numam-dpdk/drivers/net/failsafe/failsafe_ops.c
Bruce Richardson df96fd0d73 ethdev: make driver-only headers private
The rte_ethdev_driver.h, rte_ethdev_vdev.h and rte_ethdev_pci.h files are
for drivers only and should be a private to DPDK and not installed.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Steven Webster <steven.webster@windriver.com>
2021-01-29 20:59:09 +01:00

1564 lines
37 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
#include <stdbool.h>
#include <stdint.h>
#include <unistd.h>
#include <rte_debug.h>
#include <rte_atomic.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>
#include <rte_flow.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_string_fns.h>
#include "failsafe_private.h"
static int
fs_dev_configure(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV(sdev, i, dev) {
int rmv_interrupt = 0;
int lsc_interrupt = 0;
int lsc_enabled;
if (sdev->state != DEV_PROBED &&
!(PRIV(dev)->alarm_lock == 0 && sdev->state == DEV_ACTIVE))
continue;
rmv_interrupt = ETH(sdev)->data->dev_flags &
RTE_ETH_DEV_INTR_RMV;
if (rmv_interrupt) {
DEBUG("Enabling RMV interrupts for sub_device %d", i);
dev->data->dev_conf.intr_conf.rmv = 1;
} else {
DEBUG("sub_device %d does not support RMV event", i);
}
lsc_enabled = dev->data->dev_conf.intr_conf.lsc;
lsc_interrupt = lsc_enabled &&
(ETH(sdev)->data->dev_flags &
RTE_ETH_DEV_INTR_LSC);
if (lsc_interrupt) {
DEBUG("Enabling LSC interrupts for sub_device %d", i);
dev->data->dev_conf.intr_conf.lsc = 1;
} else if (lsc_enabled && !lsc_interrupt) {
DEBUG("Disabling LSC interrupts for sub_device %d", i);
dev->data->dev_conf.intr_conf.lsc = 0;
}
DEBUG("Configuring sub-device %d", i);
ret = rte_eth_dev_configure(PORT_ID(sdev),
dev->data->nb_rx_queues,
dev->data->nb_tx_queues,
&dev->data->dev_conf);
if (ret) {
if (!fs_err(sdev, ret))
continue;
ERROR("Could not configure sub_device %d", i);
fs_unlock(dev, 0);
return ret;
}
if (rmv_interrupt && sdev->rmv_callback == 0) {
ret = rte_eth_dev_callback_register(PORT_ID(sdev),
RTE_ETH_EVENT_INTR_RMV,
failsafe_eth_rmv_event_callback,
sdev);
if (ret)
WARN("Failed to register RMV callback for sub_device %d",
SUB_ID(sdev));
else
sdev->rmv_callback = 1;
}
dev->data->dev_conf.intr_conf.rmv = 0;
if (lsc_interrupt && sdev->lsc_callback == 0) {
ret = rte_eth_dev_callback_register(PORT_ID(sdev),
RTE_ETH_EVENT_INTR_LSC,
failsafe_eth_lsc_event_callback,
dev);
if (ret)
WARN("Failed to register LSC callback for sub_device %d",
SUB_ID(sdev));
else
sdev->lsc_callback = 1;
}
dev->data->dev_conf.intr_conf.lsc = lsc_enabled;
sdev->state = DEV_ACTIVE;
}
if (PRIV(dev)->state < DEV_ACTIVE)
PRIV(dev)->state = DEV_ACTIVE;
fs_unlock(dev, 0);
return 0;
}
static void
fs_set_queues_state_start(struct rte_eth_dev *dev)
{
struct rxq *rxq;
struct txq *txq;
uint16_t i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq != NULL && !rxq->info.conf.rx_deferred_start)
dev->data->rx_queue_state[i] =
RTE_ETH_QUEUE_STATE_STARTED;
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq != NULL && !txq->info.conf.tx_deferred_start)
dev->data->tx_queue_state[i] =
RTE_ETH_QUEUE_STATE_STARTED;
}
}
static int
fs_dev_start(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
ret = failsafe_rx_intr_install(dev);
if (ret) {
fs_unlock(dev, 0);
return ret;
}
FOREACH_SUBDEV(sdev, i, dev) {
if (sdev->state != DEV_ACTIVE)
continue;
DEBUG("Starting sub_device %d", i);
ret = rte_eth_dev_start(PORT_ID(sdev));
if (ret) {
if (!fs_err(sdev, ret))
continue;
fs_unlock(dev, 0);
return ret;
}
ret = failsafe_rx_intr_install_subdevice(sdev);
if (ret) {
if (!fs_err(sdev, ret))
continue;
if (fs_err(sdev, rte_eth_dev_stop(PORT_ID(sdev))) < 0)
ERROR("Failed to stop sub-device %u",
SUB_ID(sdev));
fs_unlock(dev, 0);
return ret;
}
sdev->state = DEV_STARTED;
}
if (PRIV(dev)->state < DEV_STARTED) {
PRIV(dev)->state = DEV_STARTED;
fs_set_queues_state_start(dev);
}
fs_switch_dev(dev, NULL);
fs_unlock(dev, 0);
return 0;
}
static void
fs_set_queues_state_stop(struct rte_eth_dev *dev)
{
uint16_t i;
for (i = 0; i < dev->data->nb_rx_queues; i++)
if (dev->data->rx_queues[i] != NULL)
dev->data->rx_queue_state[i] =
RTE_ETH_QUEUE_STATE_STOPPED;
for (i = 0; i < dev->data->nb_tx_queues; i++)
if (dev->data->tx_queues[i] != NULL)
dev->data->tx_queue_state[i] =
RTE_ETH_QUEUE_STATE_STOPPED;
}
static int
fs_dev_stop(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
PRIV(dev)->state = DEV_STARTED - 1;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) {
ret = rte_eth_dev_stop(PORT_ID(sdev));
if (fs_err(sdev, ret) < 0) {
ERROR("Failed to stop device %u",
PORT_ID(sdev));
PRIV(dev)->state = DEV_STARTED + 1;
fs_unlock(dev, 0);
return ret;
}
failsafe_rx_intr_uninstall_subdevice(sdev);
sdev->state = DEV_STARTED - 1;
}
failsafe_rx_intr_uninstall(dev);
fs_set_queues_state_stop(dev);
fs_unlock(dev, 0);
return 0;
}
static int
fs_dev_set_link_up(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i);
ret = rte_eth_dev_set_link_up(PORT_ID(sdev));
if ((ret = fs_err(sdev, ret))) {
ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d"
" with error %d", i, ret);
fs_unlock(dev, 0);
return ret;
}
}
fs_unlock(dev, 0);
return 0;
}
static int
fs_dev_set_link_down(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i);
ret = rte_eth_dev_set_link_down(PORT_ID(sdev));
if ((ret = fs_err(sdev, ret))) {
ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d"
" with error %d", i, ret);
fs_unlock(dev, 0);
return ret;
}
}
fs_unlock(dev, 0);
return 0;
}
static int
fs_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct sub_device *sdev;
uint8_t i;
int ret;
int err = 0;
bool failure = true;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
uint16_t port_id = ETH(sdev)->data->port_id;
ret = rte_eth_dev_rx_queue_stop(port_id, rx_queue_id);
ret = fs_err(sdev, ret);
if (ret) {
ERROR("Rx queue stop failed for subdevice %d", i);
err = ret;
} else {
failure = false;
}
}
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
fs_unlock(dev, 0);
/* Return 0 in case of at least one successful queue stop */
return (failure) ? err : 0;
}
static int
fs_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
uint16_t port_id = ETH(sdev)->data->port_id;
ret = rte_eth_dev_rx_queue_start(port_id, rx_queue_id);
ret = fs_err(sdev, ret);
if (ret) {
ERROR("Rx queue start failed for subdevice %d", i);
fs_rx_queue_stop(dev, rx_queue_id);
fs_unlock(dev, 0);
return ret;
}
}
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
fs_unlock(dev, 0);
return 0;
}
static int
fs_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct sub_device *sdev;
uint8_t i;
int ret;
int err = 0;
bool failure = true;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
uint16_t port_id = ETH(sdev)->data->port_id;
ret = rte_eth_dev_tx_queue_stop(port_id, tx_queue_id);
ret = fs_err(sdev, ret);
if (ret) {
ERROR("Tx queue stop failed for subdevice %d", i);
err = ret;
} else {
failure = false;
}
}
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
fs_unlock(dev, 0);
/* Return 0 in case of at least one successful queue stop */
return (failure) ? err : 0;
}
static int
fs_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
uint16_t port_id = ETH(sdev)->data->port_id;
ret = rte_eth_dev_tx_queue_start(port_id, tx_queue_id);
ret = fs_err(sdev, ret);
if (ret) {
ERROR("Tx queue start failed for subdevice %d", i);
fs_tx_queue_stop(dev, tx_queue_id);
fs_unlock(dev, 0);
return ret;
}
}
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
fs_unlock(dev, 0);
return 0;
}
static void
fs_rx_queue_release(void *queue)
{
struct rte_eth_dev *dev;
struct sub_device *sdev;
uint8_t i;
struct rxq *rxq;
if (queue == NULL)
return;
rxq = queue;
dev = &rte_eth_devices[rxq->priv->data->port_id];
fs_lock(dev, 0);
if (rxq->event_fd >= 0)
close(rxq->event_fd);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
if (ETH(sdev)->data->rx_queues != NULL &&
ETH(sdev)->data->rx_queues[rxq->qid] != NULL) {
SUBOPS(sdev, rx_queue_release)
(ETH(sdev)->data->rx_queues[rxq->qid]);
}
}
dev->data->rx_queues[rxq->qid] = NULL;
rte_free(rxq);
fs_unlock(dev, 0);
}
static int
fs_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
/*
* FIXME: Add a proper interface in rte_eal_interrupts for
* allocating eventfd as an interrupt vector.
* For the time being, fake as if we are using MSIX interrupts,
* this will cause rte_intr_efd_enable to allocate an eventfd for us.
*/
struct rte_intr_handle intr_handle = {
.type = RTE_INTR_HANDLE_VFIO_MSIX,
.efds = { -1, },
};
struct sub_device *sdev;
struct rxq *rxq;
uint8_t i;
int ret;
fs_lock(dev, 0);
if (rx_conf->rx_deferred_start) {
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
if (SUBOPS(sdev, rx_queue_start) == NULL) {
ERROR("Rx queue deferred start is not "
"supported for subdevice %d", i);
fs_unlock(dev, 0);
return -EINVAL;
}
}
}
rxq = dev->data->rx_queues[rx_queue_id];
if (rxq != NULL) {
fs_rx_queue_release(rxq);
dev->data->rx_queues[rx_queue_id] = NULL;
}
rxq = rte_zmalloc(NULL,
sizeof(*rxq) +
sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
RTE_CACHE_LINE_SIZE);
if (rxq == NULL) {
fs_unlock(dev, 0);
return -ENOMEM;
}
FOREACH_SUBDEV(sdev, i, dev)
rte_atomic64_init(&rxq->refcnt[i]);
rxq->qid = rx_queue_id;
rxq->socket_id = socket_id;
rxq->info.mp = mb_pool;
rxq->info.conf = *rx_conf;
rxq->info.nb_desc = nb_rx_desc;
rxq->priv = PRIV(dev);
rxq->sdev = PRIV(dev)->subs;
ret = rte_intr_efd_enable(&intr_handle, 1);
if (ret < 0) {
fs_unlock(dev, 0);
return ret;
}
rxq->event_fd = intr_handle.efds[0];
dev->data->rx_queues[rx_queue_id] = rxq;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_rx_queue_setup(PORT_ID(sdev),
rx_queue_id,
nb_rx_desc, socket_id,
rx_conf, mb_pool);
if ((ret = fs_err(sdev, ret))) {
ERROR("RX queue setup failed for sub_device %d", i);
goto free_rxq;
}
}
fs_unlock(dev, 0);
return 0;
free_rxq:
fs_rx_queue_release(rxq);
fs_unlock(dev, 0);
return ret;
}
static int
fs_rx_intr_enable(struct rte_eth_dev *dev, uint16_t idx)
{
struct rxq *rxq;
struct sub_device *sdev;
uint8_t i;
int ret;
int rc = 0;
fs_lock(dev, 0);
if (idx >= dev->data->nb_rx_queues) {
rc = -EINVAL;
goto unlock;
}
rxq = dev->data->rx_queues[idx];
if (rxq == NULL || rxq->event_fd <= 0) {
rc = -EINVAL;
goto unlock;
}
/* Fail if proxy service is nor running. */
if (PRIV(dev)->rxp.sstate != SS_RUNNING) {
ERROR("failsafe interrupt services are not running");
rc = -EAGAIN;
goto unlock;
}
rxq->enable_events = 1;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_dev_rx_intr_enable(PORT_ID(sdev), idx);
ret = fs_err(sdev, ret);
if (ret)
rc = ret;
}
unlock:
fs_unlock(dev, 0);
if (rc)
rte_errno = -rc;
return rc;
}
static int
fs_rx_intr_disable(struct rte_eth_dev *dev, uint16_t idx)
{
struct rxq *rxq;
struct sub_device *sdev;
uint64_t u64;
uint8_t i;
int rc = 0;
int ret;
fs_lock(dev, 0);
if (idx >= dev->data->nb_rx_queues) {
rc = -EINVAL;
goto unlock;
}
rxq = dev->data->rx_queues[idx];
if (rxq == NULL || rxq->event_fd <= 0) {
rc = -EINVAL;
goto unlock;
}
rxq->enable_events = 0;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_dev_rx_intr_disable(PORT_ID(sdev), idx);
ret = fs_err(sdev, ret);
if (ret)
rc = ret;
}
/* Clear pending events */
while (read(rxq->event_fd, &u64, sizeof(uint64_t)) > 0)
;
unlock:
fs_unlock(dev, 0);
if (rc)
rte_errno = -rc;
return rc;
}
static void
fs_tx_queue_release(void *queue)
{
struct rte_eth_dev *dev;
struct sub_device *sdev;
uint8_t i;
struct txq *txq;
if (queue == NULL)
return;
txq = queue;
dev = &rte_eth_devices[txq->priv->data->port_id];
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
if (ETH(sdev)->data->tx_queues != NULL &&
ETH(sdev)->data->tx_queues[txq->qid] != NULL) {
SUBOPS(sdev, tx_queue_release)
(ETH(sdev)->data->tx_queues[txq->qid]);
}
}
dev->data->tx_queues[txq->qid] = NULL;
rte_free(txq);
fs_unlock(dev, 0);
}
static int
fs_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct sub_device *sdev;
struct txq *txq;
uint8_t i;
int ret;
fs_lock(dev, 0);
if (tx_conf->tx_deferred_start) {
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
if (SUBOPS(sdev, tx_queue_start) == NULL) {
ERROR("Tx queue deferred start is not "
"supported for subdevice %d", i);
fs_unlock(dev, 0);
return -EINVAL;
}
}
}
txq = dev->data->tx_queues[tx_queue_id];
if (txq != NULL) {
fs_tx_queue_release(txq);
dev->data->tx_queues[tx_queue_id] = NULL;
}
txq = rte_zmalloc("ethdev TX queue",
sizeof(*txq) +
sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
RTE_CACHE_LINE_SIZE);
if (txq == NULL) {
fs_unlock(dev, 0);
return -ENOMEM;
}
FOREACH_SUBDEV(sdev, i, dev)
rte_atomic64_init(&txq->refcnt[i]);
txq->qid = tx_queue_id;
txq->socket_id = socket_id;
txq->info.conf = *tx_conf;
txq->info.nb_desc = nb_tx_desc;
txq->priv = PRIV(dev);
dev->data->tx_queues[tx_queue_id] = txq;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_tx_queue_setup(PORT_ID(sdev),
tx_queue_id,
nb_tx_desc, socket_id,
tx_conf);
if ((ret = fs_err(sdev, ret))) {
ERROR("TX queue setup failed for sub_device %d", i);
goto free_txq;
}
}
fs_unlock(dev, 0);
return 0;
free_txq:
fs_tx_queue_release(txq);
fs_unlock(dev, 0);
return ret;
}
static void
fs_dev_free_queues(struct rte_eth_dev *dev)
{
uint16_t i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
fs_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
fs_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
int
failsafe_eth_dev_close(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int err, ret = 0;
fs_lock(dev, 0);
failsafe_hotplug_alarm_cancel(dev);
if (PRIV(dev)->state == DEV_STARTED) {
ret = dev->dev_ops->dev_stop(dev);
if (ret != 0) {
fs_unlock(dev, 0);
return ret;
}
}
PRIV(dev)->state = DEV_ACTIVE - 1;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Closing sub_device %d", i);
failsafe_eth_dev_unregister_callbacks(sdev);
err = rte_eth_dev_close(PORT_ID(sdev));
if (err) {
ret = ret ? ret : err;
ERROR("Error while closing sub-device %u",
PORT_ID(sdev));
}
sdev->state = DEV_ACTIVE - 1;
}
rte_eth_dev_callback_unregister(RTE_ETH_ALL, RTE_ETH_EVENT_NEW,
failsafe_eth_new_event_callback, dev);
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
fs_unlock(dev, 0);
return ret;
}
fs_dev_free_queues(dev);
err = failsafe_eal_uninit(dev);
if (err) {
ret = ret ? ret : err;
ERROR("Error while uninitializing sub-EAL");
}
failsafe_args_free(dev);
rte_free(PRIV(dev)->subs);
rte_free(PRIV(dev)->mcast_addrs);
/* mac_addrs must not be freed alone because part of dev_private */
dev->data->mac_addrs = NULL;
fs_unlock(dev, 0);
err = pthread_mutex_destroy(&PRIV(dev)->hotplug_mutex);
if (err) {
ret = ret ? ret : err;
ERROR("Error while destroying hotplug mutex");
}
return ret;
}
static int
fs_promiscuous_enable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret = 0;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_promiscuous_enable(PORT_ID(sdev));
ret = fs_err(sdev, ret);
if (ret != 0) {
ERROR("Promiscuous mode enable failed for subdevice %d",
PORT_ID(sdev));
break;
}
}
if (ret != 0) {
/* Rollback in the case of failure */
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_promiscuous_disable(PORT_ID(sdev));
ret = fs_err(sdev, ret);
if (ret != 0)
ERROR("Promiscuous mode disable during rollback failed for subdevice %d",
PORT_ID(sdev));
}
}
fs_unlock(dev, 0);
return ret;
}
static int
fs_promiscuous_disable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret = 0;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_promiscuous_disable(PORT_ID(sdev));
ret = fs_err(sdev, ret);
if (ret != 0) {
ERROR("Promiscuous mode disable failed for subdevice %d",
PORT_ID(sdev));
break;
}
}
if (ret != 0) {
/* Rollback in the case of failure */
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_promiscuous_enable(PORT_ID(sdev));
ret = fs_err(sdev, ret);
if (ret != 0)
ERROR("Promiscuous mode enable during rollback failed for subdevice %d",
PORT_ID(sdev));
}
}
fs_unlock(dev, 0);
return ret;
}
static int
fs_allmulticast_enable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret = 0;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_allmulticast_enable(PORT_ID(sdev));
ret = fs_err(sdev, ret);
if (ret != 0) {
ERROR("All-multicast mode enable failed for subdevice %d",
PORT_ID(sdev));
break;
}
}
if (ret != 0) {
/* Rollback in the case of failure */
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_allmulticast_disable(PORT_ID(sdev));
ret = fs_err(sdev, ret);
if (ret != 0)
ERROR("All-multicast mode disable during rollback failed for subdevice %d",
PORT_ID(sdev));
}
}
fs_unlock(dev, 0);
return ret;
}
static int
fs_allmulticast_disable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret = 0;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_allmulticast_disable(PORT_ID(sdev));
ret = fs_err(sdev, ret);
if (ret != 0) {
ERROR("All-multicast mode disable failed for subdevice %d",
PORT_ID(sdev));
break;
}
}
if (ret != 0) {
/* Rollback in the case of failure */
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_allmulticast_enable(PORT_ID(sdev));
ret = fs_err(sdev, ret);
if (ret != 0)
ERROR("All-multicast mode enable during rollback failed for subdevice %d",
PORT_ID(sdev));
}
}
fs_unlock(dev, 0);
return ret;
}
static int
fs_link_update(struct rte_eth_dev *dev,
int wait_to_complete)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling link_update on sub_device %d", i);
ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete);
if (ret && ret != -1 && sdev->remove == 0 &&
rte_eth_dev_is_removed(PORT_ID(sdev)) == 0) {
ERROR("Link update failed for sub_device %d with error %d",
i, ret);
fs_unlock(dev, 0);
return ret;
}
}
if (TX_SUBDEV(dev)) {
struct rte_eth_link *l1;
struct rte_eth_link *l2;
l1 = &dev->data->dev_link;
l2 = &ETH(TX_SUBDEV(dev))->data->dev_link;
if (memcmp(l1, l2, sizeof(*l1))) {
*l1 = *l2;
fs_unlock(dev, 0);
return 0;
}
}
fs_unlock(dev, 0);
return -1;
}
static int
fs_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
struct rte_eth_stats backup;
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats));
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats;
uint64_t *timestamp = &sdev->stats_snapshot.timestamp;
rte_memcpy(&backup, snapshot, sizeof(backup));
ret = rte_eth_stats_get(PORT_ID(sdev), snapshot);
if (ret) {
if (!fs_err(sdev, ret)) {
rte_memcpy(snapshot, &backup, sizeof(backup));
goto inc;
}
ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d",
i, ret);
*timestamp = 0;
fs_unlock(dev, 0);
return ret;
}
*timestamp = rte_rdtsc();
inc:
failsafe_stats_increment(stats, snapshot);
}
fs_unlock(dev, 0);
return 0;
}
static int
fs_stats_reset(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_stats_reset(PORT_ID(sdev));
if (ret) {
if (!fs_err(sdev, ret))
continue;
ERROR("Operation rte_eth_stats_reset failed for sub_device %d with error %d",
i, ret);
fs_unlock(dev, 0);
return ret;
}
memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats));
}
memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats));
fs_unlock(dev, 0);
return 0;
}
static int
__fs_xstats_count(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
int count = 0;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_xstats_get_names(PORT_ID(sdev), NULL, 0);
if (ret < 0)
return ret;
count += ret;
}
return count;
}
static int
__fs_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int limit)
{
struct sub_device *sdev;
unsigned int count = 0;
uint8_t i;
/* Caller only cares about count */
if (!xstats_names)
return __fs_xstats_count(dev);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
struct rte_eth_xstat_name *sub_names = xstats_names + count;
int j, r;
if (count >= limit)
break;
r = rte_eth_xstats_get_names(PORT_ID(sdev),
sub_names, limit - count);
if (r < 0)
return r;
/* add subN_ prefix to names */
for (j = 0; j < r; j++) {
char *xname = sub_names[j].name;
char tmp[RTE_ETH_XSTATS_NAME_SIZE];
if ((xname[0] == 't' || xname[0] == 'r') &&
xname[1] == 'x' && xname[2] == '_')
snprintf(tmp, sizeof(tmp), "%.3ssub%u_%s",
xname, i, xname + 3);
else
snprintf(tmp, sizeof(tmp), "sub%u_%s",
i, xname);
strlcpy(xname, tmp, RTE_ETH_XSTATS_NAME_SIZE);
}
count += r;
}
return count;
}
static int
fs_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int limit)
{
int ret;
fs_lock(dev, 0);
ret = __fs_xstats_get_names(dev, xstats_names, limit);
fs_unlock(dev, 0);
return ret;
}
static int
__fs_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats,
unsigned int n)
{
unsigned int count = 0;
struct sub_device *sdev;
uint8_t i;
int j, ret;
ret = __fs_xstats_count(dev);
/*
* if error
* or caller did not give enough space
* or just querying
*/
if (ret < 0 || ret > (int)n || xstats == NULL)
return ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_xstats_get(PORT_ID(sdev), xstats, n);
if (ret < 0)
return ret;
if (ret > (int)n)
return n + count;
/* add offset to id's from sub-device */
for (j = 0; j < ret; j++)
xstats[j].id += count;
xstats += ret;
n -= ret;
count += ret;
}
return count;
}
static int
fs_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats,
unsigned int n)
{
int ret;
fs_lock(dev, 0);
ret = __fs_xstats_get(dev, xstats, n);
fs_unlock(dev, 0);
return ret;
}
static int
fs_xstats_reset(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int r = 0;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
r = rte_eth_xstats_reset(PORT_ID(sdev));
if (r < 0)
break;
}
fs_unlock(dev, 0);
return r;
}
static void
fs_dev_merge_desc_lim(struct rte_eth_desc_lim *to,
const struct rte_eth_desc_lim *from)
{
to->nb_max = RTE_MIN(to->nb_max, from->nb_max);
to->nb_min = RTE_MAX(to->nb_min, from->nb_min);
to->nb_align = RTE_MAX(to->nb_align, from->nb_align);
to->nb_seg_max = RTE_MIN(to->nb_seg_max, from->nb_seg_max);
to->nb_mtu_seg_max = RTE_MIN(to->nb_mtu_seg_max, from->nb_mtu_seg_max);
}
/*
* Merge the information from sub-devices.
*
* The reported values must be the common subset of all sub devices
*/
static void
fs_dev_merge_info(struct rte_eth_dev_info *info,
const struct rte_eth_dev_info *sinfo)
{
info->max_rx_pktlen = RTE_MIN(info->max_rx_pktlen, sinfo->max_rx_pktlen);
info->max_rx_queues = RTE_MIN(info->max_rx_queues, sinfo->max_rx_queues);
info->max_tx_queues = RTE_MIN(info->max_tx_queues, sinfo->max_tx_queues);
info->max_mac_addrs = RTE_MIN(info->max_mac_addrs, sinfo->max_mac_addrs);
info->max_hash_mac_addrs = RTE_MIN(info->max_hash_mac_addrs,
sinfo->max_hash_mac_addrs);
info->max_vmdq_pools = RTE_MIN(info->max_vmdq_pools, sinfo->max_vmdq_pools);
info->max_vfs = RTE_MIN(info->max_vfs, sinfo->max_vfs);
fs_dev_merge_desc_lim(&info->rx_desc_lim, &sinfo->rx_desc_lim);
fs_dev_merge_desc_lim(&info->tx_desc_lim, &sinfo->tx_desc_lim);
info->rx_offload_capa &= sinfo->rx_offload_capa;
info->tx_offload_capa &= sinfo->tx_offload_capa;
info->rx_queue_offload_capa &= sinfo->rx_queue_offload_capa;
info->tx_queue_offload_capa &= sinfo->tx_queue_offload_capa;
info->flow_type_rss_offloads &= sinfo->flow_type_rss_offloads;
/*
* RETA size is a GCD of RETA sizes indicated by sub-devices.
* Each of these sizes is a power of 2, so use the lower one.
*/
info->reta_size = RTE_MIN(info->reta_size, sinfo->reta_size);
info->hash_key_size = RTE_MIN(info->hash_key_size,
sinfo->hash_key_size);
}
/**
* Fail-safe dev_infos_get rules:
*
* No sub_device:
* Numerables:
* Use the maximum possible values for any field, so as not
* to impede any further configuration effort.
* Capabilities:
* Limits capabilities to those that are understood by the
* fail-safe PMD. This understanding stems from the fail-safe
* being capable of verifying that the related capability is
* expressed within the device configuration (struct rte_eth_conf).
*
* At least one probed sub_device:
* Numerables:
* Uses values from the active probed sub_device
* The rationale here is that if any sub_device is less capable
* (for example concerning the number of queues) than the active
* sub_device, then its subsequent configuration will fail.
* It is impossible to foresee this failure when the failing sub_device
* is supposed to be plugged-in later on, so the configuration process
* is the single point of failure and error reporting.
* Capabilities:
* Uses a logical AND of RX capabilities among
* all sub_devices and the default capabilities.
* Uses a logical AND of TX capabilities among
* the active probed sub_device and the default capabilities.
* Uses a logical AND of device capabilities among
* all sub_devices and the default capabilities.
*
*/
static int
fs_dev_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *infos)
{
struct sub_device *sdev;
uint8_t i;
int ret;
/* Use maximum upper bounds by default */
infos->max_rx_pktlen = UINT32_MAX;
infos->max_rx_queues = RTE_MAX_QUEUES_PER_PORT;
infos->max_tx_queues = RTE_MAX_QUEUES_PER_PORT;
infos->max_mac_addrs = FAILSAFE_MAX_ETHADDR;
infos->max_hash_mac_addrs = UINT32_MAX;
infos->max_vfs = UINT16_MAX;
infos->max_vmdq_pools = UINT16_MAX;
infos->reta_size = UINT16_MAX;
infos->hash_key_size = UINT8_MAX;
/*
* Set of capabilities that can be verified upon
* configuring a sub-device.
*/
infos->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_TCP_LRO |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_MACSEC_STRIP |
DEV_RX_OFFLOAD_HEADER_SPLIT |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_VLAN_EXTEND |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_TIMESTAMP |
DEV_RX_OFFLOAD_SECURITY;
infos->rx_queue_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_TCP_LRO |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_MACSEC_STRIP |
DEV_RX_OFFLOAD_HEADER_SPLIT |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_VLAN_EXTEND |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_TIMESTAMP |
DEV_RX_OFFLOAD_SECURITY;
infos->tx_offload_capa =
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_MBUF_FAST_FREE |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO;
infos->flow_type_rss_offloads =
ETH_RSS_IP |
ETH_RSS_UDP |
ETH_RSS_TCP;
infos->dev_capa =
RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
struct rte_eth_dev_info sub_info;
ret = rte_eth_dev_info_get(PORT_ID(sdev), &sub_info);
ret = fs_err(sdev, ret);
if (ret != 0)
return ret;
fs_dev_merge_info(infos, &sub_info);
}
return 0;
}
static const uint32_t *
fs_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
struct rte_eth_dev *edev;
const uint32_t *ret;
fs_lock(dev, 0);
sdev = TX_SUBDEV(dev);
if (sdev == NULL) {
ret = NULL;
goto unlock;
}
edev = ETH(sdev);
/* ENOTSUP: counts as no supported ptypes */
if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL) {
ret = NULL;
goto unlock;
}
/*
* The API does not permit to do a clean AND of all ptypes,
* It is also incomplete by design and we do not really care
* to have a best possible value in this context.
* We just return the ptypes of the device of highest
* priority, usually the PREFERRED device.
*/
ret = SUBOPS(sdev, dev_supported_ptypes_get)(edev);
unlock:
fs_unlock(dev, 0);
return ret;
}
static int
fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i);
ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu);
if ((ret = fs_err(sdev, ret))) {
ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d",
i, ret);
fs_unlock(dev, 0);
return ret;
}
}
fs_unlock(dev, 0);
return 0;
}
static int
fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i);
ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on);
if ((ret = fs_err(sdev, ret))) {
ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d"
" with error %d", i, ret);
fs_unlock(dev, 0);
return ret;
}
}
fs_unlock(dev, 0);
return 0;
}
static int
fs_flow_ctrl_get(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct sub_device *sdev;
int ret;
fs_lock(dev, 0);
sdev = TX_SUBDEV(dev);
if (sdev == NULL) {
ret = 0;
goto unlock;
}
if (SUBOPS(sdev, flow_ctrl_get) == NULL) {
ret = -ENOTSUP;
goto unlock;
}
ret = SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf);
unlock:
fs_unlock(dev, 0);
return ret;
}
static int
fs_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i);
ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf);
if ((ret = fs_err(sdev, ret))) {
ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d"
" with error %d", i, ret);
fs_unlock(dev, 0);
return ret;
}
}
fs_unlock(dev, 0);
return 0;
}
static void
fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct sub_device *sdev;
uint8_t i;
fs_lock(dev, 0);
/* No check: already done within the rte_eth_dev_mac_addr_remove
* call for the fail-safe device.
*/
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_dev_mac_addr_remove(PORT_ID(sdev),
&dev->data->mac_addrs[index]);
PRIV(dev)->mac_addr_pool[index] = 0;
fs_unlock(dev, 0);
}
static int
fs_mac_addr_add(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr,
uint32_t index,
uint32_t vmdq)
{
struct sub_device *sdev;
int ret;
uint8_t i;
RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR);
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq);
if ((ret = fs_err(sdev, ret))) {
ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %"
PRIu8 " with error %d", i, ret);
fs_unlock(dev, 0);
return ret;
}
}
if (index >= PRIV(dev)->nb_mac_addr) {
DEBUG("Growing mac_addrs array");
PRIV(dev)->nb_mac_addr = index;
}
PRIV(dev)->mac_addr_pool[index] = vmdq;
fs_unlock(dev, 0);
return 0;
}
static int
fs_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr);
ret = fs_err(sdev, ret);
if (ret) {
ERROR("Operation rte_eth_dev_mac_addr_set failed for sub_device %d with error %d",
i, ret);
fs_unlock(dev, 0);
return ret;
}
}
fs_unlock(dev, 0);
return 0;
}
static int
fs_set_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
{
struct sub_device *sdev;
uint8_t i;
int ret;
void *mcast_addrs;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
mc_addr_set, nb_mc_addr);
if (ret != 0) {
ERROR("Operation rte_eth_dev_set_mc_addr_list failed for sub_device %d with error %d",
i, ret);
goto rollback;
}
}
mcast_addrs = rte_realloc(PRIV(dev)->mcast_addrs,
nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]), 0);
if (mcast_addrs == NULL && nb_mc_addr > 0) {
ret = -ENOMEM;
goto rollback;
}
rte_memcpy(mcast_addrs, mc_addr_set,
nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]));
PRIV(dev)->nb_mcast_addr = nb_mc_addr;
PRIV(dev)->mcast_addrs = mcast_addrs;
fs_unlock(dev, 0);
return 0;
rollback:
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
int rc = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
PRIV(dev)->mcast_addrs, PRIV(dev)->nb_mcast_addr);
if (rc != 0) {
ERROR("Multicast MAC address list rollback for sub_device %d failed with error %d",
i, rc);
}
}
fs_unlock(dev, 0);
return ret;
}
static int
fs_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct sub_device *sdev;
uint8_t i;
int ret;
fs_lock(dev, 0);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_dev_rss_hash_update(PORT_ID(sdev), rss_conf);
ret = fs_err(sdev, ret);
if (ret) {
ERROR("Operation rte_eth_dev_rss_hash_update"
" failed for sub_device %d with error %d",
i, ret);
fs_unlock(dev, 0);
return ret;
}
}
fs_unlock(dev, 0);
return 0;
}
static int
fs_filter_ctrl(struct rte_eth_dev *dev __rte_unused,
enum rte_filter_type type,
enum rte_filter_op op,
void *arg)
{
if (type == RTE_ETH_FILTER_GENERIC &&
op == RTE_ETH_FILTER_GET) {
*(const void **)arg = &fs_flow_ops;
return 0;
}
return -ENOTSUP;
}
const struct eth_dev_ops failsafe_ops = {
.dev_configure = fs_dev_configure,
.dev_start = fs_dev_start,
.dev_stop = fs_dev_stop,
.dev_set_link_down = fs_dev_set_link_down,
.dev_set_link_up = fs_dev_set_link_up,
.dev_close = failsafe_eth_dev_close,
.promiscuous_enable = fs_promiscuous_enable,
.promiscuous_disable = fs_promiscuous_disable,
.allmulticast_enable = fs_allmulticast_enable,
.allmulticast_disable = fs_allmulticast_disable,
.link_update = fs_link_update,
.stats_get = fs_stats_get,
.stats_reset = fs_stats_reset,
.xstats_get = fs_xstats_get,
.xstats_get_names = fs_xstats_get_names,
.xstats_reset = fs_xstats_reset,
.dev_infos_get = fs_dev_infos_get,
.dev_supported_ptypes_get = fs_dev_supported_ptypes_get,
.mtu_set = fs_mtu_set,
.vlan_filter_set = fs_vlan_filter_set,
.rx_queue_start = fs_rx_queue_start,
.rx_queue_stop = fs_rx_queue_stop,
.tx_queue_start = fs_tx_queue_start,
.tx_queue_stop = fs_tx_queue_stop,
.rx_queue_setup = fs_rx_queue_setup,
.tx_queue_setup = fs_tx_queue_setup,
.rx_queue_release = fs_rx_queue_release,
.tx_queue_release = fs_tx_queue_release,
.rx_queue_intr_enable = fs_rx_intr_enable,
.rx_queue_intr_disable = fs_rx_intr_disable,
.flow_ctrl_get = fs_flow_ctrl_get,
.flow_ctrl_set = fs_flow_ctrl_set,
.mac_addr_remove = fs_mac_addr_remove,
.mac_addr_add = fs_mac_addr_add,
.mac_addr_set = fs_mac_addr_set,
.set_mc_addr_list = fs_set_mc_addr_list,
.rss_hash_update = fs_rss_hash_update,
.filter_ctrl = fs_filter_ctrl,
};