numam-dpdk/lib/librte_lpm/rte_lpm6.c
Sergio Gonzalez Monroy fdf20fa7be add prefix to cache line macros
CACHE_LINE_SIZE is a macro defined in machine/param.h in FreeBSD and
conflicts with DPDK macro version.
Adding RTE_ prefix to avoid conflicts.
CACHE_LINE_MASK and CACHE_LINE_ROUNDUP are also prefixed.

Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
[Thomas: updated on HEAD, including PPC]
2014-11-27 16:21:11 +01:00

893 lines
23 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_log.h>
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_memcpy.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_rwlock.h>
#include <rte_spinlock.h>
#include "rte_lpm6.h"
#define RTE_LPM6_TBL24_NUM_ENTRIES (1 << 24)
#define RTE_LPM6_TBL8_GROUP_NUM_ENTRIES 256
#define RTE_LPM6_TBL8_MAX_NUM_GROUPS (1 << 21)
#define RTE_LPM6_VALID_EXT_ENTRY_BITMASK 0xA0000000
#define RTE_LPM6_LOOKUP_SUCCESS 0x20000000
#define RTE_LPM6_TBL8_BITMASK 0x001FFFFF
#define ADD_FIRST_BYTE 3
#define LOOKUP_FIRST_BYTE 4
#define BYTE_SIZE 8
#define BYTES2_SIZE 16
#define lpm6_tbl8_gindex next_hop
/** Flags for setting an entry as valid/invalid. */
enum valid_flag {
INVALID = 0,
VALID
};
TAILQ_HEAD(rte_lpm6_list, rte_tailq_entry);
/** Tbl entry structure. It is the same for both tbl24 and tbl8 */
struct rte_lpm6_tbl_entry {
uint32_t next_hop: 21; /**< Next hop / next table to be checked. */
uint32_t depth :8; /**< Rule depth. */
/* Flags. */
uint32_t valid :1; /**< Validation flag. */
uint32_t valid_group :1; /**< Group validation flag. */
uint32_t ext_entry :1; /**< External entry. */
};
/** Rules tbl entry structure. */
struct rte_lpm6_rule {
uint8_t ip[RTE_LPM6_IPV6_ADDR_SIZE]; /**< Rule IP address. */
uint8_t next_hop; /**< Rule next hop. */
uint8_t depth; /**< Rule depth. */
};
/** LPM6 structure. */
struct rte_lpm6 {
/* LPM metadata. */
char name[RTE_LPM6_NAMESIZE]; /**< Name of the lpm. */
uint32_t max_rules; /**< Max number of rules. */
uint32_t used_rules; /**< Used rules so far. */
uint32_t number_tbl8s; /**< Number of tbl8s to allocate. */
uint32_t next_tbl8; /**< Next tbl8 to be used. */
/* LPM Tables. */
struct rte_lpm6_rule *rules_tbl; /**< LPM rules. */
struct rte_lpm6_tbl_entry tbl24[RTE_LPM6_TBL24_NUM_ENTRIES]
__rte_cache_aligned; /**< LPM tbl24 table. */
struct rte_lpm6_tbl_entry tbl8[0]
__rte_cache_aligned; /**< LPM tbl8 table. */
};
/*
* Takes an array of uint8_t (IPv6 address) and masks it using the depth.
* It leaves untouched one bit per unit in the depth variable
* and set the rest to 0.
*/
static inline void
mask_ip(uint8_t *ip, uint8_t depth)
{
int16_t part_depth, mask;
int i;
part_depth = depth;
for (i = 0; i < RTE_LPM6_IPV6_ADDR_SIZE; i++) {
if (part_depth < BYTE_SIZE && part_depth >= 0) {
mask = (uint16_t)(~(UINT8_MAX >> part_depth));
ip[i] = (uint8_t)(ip[i] & mask);
} else if (part_depth < 0) {
ip[i] = 0;
}
part_depth -= BYTE_SIZE;
}
}
/*
* Allocates memory for LPM object
*/
struct rte_lpm6 *
rte_lpm6_create(const char *name, int socket_id,
const struct rte_lpm6_config *config)
{
char mem_name[RTE_LPM6_NAMESIZE];
struct rte_lpm6 *lpm = NULL;
struct rte_tailq_entry *te;
uint64_t mem_size, rules_size;
struct rte_lpm6_list *lpm_list;
/* Check that we have an initialised tail queue */
if ((lpm_list =
RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_LPM6, rte_lpm6_list)) == NULL) {
rte_errno = E_RTE_NO_TAILQ;
return NULL;
}
RTE_BUILD_BUG_ON(sizeof(struct rte_lpm6_tbl_entry) != sizeof(uint32_t));
/* Check user arguments. */
if ((name == NULL) || (socket_id < -1) || (config == NULL) ||
(config->max_rules == 0) ||
config->number_tbl8s > RTE_LPM6_TBL8_MAX_NUM_GROUPS) {
rte_errno = EINVAL;
return NULL;
}
snprintf(mem_name, sizeof(mem_name), "LPM_%s", name);
/* Determine the amount of memory to allocate. */
mem_size = sizeof(*lpm) + (sizeof(lpm->tbl8[0]) *
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s);
rules_size = sizeof(struct rte_lpm6_rule) * config->max_rules;
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
/* Guarantee there's no existing */
TAILQ_FOREACH(te, lpm_list, next) {
lpm = (struct rte_lpm6 *) te->data;
if (strncmp(name, lpm->name, RTE_LPM6_NAMESIZE) == 0)
break;
}
if (te != NULL)
goto exit;
/* allocate tailq entry */
te = rte_zmalloc("LPM6_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, LPM, "Failed to allocate tailq entry!\n");
goto exit;
}
/* Allocate memory to store the LPM data structures. */
lpm = (struct rte_lpm6 *)rte_zmalloc_socket(mem_name, (size_t)mem_size,
RTE_CACHE_LINE_SIZE, socket_id);
if (lpm == NULL) {
RTE_LOG(ERR, LPM, "LPM memory allocation failed\n");
rte_free(te);
goto exit;
}
lpm->rules_tbl = (struct rte_lpm6_rule *)rte_zmalloc_socket(NULL,
(size_t)rules_size, RTE_CACHE_LINE_SIZE, socket_id);
if (lpm->rules_tbl == NULL) {
RTE_LOG(ERR, LPM, "LPM memory allocation failed\n");
rte_free(lpm);
rte_free(te);
goto exit;
}
/* Save user arguments. */
lpm->max_rules = config->max_rules;
lpm->number_tbl8s = config->number_tbl8s;
snprintf(lpm->name, sizeof(lpm->name), "%s", name);
te->data = (void *) lpm;
TAILQ_INSERT_TAIL(lpm_list, te, next);
exit:
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
return lpm;
}
/*
* Find an existing lpm table and return a pointer to it.
*/
struct rte_lpm6 *
rte_lpm6_find_existing(const char *name)
{
struct rte_lpm6 *l = NULL;
struct rte_tailq_entry *te;
struct rte_lpm6_list *lpm_list;
/* Check that we have an initialised tail queue */
if ((lpm_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_LPM6,
rte_lpm6_list)) == NULL) {
rte_errno = E_RTE_NO_TAILQ;
return NULL;
}
rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
TAILQ_FOREACH(te, lpm_list, next) {
l = (struct rte_lpm6 *) te->data;
if (strncmp(name, l->name, RTE_LPM6_NAMESIZE) == 0)
break;
}
rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return l;
}
/*
* Deallocates memory for given LPM table.
*/
void
rte_lpm6_free(struct rte_lpm6 *lpm)
{
struct rte_lpm6_list *lpm_list;
struct rte_tailq_entry *te;
/* Check user arguments. */
if (lpm == NULL)
return;
/* check that we have an initialised tail queue */
if ((lpm_list =
RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_LPM, rte_lpm6_list)) == NULL) {
rte_errno = E_RTE_NO_TAILQ;
return;
}
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
/* find our tailq entry */
TAILQ_FOREACH(te, lpm_list, next) {
if (te->data == (void *) lpm)
break;
}
if (te == NULL) {
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
return;
}
TAILQ_REMOVE(lpm_list, te, next);
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
rte_free(lpm);
rte_free(te);
}
/*
* Checks if a rule already exists in the rules table and updates
* the nexthop if so. Otherwise it adds a new rule if enough space is available.
*/
static inline int32_t
rule_add(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t next_hop, uint8_t depth)
{
uint32_t rule_index;
/* Scan through rule list to see if rule already exists. */
for (rule_index = 0; rule_index < lpm->used_rules; rule_index++) {
/* If rule already exists update its next_hop and return. */
if ((memcmp (lpm->rules_tbl[rule_index].ip, ip,
RTE_LPM6_IPV6_ADDR_SIZE) == 0) &&
lpm->rules_tbl[rule_index].depth == depth) {
lpm->rules_tbl[rule_index].next_hop = next_hop;
return rule_index;
}
}
/*
* If rule does not exist check if there is space to add a new rule to
* this rule group. If there is no space return error.
*/
if (lpm->used_rules == lpm->max_rules) {
return -ENOSPC;
}
/* If there is space for the new rule add it. */
rte_memcpy(lpm->rules_tbl[rule_index].ip, ip, RTE_LPM6_IPV6_ADDR_SIZE);
lpm->rules_tbl[rule_index].next_hop = next_hop;
lpm->rules_tbl[rule_index].depth = depth;
/* Increment the used rules counter for this rule group. */
lpm->used_rules++;
return rule_index;
}
/*
* Function that expands a rule across the data structure when a less-generic
* one has been added before. It assures that every possible combination of bits
* in the IP address returns a match.
*/
static void
expand_rule(struct rte_lpm6 *lpm, uint32_t tbl8_gindex, uint8_t depth,
uint8_t next_hop)
{
uint32_t tbl8_group_end, tbl8_gindex_next, j;
tbl8_group_end = tbl8_gindex + RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
struct rte_lpm6_tbl_entry new_tbl8_entry = {
.valid = VALID,
.valid_group = VALID,
.depth = depth,
.next_hop = next_hop,
.ext_entry = 0,
};
for (j = tbl8_gindex; j < tbl8_group_end; j++) {
if (!lpm->tbl8[j].valid || (lpm->tbl8[j].ext_entry == 0
&& lpm->tbl8[j].depth <= depth)) {
lpm->tbl8[j] = new_tbl8_entry;
} else if (lpm->tbl8[j].ext_entry == 1) {
tbl8_gindex_next = lpm->tbl8[j].lpm6_tbl8_gindex
* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
expand_rule(lpm, tbl8_gindex_next, depth, next_hop);
}
}
}
/*
* Partially adds a new route to the data structure (tbl24+tbl8s).
* It returns 0 on success, a negative number on failure, or 1 if
* the process needs to be continued by calling the function again.
*/
static inline int
add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl,
struct rte_lpm6_tbl_entry **tbl_next, uint8_t *ip, uint8_t bytes,
uint8_t first_byte, uint8_t depth, uint8_t next_hop)
{
uint32_t tbl_index, tbl_range, tbl8_group_start, tbl8_group_end, i;
int32_t tbl8_gindex;
int8_t bitshift;
uint8_t bits_covered;
/*
* Calculate index to the table based on the number and position
* of the bytes being inspected in this step.
*/
tbl_index = 0;
for (i = first_byte; i < (uint32_t)(first_byte + bytes); i++) {
bitshift = (int8_t)((bytes - i)*BYTE_SIZE);
if (bitshift < 0) bitshift = 0;
tbl_index = tbl_index | ip[i-1] << bitshift;
}
/* Number of bits covered in this step */
bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE);
/*
* If depth if smaller than this number (ie this is the last step)
* expand the rule across the relevant positions in the table.
*/
if (depth <= bits_covered) {
tbl_range = 1 << (bits_covered - depth);
for (i = tbl_index; i < (tbl_index + tbl_range); i++) {
if (!tbl[i].valid || (tbl[i].ext_entry == 0 &&
tbl[i].depth <= depth)) {
struct rte_lpm6_tbl_entry new_tbl_entry = {
.next_hop = next_hop,
.depth = depth,
.valid = VALID,
.valid_group = VALID,
.ext_entry = 0,
};
tbl[i] = new_tbl_entry;
} else if (tbl[i].ext_entry == 1) {
/*
* If tbl entry is valid and extended calculate the index
* into next tbl8 and expand the rule across the data structure.
*/
tbl8_gindex = tbl[i].lpm6_tbl8_gindex *
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
expand_rule(lpm, tbl8_gindex, depth, next_hop);
}
}
return 0;
}
/*
* If this is not the last step just fill one position
* and calculate the index to the next table.
*/
else {
/* If it's invalid a new tbl8 is needed */
if (!tbl[tbl_index].valid) {
if (lpm->next_tbl8 < lpm->number_tbl8s)
tbl8_gindex = (lpm->next_tbl8)++;
else
return -ENOSPC;
struct rte_lpm6_tbl_entry new_tbl_entry = {
.lpm6_tbl8_gindex = tbl8_gindex,
.depth = 0,
.valid = VALID,
.valid_group = VALID,
.ext_entry = 1,
};
tbl[tbl_index] = new_tbl_entry;
}
/*
* If it's valid but not extended the rule that was stored *
* here needs to be moved to the next table.
*/
else if (tbl[tbl_index].ext_entry == 0) {
/* Search for free tbl8 group. */
if (lpm->next_tbl8 < lpm->number_tbl8s)
tbl8_gindex = (lpm->next_tbl8)++;
else
return -ENOSPC;
tbl8_group_start = tbl8_gindex *
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
tbl8_group_end = tbl8_group_start +
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
/* Populate new tbl8 with tbl value. */
for (i = tbl8_group_start; i < tbl8_group_end; i++) {
lpm->tbl8[i].valid = VALID;
lpm->tbl8[i].depth = tbl[tbl_index].depth;
lpm->tbl8[i].next_hop = tbl[tbl_index].next_hop;
lpm->tbl8[i].ext_entry = 0;
}
/*
* Update tbl entry to point to new tbl8 entry. Note: The
* ext_flag and tbl8_index need to be updated simultaneously,
* so assign whole structure in one go.
*/
struct rte_lpm6_tbl_entry new_tbl_entry = {
.lpm6_tbl8_gindex = tbl8_gindex,
.depth = 0,
.valid = VALID,
.valid_group = VALID,
.ext_entry = 1,
};
tbl[tbl_index] = new_tbl_entry;
}
*tbl_next = &(lpm->tbl8[tbl[tbl_index].lpm6_tbl8_gindex *
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]);
}
return 1;
}
/*
* Add a route
*/
int
rte_lpm6_add(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth,
uint8_t next_hop)
{
struct rte_lpm6_tbl_entry *tbl;
struct rte_lpm6_tbl_entry *tbl_next;
int32_t rule_index;
int status;
uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE];
int i;
/* Check user arguments. */
if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH))
return -EINVAL;
/* Copy the IP and mask it to avoid modifying user's input data. */
memcpy(masked_ip, ip, RTE_LPM6_IPV6_ADDR_SIZE);
mask_ip(masked_ip, depth);
/* Add the rule to the rule table. */
rule_index = rule_add(lpm, masked_ip, next_hop, depth);
/* If there is no space available for new rule return error. */
if (rule_index < 0) {
return rule_index;
}
/* Inspect the first three bytes through tbl24 on the first step. */
tbl = lpm->tbl24;
status = add_step (lpm, tbl, &tbl_next, masked_ip, ADD_FIRST_BYTE, 1,
depth, next_hop);
if (status < 0) {
rte_lpm6_delete(lpm, masked_ip, depth);
return status;
}
/*
* Inspect one by one the rest of the bytes until
* the process is completed.
*/
for (i = ADD_FIRST_BYTE; i < RTE_LPM6_IPV6_ADDR_SIZE && status == 1; i++) {
tbl = tbl_next;
status = add_step (lpm, tbl, &tbl_next, masked_ip, 1, (uint8_t)(i+1),
depth, next_hop);
if (status < 0) {
rte_lpm6_delete(lpm, masked_ip, depth);
return status;
}
}
return status;
}
/*
* Takes a pointer to a table entry and inspect one level.
* The function returns 0 on lookup success, ENOENT if no match was found
* or 1 if the process needs to be continued by calling the function again.
*/
static inline int
lookup_step(const struct rte_lpm6 *lpm, const struct rte_lpm6_tbl_entry *tbl,
const struct rte_lpm6_tbl_entry **tbl_next, uint8_t *ip,
uint8_t first_byte, uint8_t *next_hop)
{
uint32_t tbl8_index, tbl_entry;
/* Take the integer value from the pointer. */
tbl_entry = *(const uint32_t *)tbl;
/* If it is valid and extended we calculate the new pointer to return. */
if ((tbl_entry & RTE_LPM6_VALID_EXT_ENTRY_BITMASK) ==
RTE_LPM6_VALID_EXT_ENTRY_BITMASK) {
tbl8_index = ip[first_byte-1] +
((tbl_entry & RTE_LPM6_TBL8_BITMASK) *
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES);
*tbl_next = &lpm->tbl8[tbl8_index];
return 1;
} else {
/* If not extended then we can have a match. */
*next_hop = (uint8_t)tbl_entry;
return (tbl_entry & RTE_LPM6_LOOKUP_SUCCESS) ? 0 : -ENOENT;
}
}
/*
* Looks up an IP
*/
int
rte_lpm6_lookup(const struct rte_lpm6 *lpm, uint8_t *ip, uint8_t *next_hop)
{
const struct rte_lpm6_tbl_entry *tbl;
const struct rte_lpm6_tbl_entry *tbl_next;
int status;
uint8_t first_byte;
uint32_t tbl24_index;
/* DEBUG: Check user input arguments. */
if ((lpm == NULL) || (ip == NULL) || (next_hop == NULL)) {
return -EINVAL;
}
first_byte = LOOKUP_FIRST_BYTE;
tbl24_index = (ip[0] << BYTES2_SIZE) | (ip[1] << BYTE_SIZE) | ip[2];
/* Calculate pointer to the first entry to be inspected */
tbl = &lpm->tbl24[tbl24_index];
do {
/* Continue inspecting following levels until success or failure */
status = lookup_step(lpm, tbl, &tbl_next, ip, first_byte++, next_hop);
tbl = tbl_next;
} while (status == 1);
return status;
}
/*
* Looks up a group of IP addresses
*/
int
rte_lpm6_lookup_bulk_func(const struct rte_lpm6 *lpm,
uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE],
int16_t * next_hops, unsigned n)
{
unsigned i;
const struct rte_lpm6_tbl_entry *tbl;
const struct rte_lpm6_tbl_entry *tbl_next;
uint32_t tbl24_index;
uint8_t first_byte, next_hop;
int status;
/* DEBUG: Check user input arguments. */
if ((lpm == NULL) || (ips == NULL) || (next_hops == NULL)) {
return -EINVAL;
}
for (i = 0; i < n; i++) {
first_byte = LOOKUP_FIRST_BYTE;
tbl24_index = (ips[i][0] << BYTES2_SIZE) |
(ips[i][1] << BYTE_SIZE) | ips[i][2];
/* Calculate pointer to the first entry to be inspected */
tbl = &lpm->tbl24[tbl24_index];
do {
/* Continue inspecting following levels until success or failure */
status = lookup_step(lpm, tbl, &tbl_next, ips[i], first_byte++,
&next_hop);
tbl = tbl_next;
} while (status == 1);
if (status < 0)
next_hops[i] = -1;
else
next_hops[i] = next_hop;
}
return 0;
}
/*
* Finds a rule in rule table.
* NOTE: Valid range for depth parameter is 1 .. 128 inclusive.
*/
static inline int32_t
rule_find(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth)
{
uint32_t rule_index;
/* Scan used rules at given depth to find rule. */
for (rule_index = 0; rule_index < lpm->used_rules; rule_index++) {
/* If rule is found return the rule index. */
if ((memcmp (lpm->rules_tbl[rule_index].ip, ip,
RTE_LPM6_IPV6_ADDR_SIZE) == 0) &&
lpm->rules_tbl[rule_index].depth == depth) {
return rule_index;
}
}
/* If rule is not found return -ENOENT. */
return -ENOENT;
}
/*
* Look for a rule in the high-level rules table
*/
int
rte_lpm6_is_rule_present(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth,
uint8_t *next_hop)
{
uint8_t ip_masked[RTE_LPM6_IPV6_ADDR_SIZE];
int32_t rule_index;
/* Check user arguments. */
if ((lpm == NULL) || next_hop == NULL || ip == NULL ||
(depth < 1) || (depth > RTE_LPM6_MAX_DEPTH))
return -EINVAL;
/* Copy the IP and mask it to avoid modifying user's input data. */
memcpy(ip_masked, ip, RTE_LPM6_IPV6_ADDR_SIZE);
mask_ip(ip_masked, depth);
/* Look for the rule using rule_find. */
rule_index = rule_find(lpm, ip_masked, depth);
if (rule_index >= 0) {
*next_hop = lpm->rules_tbl[rule_index].next_hop;
return 1;
}
/* If rule is not found return 0. */
return 0;
}
/*
* Delete a rule from the rule table.
* NOTE: Valid range for depth parameter is 1 .. 128 inclusive.
*/
static inline void
rule_delete(struct rte_lpm6 *lpm, int32_t rule_index)
{
/*
* Overwrite redundant rule with last rule in group and decrement rule
* counter.
*/
lpm->rules_tbl[rule_index] = lpm->rules_tbl[lpm->used_rules-1];
lpm->used_rules--;
}
/*
* Deletes a rule
*/
int
rte_lpm6_delete(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth)
{
int32_t rule_to_delete_index;
uint8_t ip_masked[RTE_LPM6_IPV6_ADDR_SIZE];
unsigned i;
/*
* Check input arguments.
*/
if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH)) {
return -EINVAL;
}
/* Copy the IP and mask it to avoid modifying user's input data. */
memcpy(ip_masked, ip, RTE_LPM6_IPV6_ADDR_SIZE);
mask_ip(ip_masked, depth);
/*
* Find the index of the input rule, that needs to be deleted, in the
* rule table.
*/
rule_to_delete_index = rule_find(lpm, ip_masked, depth);
/*
* Check if rule_to_delete_index was found. If no rule was found the
* function rule_find returns -ENOENT.
*/
if (rule_to_delete_index < 0)
return rule_to_delete_index;
/* Delete the rule from the rule table. */
rule_delete(lpm, rule_to_delete_index);
/*
* Set all the table entries to 0 (ie delete every rule
* from the data structure.
*/
lpm->next_tbl8 = 0;
memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0])
* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
/*
* Add every rule again (except for the one that was removed from
* the rules table).
*/
for (i = 0; i < lpm->used_rules; i++) {
rte_lpm6_add(lpm, lpm->rules_tbl[i].ip, lpm->rules_tbl[i].depth,
lpm->rules_tbl[i].next_hop);
}
return 0;
}
/*
* Deletes a group of rules
*/
int
rte_lpm6_delete_bulk_func(struct rte_lpm6 *lpm,
uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], uint8_t *depths, unsigned n)
{
int32_t rule_to_delete_index;
uint8_t ip_masked[RTE_LPM6_IPV6_ADDR_SIZE];
unsigned i;
/*
* Check input arguments.
*/
if ((lpm == NULL) || (ips == NULL) || (depths == NULL)) {
return -EINVAL;
}
for (i = 0; i < n; i++) {
/* Copy the IP and mask it to avoid modifying user's input data. */
memcpy(ip_masked, ips[i], RTE_LPM6_IPV6_ADDR_SIZE);
mask_ip(ip_masked, depths[i]);
/*
* Find the index of the input rule, that needs to be deleted, in the
* rule table.
*/
rule_to_delete_index = rule_find(lpm, ip_masked, depths[i]);
/*
* Check if rule_to_delete_index was found. If no rule was found the
* function rule_find returns -ENOENT.
*/
if (rule_to_delete_index < 0)
continue;
/* Delete the rule from the rule table. */
rule_delete(lpm, rule_to_delete_index);
}
/*
* Set all the table entries to 0 (ie delete every rule
* from the data structure.
*/
lpm->next_tbl8 = 0;
memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0])
* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
/*
* Add every rule again (except for the ones that were removed from
* the rules table).
*/
for (i = 0; i < lpm->used_rules; i++) {
rte_lpm6_add(lpm, lpm->rules_tbl[i].ip, lpm->rules_tbl[i].depth,
lpm->rules_tbl[i].next_hop);
}
return 0;
}
/*
* Delete all rules from the LPM table.
*/
void
rte_lpm6_delete_all(struct rte_lpm6 *lpm)
{
/* Zero used rules counter. */
lpm->used_rules = 0;
/* Zero next tbl8 index. */
lpm->next_tbl8 = 0;
/* Zero tbl24. */
memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
/* Zero tbl8. */
memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) *
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
/* Delete all rules form the rules table. */
memset(lpm->rules_tbl, 0, sizeof(struct rte_lpm6_rule) * lpm->max_rules);
}