log2 of queue weight (wq = 1 / (2 ^ wq_log2)) */
};
/**
* RED configuration parameters
*/
struct rte_red_config {
uint32_t min_th; /**< min_th scaled in fixed-point format */
uint32_t max_th; /**< max_th scaled in fixed-point format */
uint32_t pa_const; /**< Precomputed constant value used for pa calculation (scaled in fixed-point format) */
uint8_t maxp_inv; /**< maxp_inv */
uint8_t wq_log2; /**< wq_log2 */
};
/**
* RED run-time data
*/
struct rte_red {
uint32_t avg; /**< Average queue size (avg), scaled in fixed-point format */
uint32_t count; /**< Number of packets since last marked packet (count) */
uint64_t q_time; /**< Start of the queue idle time (q_time) */
};
/**
* @brief Initialises run-time data
*
* @param red [in,out] data pointer to RED runtime data
*
* @return Operation status
* @retval 0 success
* @retval !0 error
*/
int
rte_red_rt_data_init(struct rte_red *red);
/**
* @brief Configures a single RED configuration parameter structure.
*
* @param red_cfg [in,out] config pointer to a RED configuration parameter structure
* @param wq_log2 [in] log2 of the filter weight, valid range is:
* RTE_RED_WQ_LOG2_MIN <= wq_log2 <= RTE_RED_WQ_LOG2_MAX
* @param min_th [in] queue minimum threshold in number of packets
* @param max_th [in] queue maximum threshold in number of packets
* @param maxp_inv [in] inverse maximum mark probability
*
* @return Operation status
* @retval 0 success
* @retval !0 error
*/
int
rte_red_config_init(struct rte_red_config *red_cfg,
const uint16_t wq_log2,
const uint16_t min_th,
const uint16_t max_th,
const uint16_t maxp_inv);
/**
* @brief Generate random number for RED
*
* Implementation based on:
* http://software.intel.com/en-us/articles/fast-random-number-generator-on-the-intel-pentiumr-4-processor/
*
* 10 bit shift has been found through empirical tests (was 16).
*
* @return Random number between 0 and (2^22 - 1)
*/
static inline uint32_t
rte_fast_rand(void)
{
rte_red_rand_seed = (214013 * rte_red_rand_seed) + 2531011;
return rte_red_rand_seed >> 10;
}
/**
* @brief calculate factor to scale average queue size when queue
* becomes empty
*
* @param wq_log2 [in] where EWMA filter weight wq = 1/(2 ^ wq_log2)
* @param m [in] exponent in the computed value (1 - wq) ^ m
*
* @return computed value
* @retval ((1 - wq) ^ m) scaled in fixed-point format
*/
static inline uint16_t
__rte_red_calc_qempty_factor(uint8_t wq_log2, uint16_t m)
{
uint32_t n = 0;
uint32_t f = 0;
/**
* Basic math tells us that:
* a^b = 2^(b * log2(a) )
*
* in our case:
* a = (1-Wq)
* b = m
* Wq = 1/ (2^log2n)
*
* So we are computing this equation:
* factor = 2 ^ ( m * log2(1-Wq))
*
* First we are computing:
* n = m * log2(1-Wq)
*
* To avoid dealing with signed numbers log2 values are positive
* but they should be negative because (1-Wq) is always < 1.
* Contents of log2 table values are also scaled for precision.
*/
n = m * rte_red_log2_1_minus_Wq[wq_log2 - RTE_RED_WQ_LOG2_MIN];
/**
* The tricky part is computing 2^n, for this I split n into
* integer part and fraction part.
* f - is fraction part of n
* n - is integer part of original n
*
* Now using basic math we compute 2^n:
* 2^(f+n) = 2^f * 2^n
* 2^f - we use lookup table
* 2^n - can be replaced with bit shift right operations
*/
f = (n >> 6) & 0xf;
n >>= 10;
if (n < RTE_RED_SCALING)
return (uint16_t) ((rte_red_pow2_frac_inv[f] + (1 << (n - 1))) >> n);
return 0;
}
/**
* @brief Updates queue average in condition when queue is empty
*
* Note: packet is never dropped in this particular case.
*
* @param red_cfg [in] config pointer to a RED configuration parameter structure
* @param red [in,out] data pointer to RED runtime data
* @param time [in] current time stamp
*
* @return Operation status
* @retval 0 enqueue the packet
* @retval 1 drop the packet based on max threshold criterion
* @retval 2 drop the packet based on mark probability criterion
*/
static inline int
rte_red_enqueue_empty(const struct rte_red_config *red_cfg,
struct rte_red *red,
const uint64_t time)
{
uint64_t time_diff = 0, m = 0;
RTE_ASSERT(red_cfg != NULL);
RTE_ASSERT(red != NULL);
red->count ++;
/**
* We compute avg but we don't compare avg against
* min_th or max_th, nor calculate drop probability
*/
time_diff = time - red->q_time;
/**
* m is the number of packets that might have arrived while the queue was empty.
* In this case we have time stamps provided by scheduler in byte units (bytes
* transmitted on network port). Such time stamp translates into time units as
* port speed is fixed but such approach simplifies the code.
*/
m = time_diff / RTE_RED_S;
/**
* Check that m will fit into 16-bit unsigned integer
*/
if (m >= RTE_RED_2POW16) {
red->avg = 0;
} else {
red->avg = (red->avg >> RTE_RED_SCALING) * __rte_red_calc_qempty_factor(red_cfg->wq_log2, (uint16_t) m);
}
return 0;
}
/**
* Drop probability (Sally Floyd and Van Jacobson):
*
* pb = (1 / maxp_inv) * (avg - min_th) / (max_th - min_th)
* pa = pb / (2 - count * pb)
*
*
* (1 / maxp_inv) * (avg - min_th)
* ---------------------------------
* max_th - min_th
* pa = -----------------------------------------------
* count * (1 / maxp_inv) * (avg - min_th)
* 2 - -----------------------------------------
* max_th - min_th
*
*
* avg - min_th
* pa = -----------------------------------------------------------
* 2 * (max_th - min_th) * maxp_inv - count * (avg - min_th)
*
*
* We define pa_const as: pa_const = 2 * (max_th - min_th) * maxp_inv. Then:
*
*
* avg - min_th
* pa = -----------------------------------
* pa_const - count * (avg - min_th)
*/
/**
* @brief make a decision to drop or enqueue a packet based on mark probability
* criteria
*
* @param red_cfg [in] config pointer to structure defining RED parameters
* @param red [in,out] data pointer to RED runtime data
*
* @return operation status
* @retval 0 enqueue the packet
* @retval 1 drop the packet
*/
static inline int
__rte_red_drop(const struct rte_red_config *red_cfg, struct rte_red *red)
{
uint32_t pa_num = 0; /* numerator of drop-probability */
uint32_t pa_den = 0; /* denominator of drop-probability */
uint32_t pa_num_count = 0;
pa_num = (red->avg - red_cfg->min_th) >> (red_cfg->wq_log2);
pa_num_count = red->count * pa_num;
if (red_cfg->pa_const <= pa_num_count)
return 1;
pa_den = red_cfg->pa_const - pa_num_count;
/* If drop, generate and save random number to be used next time */
if (unlikely((rte_red_rand_val % pa_den) < pa_num)) {
rte_red_rand_val = rte_fast_rand();
return 1;
}
/* No drop */
return 0;
}
/**
* @brief Decides if new packet should be enqueued or dropped in queue non-empty case
*
* @param red_cfg [in] config pointer to a RED configuration parameter structure
* @param red [in,out] data pointer to RED runtime data
* @param q [in] current queue size (measured in packets)
*
* @return Operation status
* @retval 0 enqueue the packet
* @retval 1 drop the packet based on max threshold criterion
* @retval 2 drop the packet based on mark probability criterion
*/
static inline int
rte_red_enqueue_nonempty(const struct rte_red_config *red_cfg,
struct rte_red *red,
const unsigned q)
{
RTE_ASSERT(red_cfg != NULL);
RTE_ASSERT(red != NULL);
/**
* EWMA filter (Sally Floyd and Van Jacobson):
* avg = (1 - wq) * avg + wq * q
* avg = avg + q * wq - avg * wq
*
* We select: wq = 2^(-n). Let scaled version of avg be: avg_s = avg * 2^(N+n). We get:
* avg_s = avg_s + q * 2^N - avg_s * 2^(-n)
*
* By using shift left/right operations, we get:
* avg_s = avg_s + (q << N) - (avg_s >> n)
* avg_s += (q << N) - (avg_s >> n)
*/
/* avg update */
red->avg += (q << RTE_RED_SCALING) - (red->avg >> red_cfg->wq_log2);
/* avg < min_th: do not mark the packet */
if (red->avg < red_cfg->min_th) {
red->count ++;
return 0;
}
/* min_th <= avg < max_th: mark the packet with pa probability */
if (red->avg < red_cfg->max_th) {
if (!__rte_red_drop(red_cfg, red)) {
red->count ++;
return 0;
}
red->count = 0;
return 2;
}
/* max_th <= avg: always mark the packet */
red->count = 0;
return 1;
}
/**
* @brief Decides if new packet should be enqueued or dropped
* Updates run time data based on new queue size value.
* Based on new queue average and RED configuration parameters
* gives verdict whether to enqueue or drop the packet.
*
* @param red_cfg [in] config pointer to a RED configuration parameter structure
* @param red [in,out] data pointer to RED runtime data
* @param q [in] updated queue size in packets
* @param time [in] current time stamp
*
* @return Operation status
* @retval 0 enqueue the packet
* @retval 1 drop the packet based on max threshold criteria
* @retval 2 drop the packet based on mark probability criteria
*/
static inline int
rte_red_enqueue(const struct rte_red_config *red_cfg,
struct rte_red *red,
const unsigned q,
const uint64_t time)
{
RTE_ASSERT(red_cfg != NULL);
RTE_ASSERT(red != NULL);
if (q != 0) {
return rte_red_enqueue_nonempty(red_cfg, red, q);
} else {
return rte_red_enqueue_empty(red_cfg, red, time);
}
}
/**
* @brief Callback to records time that queue became empty
*
* @param red [in,out] data pointer to RED runtime data
* @param time [in] current time stamp
*/
static inline void
rte_red_mark_queue_empty(struct rte_red *red, const uint64_t time)
{
red->q_time = time;
}
#ifdef __cplusplus
}
#endif
#endif /* __RTE_RED_H_INCLUDED__ */