7efe28bd07
Use RTE_DIM macro to calculate array size. Suggested-by: David Marchand <david.marchand@redhat.com> Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com> Acked-by: David Marchand <david.marchand@redhat.com>
812 lines
21 KiB
C
812 lines
21 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <sys/queue.h>
|
|
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <getopt.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_random.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_fbk_hash.h>
|
|
#include <rte_ip.h>
|
|
|
|
#define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
|
|
|
|
#define MAX_PORTS 16
|
|
|
|
#define MCAST_CLONE_PORTS 2
|
|
#define MCAST_CLONE_SEGS 2
|
|
|
|
#define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
|
|
#define NB_PKT_MBUF 8192
|
|
|
|
#define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM)
|
|
#define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS)
|
|
|
|
#define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
|
|
|
|
/* allow max jumbo frame 9.5 KB */
|
|
#define JUMBO_FRAME_MAX_SIZE 0x2600
|
|
|
|
#define MAX_PKT_BURST 32
|
|
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
|
|
|
|
/* Configure how many packets ahead to prefetch, when reading packets */
|
|
#define PREFETCH_OFFSET 3
|
|
|
|
/*
|
|
* Construct Ethernet multicast address from IPv4 multicast address.
|
|
* Citing RFC 1112, section 6.4:
|
|
* "An IP host group address is mapped to an Ethernet multicast address
|
|
* by placing the low-order 23-bits of the IP address into the low-order
|
|
* 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
|
|
*/
|
|
#define ETHER_ADDR_FOR_IPV4_MCAST(x) \
|
|
(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
|
|
|
|
/*
|
|
* Configurable number of RX/TX ring descriptors
|
|
*/
|
|
#define RTE_TEST_RX_DESC_DEFAULT 1024
|
|
#define RTE_TEST_TX_DESC_DEFAULT 1024
|
|
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
|
|
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
|
|
|
|
/* ethernet addresses of ports */
|
|
static struct rte_ether_addr ports_eth_addr[MAX_PORTS];
|
|
|
|
/* mask of enabled ports */
|
|
static uint32_t enabled_port_mask = 0;
|
|
|
|
static uint16_t nb_ports;
|
|
|
|
static int rx_queue_per_lcore = 1;
|
|
|
|
struct mbuf_table {
|
|
uint16_t len;
|
|
struct rte_mbuf *m_table[MAX_PKT_BURST];
|
|
};
|
|
|
|
#define MAX_RX_QUEUE_PER_LCORE 16
|
|
#define MAX_TX_QUEUE_PER_PORT 16
|
|
struct lcore_queue_conf {
|
|
uint64_t tx_tsc;
|
|
uint16_t n_rx_queue;
|
|
uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
|
|
uint16_t tx_queue_id[MAX_PORTS];
|
|
struct mbuf_table tx_mbufs[MAX_PORTS];
|
|
} __rte_cache_aligned;
|
|
static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
|
|
|
|
static struct rte_eth_conf port_conf = {
|
|
.rxmode = {
|
|
.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
|
|
.split_hdr_size = 0,
|
|
.offloads = DEV_RX_OFFLOAD_JUMBO_FRAME,
|
|
},
|
|
.txmode = {
|
|
.mq_mode = ETH_MQ_TX_NONE,
|
|
.offloads = DEV_TX_OFFLOAD_MULTI_SEGS,
|
|
},
|
|
};
|
|
|
|
static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
|
|
|
|
|
|
/* Multicast */
|
|
static struct rte_fbk_hash_params mcast_hash_params = {
|
|
.name = "MCAST_HASH",
|
|
.entries = 1024,
|
|
.entries_per_bucket = 4,
|
|
.socket_id = 0,
|
|
.hash_func = NULL,
|
|
.init_val = 0,
|
|
};
|
|
|
|
struct rte_fbk_hash_table *mcast_hash = NULL;
|
|
|
|
struct mcast_group_params {
|
|
uint32_t ip;
|
|
uint16_t port_mask;
|
|
};
|
|
|
|
static struct mcast_group_params mcast_group_table[] = {
|
|
{RTE_IPV4(224,0,0,101), 0x1},
|
|
{RTE_IPV4(224,0,0,102), 0x2},
|
|
{RTE_IPV4(224,0,0,103), 0x3},
|
|
{RTE_IPV4(224,0,0,104), 0x4},
|
|
{RTE_IPV4(224,0,0,105), 0x5},
|
|
{RTE_IPV4(224,0,0,106), 0x6},
|
|
{RTE_IPV4(224,0,0,107), 0x7},
|
|
{RTE_IPV4(224,0,0,108), 0x8},
|
|
{RTE_IPV4(224,0,0,109), 0x9},
|
|
{RTE_IPV4(224,0,0,110), 0xA},
|
|
{RTE_IPV4(224,0,0,111), 0xB},
|
|
{RTE_IPV4(224,0,0,112), 0xC},
|
|
{RTE_IPV4(224,0,0,113), 0xD},
|
|
{RTE_IPV4(224,0,0,114), 0xE},
|
|
{RTE_IPV4(224,0,0,115), 0xF},
|
|
};
|
|
|
|
/* Send burst of packets on an output interface */
|
|
static void
|
|
send_burst(struct lcore_queue_conf *qconf, uint16_t port)
|
|
{
|
|
struct rte_mbuf **m_table;
|
|
uint16_t n, queueid;
|
|
int ret;
|
|
|
|
queueid = qconf->tx_queue_id[port];
|
|
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
|
|
n = qconf->tx_mbufs[port].len;
|
|
|
|
ret = rte_eth_tx_burst(port, queueid, m_table, n);
|
|
while (unlikely (ret < n)) {
|
|
rte_pktmbuf_free(m_table[ret]);
|
|
ret++;
|
|
}
|
|
|
|
qconf->tx_mbufs[port].len = 0;
|
|
}
|
|
|
|
/* Get number of bits set. */
|
|
static inline uint32_t
|
|
bitcnt(uint32_t v)
|
|
{
|
|
uint32_t n;
|
|
|
|
for (n = 0; v != 0; v &= v - 1, n++)
|
|
;
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Create the output multicast packet based on the given input packet.
|
|
* There are two approaches for creating outgoing packet, though both
|
|
* are based on data zero-copy idea, they differ in few details:
|
|
* First one creates a clone of the input packet, e.g - walk though all
|
|
* segments of the input packet, and for each of them create a new packet
|
|
* mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
|
|
* for more details). Then new mbuf is allocated for the packet header
|
|
* and is prepended to the 'clone' mbuf.
|
|
* Second approach doesn't make a clone, it just increment refcnt for all
|
|
* input packet segments. Then it allocates new mbuf for the packet header
|
|
* and prepends it to the input packet.
|
|
* Basically first approach reuses only input packet's data, but creates
|
|
* it's own copy of packet's metadata. Second approach reuses both input's
|
|
* packet data and metadata.
|
|
* The advantage of first approach - is that each outgoing packet has it's
|
|
* own copy of metadata, so we can safely modify data pointer of the
|
|
* input packet. That allows us to skip creation if the output packet for
|
|
* the last destination port, but instead modify input packet's header inplace,
|
|
* e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
|
|
* The advantage of second approach - less work for each outgoing packet,
|
|
* e.g: we skip "clone" operation completely. Though it comes with a price -
|
|
* input packet's metadata has to be intact. So for N destination ports we
|
|
* need to invoke mcast_out_pkt N times.
|
|
* So for small number of outgoing ports (and segments in the input packet)
|
|
* first approach will be faster.
|
|
* As number of outgoing ports (and/or input segments) will grow,
|
|
* second way will become more preferable.
|
|
*
|
|
* @param pkt
|
|
* Input packet mbuf.
|
|
* @param use_clone
|
|
* Control which of the two approaches described above should be used:
|
|
* - 0 - use second approach:
|
|
* Don't "clone" input packet.
|
|
* Prepend new header directly to the input packet
|
|
* - 1 - use first approach:
|
|
* Make a "clone" of input packet first.
|
|
* Prepend new header to the clone of the input packet
|
|
* @return
|
|
* - The pointer to the new outgoing packet.
|
|
* - NULL if operation failed.
|
|
*/
|
|
static inline struct rte_mbuf *
|
|
mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
|
|
{
|
|
struct rte_mbuf *hdr;
|
|
|
|
/* Create new mbuf for the header. */
|
|
if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
|
|
return NULL;
|
|
|
|
/* If requested, then make a new clone packet. */
|
|
if (use_clone != 0 &&
|
|
unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
|
|
rte_pktmbuf_free(hdr);
|
|
return NULL;
|
|
}
|
|
|
|
/* prepend new header */
|
|
hdr->next = pkt;
|
|
|
|
/* update header's fields */
|
|
hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
|
|
hdr->nb_segs = pkt->nb_segs + 1;
|
|
|
|
__rte_mbuf_sanity_check(hdr, 1);
|
|
return hdr;
|
|
}
|
|
|
|
/*
|
|
* Write new Ethernet header to the outgoing packet,
|
|
* and put it into the outgoing queue for the given port.
|
|
*/
|
|
static inline void
|
|
mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr,
|
|
struct lcore_queue_conf *qconf, uint16_t port)
|
|
{
|
|
struct rte_ether_hdr *ethdr;
|
|
uint16_t len;
|
|
|
|
/* Construct Ethernet header. */
|
|
ethdr = (struct rte_ether_hdr *)
|
|
rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
|
|
RTE_ASSERT(ethdr != NULL);
|
|
|
|
rte_ether_addr_copy(dest_addr, ðdr->d_addr);
|
|
rte_ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr);
|
|
ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);
|
|
|
|
/* Put new packet into the output queue */
|
|
len = qconf->tx_mbufs[port].len;
|
|
qconf->tx_mbufs[port].m_table[len] = pkt;
|
|
qconf->tx_mbufs[port].len = ++len;
|
|
|
|
/* Transmit packets */
|
|
if (unlikely(MAX_PKT_BURST == len))
|
|
send_burst(qconf, port);
|
|
}
|
|
|
|
/* Multicast forward of the input packet */
|
|
static inline void
|
|
mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
|
|
{
|
|
struct rte_mbuf *mc;
|
|
struct rte_ipv4_hdr *iphdr;
|
|
uint32_t dest_addr, port_mask, port_num, use_clone;
|
|
int32_t hash;
|
|
uint16_t port;
|
|
union {
|
|
uint64_t as_int;
|
|
struct rte_ether_addr as_addr;
|
|
} dst_eth_addr;
|
|
|
|
/* Remove the Ethernet header from the input packet */
|
|
iphdr = (struct rte_ipv4_hdr *)
|
|
rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
|
|
RTE_ASSERT(iphdr != NULL);
|
|
|
|
dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
|
|
|
|
/*
|
|
* Check that it is a valid multicast address and
|
|
* we have some active ports assigned to it.
|
|
*/
|
|
if (!RTE_IS_IPV4_MCAST(dest_addr) ||
|
|
(hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
|
|
(port_mask = hash & enabled_port_mask) == 0) {
|
|
rte_pktmbuf_free(m);
|
|
return;
|
|
}
|
|
|
|
/* Calculate number of destination ports. */
|
|
port_num = bitcnt(port_mask);
|
|
|
|
/* Should we use rte_pktmbuf_clone() or not. */
|
|
use_clone = (port_num <= MCAST_CLONE_PORTS &&
|
|
m->nb_segs <= MCAST_CLONE_SEGS);
|
|
|
|
/* Mark all packet's segments as referenced port_num times */
|
|
if (use_clone == 0)
|
|
rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
|
|
|
|
/* construct destination ethernet address */
|
|
dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
|
|
|
|
for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
|
|
|
|
/* Prepare output packet and send it out. */
|
|
if ((port_mask & 1) != 0) {
|
|
if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
|
|
mcast_send_pkt(mc, &dst_eth_addr.as_addr,
|
|
qconf, port);
|
|
else if (use_clone == 0)
|
|
rte_pktmbuf_free(m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we making clone packets, then, for the last destination port,
|
|
* we can overwrite input packet's metadata.
|
|
*/
|
|
if (use_clone != 0)
|
|
mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
|
|
else
|
|
rte_pktmbuf_free(m);
|
|
}
|
|
|
|
/* Send burst of outgoing packet, if timeout expires. */
|
|
static inline void
|
|
send_timeout_burst(struct lcore_queue_conf *qconf)
|
|
{
|
|
uint64_t cur_tsc;
|
|
uint16_t portid;
|
|
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
|
|
|
|
cur_tsc = rte_rdtsc();
|
|
if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
|
|
return;
|
|
|
|
for (portid = 0; portid < MAX_PORTS; portid++) {
|
|
if (qconf->tx_mbufs[portid].len != 0)
|
|
send_burst(qconf, portid);
|
|
}
|
|
qconf->tx_tsc = cur_tsc;
|
|
}
|
|
|
|
/* main processing loop */
|
|
static int
|
|
main_loop(__rte_unused void *dummy)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
unsigned lcore_id;
|
|
int i, j, nb_rx;
|
|
uint16_t portid;
|
|
struct lcore_queue_conf *qconf;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
qconf = &lcore_queue_conf[lcore_id];
|
|
|
|
|
|
if (qconf->n_rx_queue == 0) {
|
|
RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
|
|
lcore_id);
|
|
return 0;
|
|
}
|
|
|
|
RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
|
|
lcore_id);
|
|
|
|
for (i = 0; i < qconf->n_rx_queue; i++) {
|
|
|
|
portid = qconf->rx_queue_list[i];
|
|
RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
|
|
lcore_id, portid);
|
|
}
|
|
|
|
while (1) {
|
|
|
|
/*
|
|
* Read packet from RX queues
|
|
*/
|
|
for (i = 0; i < qconf->n_rx_queue; i++) {
|
|
|
|
portid = qconf->rx_queue_list[i];
|
|
nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
|
|
MAX_PKT_BURST);
|
|
|
|
/* Prefetch first packets */
|
|
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(
|
|
pkts_burst[j], void *));
|
|
}
|
|
|
|
/* Prefetch and forward already prefetched packets */
|
|
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
|
|
j + PREFETCH_OFFSET], void *));
|
|
mcast_forward(pkts_burst[j], qconf);
|
|
}
|
|
|
|
/* Forward remaining prefetched packets */
|
|
for (; j < nb_rx; j++) {
|
|
mcast_forward(pkts_burst[j], qconf);
|
|
}
|
|
}
|
|
|
|
/* Send out packets from TX queues */
|
|
send_timeout_burst(qconf);
|
|
}
|
|
}
|
|
|
|
/* display usage */
|
|
static void
|
|
print_usage(const char *prgname)
|
|
{
|
|
printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
|
|
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
|
|
" -q NQ: number of queue (=ports) per lcore (default is 1)\n",
|
|
prgname);
|
|
}
|
|
|
|
static uint32_t
|
|
parse_portmask(const char *portmask)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long pm;
|
|
|
|
/* parse hexadecimal string */
|
|
pm = strtoul(portmask, &end, 16);
|
|
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
return 0;
|
|
|
|
return (uint32_t)pm;
|
|
}
|
|
|
|
static int
|
|
parse_nqueue(const char *q_arg)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long n;
|
|
|
|
/* parse numerical string */
|
|
errno = 0;
|
|
n = strtoul(q_arg, &end, 0);
|
|
if (errno != 0 || end == NULL || *end != '\0' ||
|
|
n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
|
|
return -1;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Parse the argument given in the command line of the application */
|
|
static int
|
|
parse_args(int argc, char **argv)
|
|
{
|
|
int opt, ret;
|
|
char **argvopt;
|
|
int option_index;
|
|
char *prgname = argv[0];
|
|
static struct option lgopts[] = {
|
|
{NULL, 0, 0, 0}
|
|
};
|
|
|
|
argvopt = argv;
|
|
|
|
while ((opt = getopt_long(argc, argvopt, "p:q:",
|
|
lgopts, &option_index)) != EOF) {
|
|
|
|
switch (opt) {
|
|
/* portmask */
|
|
case 'p':
|
|
enabled_port_mask = parse_portmask(optarg);
|
|
if (enabled_port_mask == 0) {
|
|
printf("invalid portmask\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
/* nqueue */
|
|
case 'q':
|
|
rx_queue_per_lcore = parse_nqueue(optarg);
|
|
if (rx_queue_per_lcore < 0) {
|
|
printf("invalid queue number\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (optind >= 0)
|
|
argv[optind-1] = prgname;
|
|
|
|
ret = optind-1;
|
|
optind = 1; /* reset getopt lib */
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
|
|
{
|
|
char buf[RTE_ETHER_ADDR_FMT_SIZE];
|
|
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
|
|
printf("%s%s", name, buf);
|
|
}
|
|
|
|
static int
|
|
init_mcast_hash(void)
|
|
{
|
|
uint32_t i;
|
|
|
|
mcast_hash_params.socket_id = rte_socket_id();
|
|
mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
|
|
if (mcast_hash == NULL){
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < RTE_DIM(mcast_group_table); i++) {
|
|
if (rte_fbk_hash_add_key(mcast_hash,
|
|
mcast_group_table[i].ip,
|
|
mcast_group_table[i].port_mask) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check the link status of all ports in up to 9s, and print them finally */
|
|
static void
|
|
check_all_ports_link_status(uint32_t port_mask)
|
|
{
|
|
#define CHECK_INTERVAL 100 /* 100ms */
|
|
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
|
|
uint16_t portid;
|
|
uint8_t count, all_ports_up, print_flag = 0;
|
|
struct rte_eth_link link;
|
|
int ret;
|
|
|
|
printf("\nChecking link status");
|
|
fflush(stdout);
|
|
for (count = 0; count <= MAX_CHECK_TIME; count++) {
|
|
all_ports_up = 1;
|
|
RTE_ETH_FOREACH_DEV(portid) {
|
|
if ((port_mask & (1 << portid)) == 0)
|
|
continue;
|
|
memset(&link, 0, sizeof(link));
|
|
ret = rte_eth_link_get_nowait(portid, &link);
|
|
if (ret < 0) {
|
|
all_ports_up = 0;
|
|
if (print_flag == 1)
|
|
printf("Port %u link get failed: %s\n",
|
|
portid, rte_strerror(-ret));
|
|
continue;
|
|
}
|
|
/* print link status if flag set */
|
|
if (print_flag == 1) {
|
|
if (link.link_status)
|
|
printf(
|
|
"Port%d Link Up. Speed %u Mbps - %s\n",
|
|
portid, link.link_speed,
|
|
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
|
|
("full-duplex") : ("half-duplex\n"));
|
|
else
|
|
printf("Port %d Link Down\n", portid);
|
|
continue;
|
|
}
|
|
/* clear all_ports_up flag if any link down */
|
|
if (link.link_status == ETH_LINK_DOWN) {
|
|
all_ports_up = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* after finally printing all link status, get out */
|
|
if (print_flag == 1)
|
|
break;
|
|
|
|
if (all_ports_up == 0) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
rte_delay_ms(CHECK_INTERVAL);
|
|
}
|
|
|
|
/* set the print_flag if all ports up or timeout */
|
|
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
|
|
print_flag = 1;
|
|
printf("done\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
struct lcore_queue_conf *qconf;
|
|
struct rte_eth_dev_info dev_info;
|
|
struct rte_eth_txconf *txconf;
|
|
int ret;
|
|
uint16_t queueid;
|
|
unsigned lcore_id = 0, rx_lcore_id = 0;
|
|
uint32_t n_tx_queue, nb_lcores;
|
|
uint16_t portid;
|
|
|
|
/* init EAL */
|
|
ret = rte_eal_init(argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
|
|
argc -= ret;
|
|
argv += ret;
|
|
|
|
/* parse application arguments (after the EAL ones) */
|
|
ret = parse_args(argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
|
|
|
|
/* create the mbuf pools */
|
|
packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
|
|
0, PKT_MBUF_DATA_SIZE, rte_socket_id());
|
|
|
|
if (packet_pool == NULL)
|
|
rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
|
|
|
|
header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
|
|
0, HDR_MBUF_DATA_SIZE, rte_socket_id());
|
|
|
|
if (header_pool == NULL)
|
|
rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
|
|
|
|
clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
|
|
0, 0, rte_socket_id());
|
|
|
|
if (clone_pool == NULL)
|
|
rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
|
|
|
|
nb_ports = rte_eth_dev_count_avail();
|
|
if (nb_ports == 0)
|
|
rte_exit(EXIT_FAILURE, "No physical ports!\n");
|
|
if (nb_ports > MAX_PORTS)
|
|
nb_ports = MAX_PORTS;
|
|
|
|
nb_lcores = rte_lcore_count();
|
|
|
|
/* initialize all ports */
|
|
RTE_ETH_FOREACH_DEV(portid) {
|
|
struct rte_eth_rxconf rxq_conf;
|
|
struct rte_eth_conf local_port_conf = port_conf;
|
|
|
|
/* skip ports that are not enabled */
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
printf("Skipping disabled port %d\n", portid);
|
|
continue;
|
|
}
|
|
|
|
qconf = &lcore_queue_conf[rx_lcore_id];
|
|
|
|
/* limit the frame size to the maximum supported by NIC */
|
|
ret = rte_eth_dev_info_get(portid, &dev_info);
|
|
if (ret != 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Error during getting device (port %u) info: %s\n",
|
|
portid, strerror(-ret));
|
|
|
|
local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
|
|
dev_info.max_rx_pktlen,
|
|
local_port_conf.rxmode.max_rx_pkt_len);
|
|
|
|
/* get the lcore_id for this port */
|
|
while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
|
|
qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
|
|
|
|
rx_lcore_id ++;
|
|
qconf = &lcore_queue_conf[rx_lcore_id];
|
|
|
|
if (rx_lcore_id >= RTE_MAX_LCORE)
|
|
rte_exit(EXIT_FAILURE, "Not enough cores\n");
|
|
}
|
|
qconf->rx_queue_list[qconf->n_rx_queue] = portid;
|
|
qconf->n_rx_queue++;
|
|
|
|
/* init port */
|
|
printf("Initializing port %d on lcore %u... ", portid,
|
|
rx_lcore_id);
|
|
fflush(stdout);
|
|
|
|
n_tx_queue = nb_lcores;
|
|
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
|
|
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
|
|
|
|
ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
|
|
&local_port_conf);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
|
|
&nb_txd);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Cannot adjust number of descriptors: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Cannot get MAC address: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
print_ethaddr(" Address:", &ports_eth_addr[portid]);
|
|
printf(", ");
|
|
|
|
/* init one RX queue */
|
|
queueid = 0;
|
|
printf("rxq=%hu ", queueid);
|
|
fflush(stdout);
|
|
rxq_conf = dev_info.default_rxconf;
|
|
rxq_conf.offloads = local_port_conf.rxmode.offloads;
|
|
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
|
|
rte_eth_dev_socket_id(portid),
|
|
&rxq_conf,
|
|
packet_pool);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
/* init one TX queue per couple (lcore,port) */
|
|
queueid = 0;
|
|
|
|
RTE_LCORE_FOREACH(lcore_id) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
printf("txq=%u,%hu ", lcore_id, queueid);
|
|
fflush(stdout);
|
|
|
|
txconf = &dev_info.default_txconf;
|
|
txconf->offloads = local_port_conf.txmode.offloads;
|
|
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
|
|
rte_lcore_to_socket_id(lcore_id), txconf);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
|
|
"port=%d\n", ret, portid);
|
|
|
|
qconf = &lcore_queue_conf[lcore_id];
|
|
qconf->tx_queue_id[portid] = queueid;
|
|
queueid++;
|
|
}
|
|
ret = rte_eth_allmulticast_enable(portid);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"rte_eth_allmulticast_enable: err=%d, port=%d\n",
|
|
ret, portid);
|
|
/* Start device */
|
|
ret = rte_eth_dev_start(portid);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
printf("done:\n");
|
|
}
|
|
|
|
check_all_ports_link_status(enabled_port_mask);
|
|
|
|
/* initialize the multicast hash */
|
|
int retval = init_mcast_hash();
|
|
if (retval != 0)
|
|
rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
|
|
|
|
/* launch per-lcore init on every lcore */
|
|
rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
if (rte_eal_wait_lcore(lcore_id) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|