numam-dpdk/drivers/net/enic/enic_rxtx_vec_avx2.c
Bruce Richardson df96fd0d73 ethdev: make driver-only headers private
The rte_ethdev_driver.h, rte_ethdev_vdev.h and rte_ethdev_pci.h files are
for drivers only and should be a private to DPDK and not installed.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Steven Webster <steven.webster@windriver.com>
2021-01-29 20:59:09 +01:00

829 lines
27 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2018 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*/
#include <rte_mbuf.h>
#include <ethdev_driver.h>
#include <rte_vect.h>
#include "enic_compat.h"
#include "rq_enet_desc.h"
#include "enic.h"
#include "enic_rxtx_common.h"
#include <x86intrin.h>
static struct rte_mbuf *
rx_one(struct cq_enet_rq_desc *cqd, struct rte_mbuf *mb, struct enic *enic)
{
bool tnl;
*(uint64_t *)&mb->rearm_data = enic->mbuf_initializer;
mb->data_len = cqd->bytes_written_flags &
CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
mb->pkt_len = mb->data_len;
tnl = enic->overlay_offload && (cqd->completed_index_flags &
CQ_ENET_RQ_DESC_FLAGS_FCOE) != 0;
mb->packet_type =
enic_cq_rx_flags_to_pkt_type((struct cq_desc *)cqd, tnl);
enic_cq_rx_to_pkt_flags((struct cq_desc *)cqd, mb);
/* Wipe the outer types set by enic_cq_rx_flags_to_pkt_type() */
if (tnl) {
mb->packet_type &= ~(RTE_PTYPE_L3_MASK |
RTE_PTYPE_L4_MASK);
}
return mb;
}
static uint16_t
enic_noscatter_vec_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf **rx, **rxmb;
uint16_t cq_idx, nb_rx, max_rx;
struct cq_enet_rq_desc *cqd;
struct rq_enet_desc *rqd;
struct vnic_cq *cq;
struct vnic_rq *rq;
struct enic *enic;
uint8_t color;
rq = rx_queue;
enic = vnic_dev_priv(rq->vdev);
cq = &enic->cq[enic_cq_rq(enic, rq->index)];
cq_idx = cq->to_clean;
/*
* Fill up the reserve of free mbufs. Below, we restock the receive
* ring with these mbufs to avoid allocation failures.
*/
if (rq->num_free_mbufs == 0) {
if (rte_mempool_get_bulk(rq->mp, (void **)rq->free_mbufs,
ENIC_RX_BURST_MAX))
return 0;
rq->num_free_mbufs = ENIC_RX_BURST_MAX;
}
/* Receive until the end of the ring, at most. */
max_rx = RTE_MIN(nb_pkts, rq->num_free_mbufs);
max_rx = RTE_MIN(max_rx, cq->ring.desc_count - cq_idx);
rxmb = rq->mbuf_ring + cq_idx;
color = cq->last_color;
cqd = (struct cq_enet_rq_desc *)(cq->ring.descs) + cq_idx;
rx = rx_pkts;
if (max_rx == 0 ||
(cqd->type_color & CQ_DESC_COLOR_MASK_NOSHIFT) == color)
return 0;
/* Step 1: Process one packet to do aligned 256-bit load below */
if (cq_idx & 0x1) {
if (unlikely(cqd->bytes_written_flags &
CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
rte_pktmbuf_free(*rxmb++);
rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
} else {
*rx++ = rx_one(cqd, *rxmb++, enic);
}
cqd++;
max_rx--;
}
const __m256i mask =
_mm256_set_epi8(/* Second descriptor */
0xff, /* type_color */
(CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
CQ_ENET_RQ_DESC_FLAGS_IPV4 |
CQ_ENET_RQ_DESC_FLAGS_IPV6 |
CQ_ENET_RQ_DESC_FLAGS_TCP |
CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
0, 0, /* checksum_fcoe */
0xff, 0xff, /* vlan */
0x3f, 0xff, /* bytes_written_flags */
0xff, 0xff, 0xff, 0xff, /* rss_hash */
0xff, 0xff, /* q_number_rss_type_flags */
0, 0, /* completed_index_flags */
/* First descriptor */
0xff, /* type_color */
(CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
CQ_ENET_RQ_DESC_FLAGS_IPV4 |
CQ_ENET_RQ_DESC_FLAGS_IPV6 |
CQ_ENET_RQ_DESC_FLAGS_TCP |
CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
0, 0, /* checksum_fcoe */
0xff, 0xff, /* vlan */
0x3f, 0xff, /* bytes_written_flags */
0xff, 0xff, 0xff, 0xff, /* rss_hash */
0xff, 0xff, /* q_number_rss_type_flags */
0, 0 /* completed_index_flags */
);
const __m256i shuffle_mask =
_mm256_set_epi8(/* Second descriptor */
7, 6, 5, 4, /* rss = rss_hash */
11, 10, /* vlan_tci = vlan */
9, 8, /* data_len = bytes_written */
0x80, 0x80, 9, 8, /* pkt_len = bytes_written */
0x80, 0x80, 0x80, 0x80, /* packet_type = 0 */
/* First descriptor */
7, 6, 5, 4, /* rss = rss_hash */
11, 10, /* vlan_tci = vlan */
9, 8, /* data_len = bytes_written */
0x80, 0x80, 9, 8, /* pkt_len = bytes_written */
0x80, 0x80, 0x80, 0x80 /* packet_type = 0 */
);
/* Used to collect 8 flags from 8 desc into one register */
const __m256i flags_shuffle_mask =
_mm256_set_epi8(/* Second descriptor */
1, 3, 9, 14,
1, 3, 9, 14,
1, 3, 9, 14,
1, 3, 9, 14,
/* First descriptor */
1, 3, 9, 14,
1, 3, 9, 14,
1, 3, 9, 14,
/*
* Byte 3: upper byte of completed_index_flags
* bit 5 = fcoe (tunnel)
* Byte 2: upper byte of q_number_rss_type_flags
* bits 2,3,4,5 = rss type
* bit 6 = csum_not_calc
* Byte 1: upper byte of bytes_written_flags
* bit 6 = truncated
* bit 7 = vlan stripped
* Byte 0: flags
*/
1, 3, 9, 14
);
/* Used to collect 8 VLAN IDs from 8 desc into one register */
const __m256i vlan_shuffle_mask =
_mm256_set_epi8(/* Second descriptor */
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
/* First descriptor */
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10);
/* PKT_RX_RSS_HASH is 1<<1 so fits in 8-bit integer */
const __m256i rss_shuffle =
_mm256_set_epi8(/* second 128 bits */
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
0, /* rss_types = 0 */
/* first 128 bits */
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
0 /* rss_types = 0 */);
/*
* VLAN offload flags.
* shuffle index:
* vlan_stripped => bit 0
* vlan_id == 0 => bit 1
*/
const __m256i vlan_shuffle =
_mm256_set_epi32(0, 0, 0, 0,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN);
/* Use the same shuffle index as vlan_shuffle */
const __m256i vlan_ptype_shuffle =
_mm256_set_epi32(0, 0, 0, 0,
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN);
/*
* CKSUM flags. Shift right so they fit int 8-bit integers.
* shuffle index:
* ipv4_csum_ok => bit 3
* ip4 => bit 2
* tcp_or_udp => bit 1
* tcp_udp_csum_ok => bit 0
*/
const __m256i csum_shuffle =
_mm256_set_epi8(/* second 128 bits */
/* 1111 ip4+ip4_ok+l4+l4_ok */
((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
/* 1110 ip4_ok+ip4+l4+!l4_ok */
((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1),
(PKT_RX_IP_CKSUM_GOOD >> 1), /* 1101 ip4+ip4_ok */
(PKT_RX_IP_CKSUM_GOOD >> 1), /* 1100 ip4_ok+ip4 */
(PKT_RX_L4_CKSUM_GOOD >> 1), /* 1011 l4+l4_ok */
(PKT_RX_L4_CKSUM_BAD >> 1), /* 1010 l4+!l4_ok */
0, /* 1001 */
0, /* 1000 */
/* 0111 !ip4_ok+ip4+l4+l4_ok */
((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> 1),
/* 0110 !ip4_ok+ip4+l4+!l4_ok */
((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1),
(PKT_RX_IP_CKSUM_BAD >> 1), /* 0101 !ip4_ok+ip4 */
(PKT_RX_IP_CKSUM_BAD >> 1), /* 0100 !ip4_ok+ip4 */
(PKT_RX_L4_CKSUM_GOOD >> 1), /* 0011 l4+l4_ok */
(PKT_RX_L4_CKSUM_BAD >> 1), /* 0010 l4+!l4_ok */
0, /* 0001 */
0, /* 0000 */
/* first 128 bits */
((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1),
(PKT_RX_IP_CKSUM_GOOD >> 1),
(PKT_RX_IP_CKSUM_GOOD >> 1),
(PKT_RX_L4_CKSUM_GOOD >> 1),
(PKT_RX_L4_CKSUM_BAD >> 1),
0, 0,
((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> 1),
((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1),
(PKT_RX_IP_CKSUM_BAD >> 1),
(PKT_RX_IP_CKSUM_BAD >> 1),
(PKT_RX_L4_CKSUM_GOOD >> 1),
(PKT_RX_L4_CKSUM_BAD >> 1),
0, 0);
/*
* Non-fragment PTYPEs.
* Shuffle 4-bit index:
* ip6 => bit 0
* ip4 => bit 1
* udp => bit 2
* tcp => bit 3
* bit
* 3 2 1 0
* -------
* 0 0 0 0 unknown
* 0 0 0 1 ip6 | nonfrag
* 0 0 1 0 ip4 | nonfrag
* 0 0 1 1 unknown
* 0 1 0 0 unknown
* 0 1 0 1 ip6 | udp
* 0 1 1 0 ip4 | udp
* 0 1 1 1 unknown
* 1 0 0 0 unknown
* 1 0 0 1 ip6 | tcp
* 1 0 1 0 ip4 | tcp
* 1 0 1 1 unknown
* 1 1 0 0 unknown
* 1 1 0 1 unknown
* 1 1 1 0 unknown
* 1 1 1 1 unknown
*
* PTYPEs do not fit in 8 bits, so shift right 4..
*/
const __m256i nonfrag_ptype_shuffle =
_mm256_set_epi8(/* second 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG) >> 4,
RTE_PTYPE_UNKNOWN,
/* first 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG) >> 4,
RTE_PTYPE_UNKNOWN);
/* Fragment PTYPEs. Use the same shuffle index as above. */
const __m256i frag_ptype_shuffle =
_mm256_set_epi8(/* second 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN,
/* first 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN);
/*
* Tunnel PTYPEs. Use the same shuffle index as above.
* L4 types are not part of this table. They come from non-tunnel
* types above.
*/
const __m256i tnl_l3_ptype_shuffle =
_mm256_set_epi8(/* second 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN,
/* first 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN);
const __m256i mbuf_init = _mm256_set_epi64x(0, enic->mbuf_initializer,
0, enic->mbuf_initializer);
/*
* --- cq desc fields --- offset
* completed_index_flags - 0 use: fcoe
* q_number_rss_type_flags - 2 use: rss types, csum_not_calc
* rss_hash - 4 ==> mbuf.hash.rss
* bytes_written_flags - 8 ==> mbuf.pkt_len,data_len
* use: truncated, vlan_stripped
* vlan - 10 ==> mbuf.vlan_tci
* checksum_fcoe - 12 (unused)
* flags - 14 use: all bits
* type_color - 15 (unused)
*
* --- mbuf fields --- offset
* rearm_data ---- 16
* data_off - 0 (mbuf_init) -+
* refcnt - 2 (mbuf_init) |
* nb_segs - 4 (mbuf_init) | 16B 128b
* port - 6 (mbuf_init) |
* ol_flag - 8 (from cqd) -+
* rx_descriptor_fields1 ---- 32
* packet_type - 0 (from cqd) -+
* pkt_len - 4 (from cqd) |
* data_len - 8 (from cqd) | 16B 128b
* vlan_tci - 10 (from cqd) |
* rss - 12 (from cqd) -+
*/
__m256i overlay_enabled =
_mm256_set1_epi32((uint32_t)enic->overlay_offload);
/* Step 2: Process 8 packets per loop using SIMD */
while (max_rx > 7 && (((cqd + 7)->type_color &
CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
/* Load 8 16B CQ descriptors */
__m256i cqd01 = _mm256_load_si256((void *)cqd);
__m256i cqd23 = _mm256_load_si256((void *)(cqd + 2));
__m256i cqd45 = _mm256_load_si256((void *)(cqd + 4));
__m256i cqd67 = _mm256_load_si256((void *)(cqd + 6));
/* Copy 8 mbuf pointers to rx_pkts */
_mm256_storeu_si256((void *)rx,
_mm256_loadu_si256((void *)rxmb));
_mm256_storeu_si256((void *)(rx + 4),
_mm256_loadu_si256((void *)(rxmb + 4)));
/*
* Collect 8 flags (each 32 bits) into one register.
* 4 shuffles, 3 blends, 1 permute for 8 desc: 1 inst/desc
*/
__m256i flags01 =
_mm256_shuffle_epi8(cqd01, flags_shuffle_mask);
/*
* Shuffle above produces 8 x 32-bit flags for 8 descriptors
* in this order: 0, 0, 0, 0, 1, 1, 1, 1
* The duplicates in each 128-bit lane simplifies blending
* below.
*/
__m256i flags23 =
_mm256_shuffle_epi8(cqd23, flags_shuffle_mask);
__m256i flags45 =
_mm256_shuffle_epi8(cqd45, flags_shuffle_mask);
__m256i flags67 =
_mm256_shuffle_epi8(cqd67, flags_shuffle_mask);
/* 1st blend produces flags for desc: 0, 2, 0, 0, 1, 3, 1, 1 */
__m256i flags0_3 = _mm256_blend_epi32(flags01, flags23, 0x22);
/* 2nd blend produces flags for desc: 4, 4, 4, 6, 5, 5, 5, 7 */
__m256i flags4_7 = _mm256_blend_epi32(flags45, flags67, 0x88);
/* 3rd blend produces flags for desc: 0, 2, 4, 6, 1, 3, 5, 7 */
__m256i flags0_7 = _mm256_blend_epi32(flags0_3, flags4_7, 0xcc);
/*
* Swap to reorder flags in this order: 1, 3, 5, 7, 0, 2, 4, 6
* This order simplifies blend operations way below that
* produce 'rearm' data for each mbuf.
*/
flags0_7 = _mm256_permute4x64_epi64(flags0_7,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/*
* Check truncated bits and bail out early on.
* 6 avx inst, 1 or, 1 if-then-else for 8 desc: 1 inst/desc
*/
__m256i trunc =
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 17), 31);
trunc = _mm256_add_epi64(trunc, _mm256_permute4x64_epi64(trunc,
(1 << 6) + (0 << 4) + (3 << 2) + 2));
/* 0:63 contains 1+3+0+2 and 64:127 contains 5+7+4+6 */
if (_mm256_extract_epi64(trunc, 0) ||
_mm256_extract_epi64(trunc, 1))
break;
/*
* Compute PKT_RX_RSS_HASH.
* Use 2 shifts and 1 shuffle for 8 desc: 0.375 inst/desc
* RSS types in byte 0, 4, 8, 12, 16, 20, 24, 28
* Everything else is zero.
*/
__m256i rss_types =
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 10), 28);
/*
* RSS flags (PKT_RX_RSS_HASH) are in
* byte 0, 4, 8, 12, 16, 20, 24, 28
* Everything else is zero.
*/
__m256i rss_flags = _mm256_shuffle_epi8(rss_shuffle, rss_types);
/*
* Compute CKSUM flags. First build the index and then
* use it to shuffle csum_shuffle.
* 20 instructions including const loads: 2.5 inst/desc
*/
/*
* csum_not_calc (bit 22)
* csum_not_calc (0) => 0xffffffff
* csum_not_calc (1) => 0x0
*/
const __m256i zero4 = _mm256_setzero_si256();
const __m256i mask22 = _mm256_set1_epi32(0x400000);
__m256i csum_not_calc = _mm256_cmpeq_epi32(zero4,
_mm256_and_si256(flags0_7, mask22));
/*
* (tcp|udp) && !fragment => bit 1
* tcp = bit 2, udp = bit 1, frag = bit 6
*/
const __m256i mask1 = _mm256_set1_epi32(0x2);
__m256i tcp_udp =
_mm256_andnot_si256(_mm256_srli_epi32(flags0_7, 5),
_mm256_or_si256(flags0_7,
_mm256_srli_epi32(flags0_7, 1)));
tcp_udp = _mm256_and_si256(tcp_udp, mask1);
/* ipv4 (bit 5) => bit 2 */
const __m256i mask2 = _mm256_set1_epi32(0x4);
__m256i ipv4 = _mm256_and_si256(mask2,
_mm256_srli_epi32(flags0_7, 3));
/*
* ipv4_csum_ok (bit 3) => bit 3
* tcp_udp_csum_ok (bit 0) => bit 0
* 0x9
*/
const __m256i mask0_3 = _mm256_set1_epi32(0x9);
__m256i csum_idx = _mm256_and_si256(flags0_7, mask0_3);
csum_idx = _mm256_and_si256(csum_not_calc,
_mm256_or_si256(_mm256_or_si256(csum_idx, ipv4),
tcp_udp));
__m256i csum_flags =
_mm256_shuffle_epi8(csum_shuffle, csum_idx);
/* Shift left to restore CKSUM flags. See csum_shuffle. */
csum_flags = _mm256_slli_epi32(csum_flags, 1);
/* Combine csum flags and offload flags: 0.125 inst/desc */
rss_flags = _mm256_or_si256(rss_flags, csum_flags);
/*
* Collect 8 VLAN IDs and compute vlan_id != 0 on each.
* 4 shuffles, 3 blends, 1 permute, 1 cmp, 1 sub for 8 desc:
* 1.25 inst/desc
*/
__m256i vlan01 = _mm256_shuffle_epi8(cqd01, vlan_shuffle_mask);
__m256i vlan23 = _mm256_shuffle_epi8(cqd23, vlan_shuffle_mask);
__m256i vlan45 = _mm256_shuffle_epi8(cqd45, vlan_shuffle_mask);
__m256i vlan67 = _mm256_shuffle_epi8(cqd67, vlan_shuffle_mask);
__m256i vlan0_3 = _mm256_blend_epi32(vlan01, vlan23, 0x22);
__m256i vlan4_7 = _mm256_blend_epi32(vlan45, vlan67, 0x88);
/* desc: 0, 2, 4, 6, 1, 3, 5, 7 */
__m256i vlan0_7 = _mm256_blend_epi32(vlan0_3, vlan4_7, 0xcc);
/* desc: 1, 3, 5, 7, 0, 2, 4, 6 */
vlan0_7 = _mm256_permute4x64_epi64(vlan0_7,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/*
* Compare 0 == vlan_id produces 0xffffffff (-1) if
* vlan 0 and 0 if vlan non-0. Then subtracting the
* result from 0 produces 0 - (-1) = 1 for vlan 0, and
* 0 - 0 = 0 for vlan non-0.
*/
vlan0_7 = _mm256_cmpeq_epi32(zero4, vlan0_7);
/* vlan_id != 0 => 0, vlan_id == 0 => 1 */
vlan0_7 = _mm256_sub_epi32(zero4, vlan0_7);
/*
* Compute PKT_RX_VLAN and PKT_RX_VLAN_STRIPPED.
* Use 3 shifts, 1 or, 1 shuffle for 8 desc: 0.625 inst/desc
* VLAN offload flags in byte 0, 4, 8, 12, 16, 20, 24, 28
* Everything else is zero.
*/
__m256i vlan_idx =
_mm256_or_si256(/* vlan_stripped => bit 0 */
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7,
16), 31),
/* (vlan_id == 0) => bit 1 */
_mm256_slli_epi32(vlan0_7, 1));
/*
* The index captures 4 cases.
* stripped, id = 0 ==> 11b = 3
* stripped, id != 0 ==> 01b = 1
* not strip, id == 0 ==> 10b = 2
* not strip, id != 0 ==> 00b = 0
*/
__m256i vlan_flags = _mm256_permutevar8x32_epi32(vlan_shuffle,
vlan_idx);
/* Combine vlan and offload flags: 0.125 inst/desc */
rss_flags = _mm256_or_si256(rss_flags, vlan_flags);
/*
* Compute non-tunnel PTYPEs.
* 17 inst / 8 desc = 2.125 inst/desc
*/
/* ETHER and ETHER_VLAN */
__m256i vlan_ptype =
_mm256_permutevar8x32_epi32(vlan_ptype_shuffle,
vlan_idx);
/* Build the ptype index from flags */
tcp_udp = _mm256_slli_epi32(flags0_7, 29);
tcp_udp = _mm256_slli_epi32(_mm256_srli_epi32(tcp_udp, 30), 2);
__m256i ip4_ip6 =
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 26), 30);
__m256i ptype_idx = _mm256_or_si256(tcp_udp, ip4_ip6);
__m256i frag_bit =
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 25), 31);
__m256i nonfrag_ptype =
_mm256_shuffle_epi8(nonfrag_ptype_shuffle, ptype_idx);
__m256i frag_ptype =
_mm256_shuffle_epi8(frag_ptype_shuffle, ptype_idx);
/*
* Zero out the unwanted types and combine the remaining bits.
* The effect is same as selecting non-frag or frag types
* depending on the frag bit.
*/
nonfrag_ptype = _mm256_and_si256(nonfrag_ptype,
_mm256_cmpeq_epi32(zero4, frag_bit));
frag_ptype = _mm256_and_si256(frag_ptype,
_mm256_cmpgt_epi32(frag_bit, zero4));
__m256i ptype = _mm256_or_si256(nonfrag_ptype, frag_ptype);
ptype = _mm256_slli_epi32(ptype, 4);
/*
* Compute tunnel PTYPEs.
* 15 inst / 8 desc = 1.875 inst/desc
*/
__m256i tnl_l3_ptype =
_mm256_shuffle_epi8(tnl_l3_ptype_shuffle, ptype_idx);
tnl_l3_ptype = _mm256_slli_epi32(tnl_l3_ptype, 16);
/*
* Shift non-tunnel L4 types to make them tunnel types.
* RTE_PTYPE_L4_TCP << 16 == RTE_PTYPE_INNER_L4_TCP
*/
__m256i tnl_l4_ptype =
_mm256_slli_epi32(_mm256_and_si256(ptype,
_mm256_set1_epi32(RTE_PTYPE_L4_MASK)), 16);
__m256i tnl_ptype =
_mm256_or_si256(tnl_l3_ptype, tnl_l4_ptype);
tnl_ptype = _mm256_or_si256(tnl_ptype,
_mm256_set1_epi32(RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L2_ETHER));
/*
* Select non-tunnel or tunnel types by zeroing out the
* unwanted ones.
*/
__m256i tnl_flags = _mm256_and_si256(overlay_enabled,
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 2), 31));
tnl_ptype = _mm256_and_si256(tnl_ptype,
_mm256_sub_epi32(zero4, tnl_flags));
ptype = _mm256_and_si256(ptype,
_mm256_cmpeq_epi32(zero4, tnl_flags));
/*
* Combine types and swap to have ptypes in the same order
* as desc.
* desc: 0 2 4 6 1 3 5 7
* 3 inst / 8 desc = 0.375 inst/desc
*/
ptype = _mm256_or_si256(ptype, tnl_ptype);
ptype = _mm256_or_si256(ptype, vlan_ptype);
ptype = _mm256_permute4x64_epi64(ptype,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/*
* Mask packet length.
* Use 4 ands: 0.5 instructions/desc
*/
cqd01 = _mm256_and_si256(cqd01, mask);
cqd23 = _mm256_and_si256(cqd23, mask);
cqd45 = _mm256_and_si256(cqd45, mask);
cqd67 = _mm256_and_si256(cqd67, mask);
/*
* Shuffle. Two 16B sets of the mbuf fields.
* packet_type, pkt_len, data_len, vlan_tci, rss
*/
__m256i rearm01 = _mm256_shuffle_epi8(cqd01, shuffle_mask);
__m256i rearm23 = _mm256_shuffle_epi8(cqd23, shuffle_mask);
__m256i rearm45 = _mm256_shuffle_epi8(cqd45, shuffle_mask);
__m256i rearm67 = _mm256_shuffle_epi8(cqd67, shuffle_mask);
/*
* Blend in ptypes
* 4 blends and 3 shuffles for 8 desc: 0.875 inst/desc
*/
rearm01 = _mm256_blend_epi32(rearm01, ptype, 0x11);
rearm23 = _mm256_blend_epi32(rearm23,
_mm256_shuffle_epi32(ptype, 1), 0x11);
rearm45 = _mm256_blend_epi32(rearm45,
_mm256_shuffle_epi32(ptype, 2), 0x11);
rearm67 = _mm256_blend_epi32(rearm67,
_mm256_shuffle_epi32(ptype, 3), 0x11);
/*
* Move rss_flags into ol_flags in mbuf_init.
* Use 1 shift and 1 blend for each desc: 2 inst/desc
*/
__m256i mbuf_init4_5 = _mm256_blend_epi32(mbuf_init,
rss_flags, 0x44);
__m256i mbuf_init2_3 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(rss_flags, 4), 0x44);
__m256i mbuf_init0_1 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(rss_flags, 8), 0x44);
__m256i mbuf_init6_7 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(rss_flags, 4), 0x44);
/*
* Build rearm, one per desc.
* 8 blends and 4 permutes: 1.5 inst/desc
*/
__m256i rearm0 = _mm256_blend_epi32(rearm01,
mbuf_init0_1, 0xf0);
__m256i rearm1 = _mm256_blend_epi32(mbuf_init0_1,
rearm01, 0xf0);
__m256i rearm2 = _mm256_blend_epi32(rearm23,
mbuf_init2_3, 0xf0);
__m256i rearm3 = _mm256_blend_epi32(mbuf_init2_3,
rearm23, 0xf0);
/* Swap upper and lower 64 bits */
rearm0 = _mm256_permute4x64_epi64(rearm0,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
rearm2 = _mm256_permute4x64_epi64(rearm2,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/* Second set of 4 descriptors */
__m256i rearm4 = _mm256_blend_epi32(rearm45,
mbuf_init4_5, 0xf0);
__m256i rearm5 = _mm256_blend_epi32(mbuf_init4_5,
rearm45, 0xf0);
__m256i rearm6 = _mm256_blend_epi32(rearm67,
mbuf_init6_7, 0xf0);
__m256i rearm7 = _mm256_blend_epi32(mbuf_init6_7,
rearm67, 0xf0);
rearm4 = _mm256_permute4x64_epi64(rearm4,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
rearm6 = _mm256_permute4x64_epi64(rearm6,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/*
* Write out 32B of mbuf fields.
* data_off - off 0 (mbuf_init)
* refcnt - 2 (mbuf_init)
* nb_segs - 4 (mbuf_init)
* port - 6 (mbuf_init)
* ol_flag - 8 (from cqd)
* packet_type - 16 (from cqd)
* pkt_len - 20 (from cqd)
* data_len - 24 (from cqd)
* vlan_tci - 26 (from cqd)
* rss - 28 (from cqd)
*/
_mm256_storeu_si256((__m256i *)&rxmb[0]->rearm_data, rearm0);
_mm256_storeu_si256((__m256i *)&rxmb[1]->rearm_data, rearm1);
_mm256_storeu_si256((__m256i *)&rxmb[2]->rearm_data, rearm2);
_mm256_storeu_si256((__m256i *)&rxmb[3]->rearm_data, rearm3);
_mm256_storeu_si256((__m256i *)&rxmb[4]->rearm_data, rearm4);
_mm256_storeu_si256((__m256i *)&rxmb[5]->rearm_data, rearm5);
_mm256_storeu_si256((__m256i *)&rxmb[6]->rearm_data, rearm6);
_mm256_storeu_si256((__m256i *)&rxmb[7]->rearm_data, rearm7);
max_rx -= 8;
cqd += 8;
rx += 8;
rxmb += 8;
}
/*
* Step 3: Slow path to handle a small (<8) number of packets and
* occasional truncated packets.
*/
while (max_rx && ((cqd->type_color &
CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
if (unlikely(cqd->bytes_written_flags &
CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
rte_pktmbuf_free(*rxmb++);
rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
} else {
*rx++ = rx_one(cqd, *rxmb++, enic);
}
cqd++;
max_rx--;
}
/* Number of descriptors visited */
nb_rx = cqd - (struct cq_enet_rq_desc *)(cq->ring.descs) - cq_idx;
if (nb_rx == 0)
return 0;
rqd = ((struct rq_enet_desc *)rq->ring.descs) + cq_idx;
rxmb = rq->mbuf_ring + cq_idx;
cq_idx += nb_rx;
rq->rx_nb_hold += nb_rx;
if (unlikely(cq_idx == cq->ring.desc_count)) {
cq_idx = 0;
cq->last_color ^= CQ_DESC_COLOR_MASK_NOSHIFT;
}
cq->to_clean = cq_idx;
/* Step 4: Restock RQ with new mbufs */
memcpy(rxmb, rq->free_mbufs + ENIC_RX_BURST_MAX - rq->num_free_mbufs,
sizeof(struct rte_mbuf *) * nb_rx);
rq->num_free_mbufs -= nb_rx;
while (nb_rx) {
rqd->address = (*rxmb)->buf_iova + RTE_PKTMBUF_HEADROOM;
nb_rx--;
rqd++;
rxmb++;
}
if (rq->rx_nb_hold > rq->rx_free_thresh) {
rq->posted_index = enic_ring_add(rq->ring.desc_count,
rq->posted_index,
rq->rx_nb_hold);
rq->rx_nb_hold = 0;
rte_wmb();
iowrite32_relaxed(rq->posted_index,
&rq->ctrl->posted_index);
}
return rx - rx_pkts;
}
bool
enic_use_vector_rx_handler(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
/* User needs to request for the avx2 handler */
if (!enic->enable_avx2_rx)
return false;
/* Do not support scatter Rx */
if (!(enic->rq_count > 0 && enic->rq[0].data_queue_enable == 0))
return false;
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) {
ENICPMD_LOG(DEBUG, " use the non-scatter avx2 Rx handler");
eth_dev->rx_pkt_burst = &enic_noscatter_vec_recv_pkts;
enic->use_noscatter_vec_rx_handler = 1;
return true;
}
return false;
}