f12f13f2f6
To initialize a structure with zeros, one field was explicitly set
to avoid "missing initializer" bug with old GCC (e.g. 4.4).
This warning is now disabled (commit <insertlater>) for old versions of GCC,
so the workarounds may be removed.
These initializers should not be needed for static variables but they
are still used to workaround an ICC bug (see commit b2595c4aa9
).
There is one remaining exception where {0} initializer doesn't work cleanly,
even with recent GCC:
lib/librte_pmd_ixgbe/ixgbe_rxtx_vec.c:735:9:
error: missing braces around initializer [-Werror=missing-braces]
struct rte_mbuf mb_def = {0}; /* zeroed mbuf */
Tested with gcc-4.4.7 (CentOS), gcc-4.7.2 (Debian), gcc-4.9.2 (Arch),
clang-3.6.0 and icc-13.1.1.
Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
Tested-by: Thomas Monjalon <thomas.monjalon@6wind.com>
Tested-by: John McNamara <john.mcnamara@intel.com>
Acked-by: John McNamara <john.mcnamara@intel.com>
Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com>
422 lines
12 KiB
C
422 lines
12 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include <inttypes.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_launch.h>
|
|
|
|
#include "test.h"
|
|
|
|
/*
|
|
* Ring
|
|
* ====
|
|
*
|
|
* Measures performance of various operations using rdtsc
|
|
* * Empty ring dequeue
|
|
* * Enqueue/dequeue of bursts in 1 threads
|
|
* * Enqueue/dequeue of bursts in 2 threads
|
|
*/
|
|
|
|
#define RING_NAME "RING_PERF"
|
|
#define RING_SIZE 4096
|
|
#define MAX_BURST 32
|
|
|
|
/*
|
|
* the sizes to enqueue and dequeue in testing
|
|
* (marked volatile so they won't be seen as compile-time constants)
|
|
*/
|
|
static const volatile unsigned bulk_sizes[] = { 8, 32 };
|
|
|
|
/* The ring structure used for tests */
|
|
static struct rte_ring *r;
|
|
|
|
struct lcore_pair {
|
|
unsigned c1, c2;
|
|
};
|
|
|
|
static volatile unsigned lcore_count = 0;
|
|
|
|
/**** Functions to analyse our core mask to get cores for different tests ***/
|
|
|
|
static int
|
|
get_two_hyperthreads(struct lcore_pair *lcp)
|
|
{
|
|
unsigned id1, id2;
|
|
unsigned c1, c2, s1, s2;
|
|
RTE_LCORE_FOREACH(id1) {
|
|
/* inner loop just re-reads all id's. We could skip the first few
|
|
* elements, but since number of cores is small there is little point
|
|
*/
|
|
RTE_LCORE_FOREACH(id2) {
|
|
if (id1 == id2)
|
|
continue;
|
|
c1 = lcore_config[id1].core_id;
|
|
c2 = lcore_config[id2].core_id;
|
|
s1 = lcore_config[id1].socket_id;
|
|
s2 = lcore_config[id2].socket_id;
|
|
if ((c1 == c2) && (s1 == s2)){
|
|
lcp->c1 = id1;
|
|
lcp->c2 = id2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
get_two_cores(struct lcore_pair *lcp)
|
|
{
|
|
unsigned id1, id2;
|
|
unsigned c1, c2, s1, s2;
|
|
RTE_LCORE_FOREACH(id1) {
|
|
RTE_LCORE_FOREACH(id2) {
|
|
if (id1 == id2)
|
|
continue;
|
|
c1 = lcore_config[id1].core_id;
|
|
c2 = lcore_config[id2].core_id;
|
|
s1 = lcore_config[id1].socket_id;
|
|
s2 = lcore_config[id2].socket_id;
|
|
if ((c1 != c2) && (s1 == s2)){
|
|
lcp->c1 = id1;
|
|
lcp->c2 = id2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
get_two_sockets(struct lcore_pair *lcp)
|
|
{
|
|
unsigned id1, id2;
|
|
unsigned s1, s2;
|
|
RTE_LCORE_FOREACH(id1) {
|
|
RTE_LCORE_FOREACH(id2) {
|
|
if (id1 == id2)
|
|
continue;
|
|
s1 = lcore_config[id1].socket_id;
|
|
s2 = lcore_config[id2].socket_id;
|
|
if (s1 != s2){
|
|
lcp->c1 = id1;
|
|
lcp->c2 = id2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Get cycle counts for dequeuing from an empty ring. Should be 2 or 3 cycles */
|
|
static void
|
|
test_empty_dequeue(void)
|
|
{
|
|
const unsigned iter_shift = 26;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
unsigned i = 0;
|
|
void *burst[MAX_BURST];
|
|
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[0]);
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[0]);
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
printf("SC empty dequeue: %.2F\n",
|
|
(double)(sc_end-sc_start) / iterations);
|
|
printf("MC empty dequeue: %.2F\n",
|
|
(double)(mc_end-mc_start) / iterations);
|
|
}
|
|
|
|
/*
|
|
* for the separate enqueue and dequeue threads they take in one param
|
|
* and return two. Input = burst size, output = cycle average for sp/sc & mp/mc
|
|
*/
|
|
struct thread_params {
|
|
unsigned size; /* input value, the burst size */
|
|
double spsc, mpmc; /* output value, the single or multi timings */
|
|
};
|
|
|
|
/*
|
|
* Function that uses rdtsc to measure timing for ring enqueue. Needs pair
|
|
* thread running dequeue_bulk function
|
|
*/
|
|
static int
|
|
enqueue_bulk(void *p)
|
|
{
|
|
const unsigned iter_shift = 23;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
struct thread_params *params = p;
|
|
const unsigned size = params->size;
|
|
unsigned i;
|
|
void *burst[MAX_BURST] = {0};
|
|
|
|
if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
|
|
while(lcore_count != 2)
|
|
rte_pause();
|
|
|
|
const uint64_t sp_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
while (rte_ring_sp_enqueue_bulk(r, burst, size) != 0)
|
|
rte_pause();
|
|
const uint64_t sp_end = rte_rdtsc();
|
|
|
|
const uint64_t mp_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
while (rte_ring_mp_enqueue_bulk(r, burst, size) != 0)
|
|
rte_pause();
|
|
const uint64_t mp_end = rte_rdtsc();
|
|
|
|
params->spsc = ((double)(sp_end - sp_start))/(iterations*size);
|
|
params->mpmc = ((double)(mp_end - mp_start))/(iterations*size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function that uses rdtsc to measure timing for ring dequeue. Needs pair
|
|
* thread running enqueue_bulk function
|
|
*/
|
|
static int
|
|
dequeue_bulk(void *p)
|
|
{
|
|
const unsigned iter_shift = 23;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
struct thread_params *params = p;
|
|
const unsigned size = params->size;
|
|
unsigned i;
|
|
void *burst[MAX_BURST] = {0};
|
|
|
|
if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
|
|
while(lcore_count != 2)
|
|
rte_pause();
|
|
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
while (rte_ring_sc_dequeue_bulk(r, burst, size) != 0)
|
|
rte_pause();
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
while (rte_ring_mc_dequeue_bulk(r, burst, size) != 0)
|
|
rte_pause();
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
params->spsc = ((double)(sc_end - sc_start))/(iterations*size);
|
|
params->mpmc = ((double)(mc_end - mc_start))/(iterations*size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function that calls the enqueue and dequeue bulk functions on pairs of cores.
|
|
* used to measure ring perf between hyperthreads, cores and sockets.
|
|
*/
|
|
static void
|
|
run_on_core_pair(struct lcore_pair *cores,
|
|
lcore_function_t f1, lcore_function_t f2)
|
|
{
|
|
struct thread_params param1 = {0}, param2 = {0};
|
|
unsigned i;
|
|
for (i = 0; i < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); i++) {
|
|
lcore_count = 0;
|
|
param1.size = param2.size = bulk_sizes[i];
|
|
if (cores->c1 == rte_get_master_lcore()) {
|
|
rte_eal_remote_launch(f2, ¶m2, cores->c2);
|
|
f1(¶m1);
|
|
rte_eal_wait_lcore(cores->c2);
|
|
} else {
|
|
rte_eal_remote_launch(f1, ¶m1, cores->c1);
|
|
rte_eal_remote_launch(f2, ¶m2, cores->c2);
|
|
rte_eal_wait_lcore(cores->c1);
|
|
rte_eal_wait_lcore(cores->c2);
|
|
}
|
|
printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
|
|
param1.spsc + param2.spsc);
|
|
printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
|
|
param1.mpmc + param2.mpmc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Test function that determines how long an enqueue + dequeue of a single item
|
|
* takes on a single lcore. Result is for comparison with the bulk enq+deq.
|
|
*/
|
|
static void
|
|
test_single_enqueue_dequeue(void)
|
|
{
|
|
const unsigned iter_shift = 24;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
unsigned i = 0;
|
|
void *burst = NULL;
|
|
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_sp_enqueue(r, burst);
|
|
rte_ring_sc_dequeue(r, &burst);
|
|
}
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_mp_enqueue(r, burst);
|
|
rte_ring_mc_dequeue(r, &burst);
|
|
}
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
printf("SP/SC single enq/dequeue: %"PRIu64"\n",
|
|
(sc_end-sc_start) >> iter_shift);
|
|
printf("MP/MC single enq/dequeue: %"PRIu64"\n",
|
|
(mc_end-mc_start) >> iter_shift);
|
|
}
|
|
|
|
/*
|
|
* Test that does both enqueue and dequeue on a core using the burst() API calls
|
|
* instead of the bulk() calls used in other tests. Results should be the same
|
|
* as for the bulk function called on a single lcore.
|
|
*/
|
|
static void
|
|
test_burst_enqueue_dequeue(void)
|
|
{
|
|
const unsigned iter_shift = 23;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
unsigned sz, i = 0;
|
|
void *burst[MAX_BURST] = {0};
|
|
|
|
for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_sp_enqueue_burst(r, burst, bulk_sizes[sz]);
|
|
rte_ring_sc_dequeue_burst(r, burst, bulk_sizes[sz]);
|
|
}
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_mp_enqueue_burst(r, burst, bulk_sizes[sz]);
|
|
rte_ring_mc_dequeue_burst(r, burst, bulk_sizes[sz]);
|
|
}
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
uint64_t mc_avg = ((mc_end-mc_start) >> iter_shift) / bulk_sizes[sz];
|
|
uint64_t sc_avg = ((sc_end-sc_start) >> iter_shift) / bulk_sizes[sz];
|
|
|
|
printf("SP/SC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
|
|
sc_avg);
|
|
printf("MP/MC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
|
|
mc_avg);
|
|
}
|
|
}
|
|
|
|
/* Times enqueue and dequeue on a single lcore */
|
|
static void
|
|
test_bulk_enqueue_dequeue(void)
|
|
{
|
|
const unsigned iter_shift = 23;
|
|
const unsigned iterations = 1<<iter_shift;
|
|
unsigned sz, i = 0;
|
|
void *burst[MAX_BURST] = {0};
|
|
|
|
for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
|
|
const uint64_t sc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_sp_enqueue_bulk(r, burst, bulk_sizes[sz]);
|
|
rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[sz]);
|
|
}
|
|
const uint64_t sc_end = rte_rdtsc();
|
|
|
|
const uint64_t mc_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_ring_mp_enqueue_bulk(r, burst, bulk_sizes[sz]);
|
|
rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[sz]);
|
|
}
|
|
const uint64_t mc_end = rte_rdtsc();
|
|
|
|
double sc_avg = ((double)(sc_end-sc_start) /
|
|
(iterations * bulk_sizes[sz]));
|
|
double mc_avg = ((double)(mc_end-mc_start) /
|
|
(iterations * bulk_sizes[sz]));
|
|
|
|
printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
|
|
sc_avg);
|
|
printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
|
|
mc_avg);
|
|
}
|
|
}
|
|
|
|
static int
|
|
test_ring_perf(void)
|
|
{
|
|
struct lcore_pair cores;
|
|
r = rte_ring_create(RING_NAME, RING_SIZE, rte_socket_id(), 0);
|
|
if (r == NULL && (r = rte_ring_lookup(RING_NAME)) == NULL)
|
|
return -1;
|
|
|
|
printf("### Testing single element and burst enq/deq ###\n");
|
|
test_single_enqueue_dequeue();
|
|
test_burst_enqueue_dequeue();
|
|
|
|
printf("\n### Testing empty dequeue ###\n");
|
|
test_empty_dequeue();
|
|
|
|
printf("\n### Testing using a single lcore ###\n");
|
|
test_bulk_enqueue_dequeue();
|
|
|
|
if (get_two_hyperthreads(&cores) == 0) {
|
|
printf("\n### Testing using two hyperthreads ###\n");
|
|
run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
|
|
}
|
|
if (get_two_cores(&cores) == 0) {
|
|
printf("\n### Testing using two physical cores ###\n");
|
|
run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
|
|
}
|
|
if (get_two_sockets(&cores) == 0) {
|
|
printf("\n### Testing using two NUMA nodes ###\n");
|
|
run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct test_command ring_perf_cmd = {
|
|
.command = "ring_perf_autotest",
|
|
.callback = test_ring_perf,
|
|
};
|
|
REGISTER_TEST_COMMAND(ring_perf_cmd);
|