numam-dpdk/drivers/net/mlx5/mlx5_flow_tcf.c
Yongseok Koh 65254667c0 net/mlx5: add missing VLAN action constraints
1) VLAN modify isn't supported by driver.

2) FW syndrome (0xA9C090):
	set_flow_table_entry: push vlan action fte in fdb can ONLY be
	forward to the uplink.

3) FW syndrome (0x294609):
	set_flow_table_entry: modify/pop/push actions in fdb flow table are
	supported only while forwarding to vport.

Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
Acked-by: Shahaf Shuler <shahafs@mellanox.com>
2018-10-11 18:53:49 +02:00

1653 lines
47 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018 6WIND S.A.
* Copyright 2018 Mellanox Technologies, Ltd
*/
#include <assert.h>
#include <errno.h>
#include <libmnl/libmnl.h>
#include <linux/if_ether.h>
#include <linux/netlink.h>
#include <linux/pkt_cls.h>
#include <linux/pkt_sched.h>
#include <linux/rtnetlink.h>
#include <linux/tc_act/tc_gact.h>
#include <linux/tc_act/tc_mirred.h>
#include <netinet/in.h>
#include <stdalign.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_ether.h>
#include <rte_flow.h>
#include <rte_malloc.h>
#include "mlx5.h"
#include "mlx5_flow.h"
#include "mlx5_autoconf.h"
#ifdef HAVE_TC_ACT_VLAN
#include <linux/tc_act/tc_vlan.h>
#else /* HAVE_TC_ACT_VLAN */
#define TCA_VLAN_ACT_POP 1
#define TCA_VLAN_ACT_PUSH 2
#define TCA_VLAN_ACT_MODIFY 3
#define TCA_VLAN_PARMS 2
#define TCA_VLAN_PUSH_VLAN_ID 3
#define TCA_VLAN_PUSH_VLAN_PROTOCOL 4
#define TCA_VLAN_PAD 5
#define TCA_VLAN_PUSH_VLAN_PRIORITY 6
struct tc_vlan {
tc_gen;
int v_action;
};
#endif /* HAVE_TC_ACT_VLAN */
/* Normally found in linux/netlink.h. */
#ifndef NETLINK_CAP_ACK
#define NETLINK_CAP_ACK 10
#endif
/* Normally found in linux/pkt_sched.h. */
#ifndef TC_H_MIN_INGRESS
#define TC_H_MIN_INGRESS 0xfff2u
#endif
/* Normally found in linux/pkt_cls.h. */
#ifndef TCA_CLS_FLAGS_SKIP_SW
#define TCA_CLS_FLAGS_SKIP_SW (1 << 1)
#endif
#ifndef HAVE_TCA_FLOWER_ACT
#define TCA_FLOWER_ACT 3
#endif
#ifndef HAVE_TCA_FLOWER_FLAGS
#define TCA_FLOWER_FLAGS 22
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_TYPE
#define TCA_FLOWER_KEY_ETH_TYPE 8
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_DST
#define TCA_FLOWER_KEY_ETH_DST 4
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_DST_MASK
#define TCA_FLOWER_KEY_ETH_DST_MASK 5
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_SRC
#define TCA_FLOWER_KEY_ETH_SRC 6
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_SRC_MASK
#define TCA_FLOWER_KEY_ETH_SRC_MASK 7
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IP_PROTO
#define TCA_FLOWER_KEY_IP_PROTO 9
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_SRC
#define TCA_FLOWER_KEY_IPV4_SRC 10
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_SRC_MASK
#define TCA_FLOWER_KEY_IPV4_SRC_MASK 11
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_DST
#define TCA_FLOWER_KEY_IPV4_DST 12
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_DST_MASK
#define TCA_FLOWER_KEY_IPV4_DST_MASK 13
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_SRC
#define TCA_FLOWER_KEY_IPV6_SRC 14
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_SRC_MASK
#define TCA_FLOWER_KEY_IPV6_SRC_MASK 15
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_DST
#define TCA_FLOWER_KEY_IPV6_DST 16
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_DST_MASK
#define TCA_FLOWER_KEY_IPV6_DST_MASK 17
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_SRC
#define TCA_FLOWER_KEY_TCP_SRC 18
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_SRC_MASK
#define TCA_FLOWER_KEY_TCP_SRC_MASK 35
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_DST
#define TCA_FLOWER_KEY_TCP_DST 19
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_DST_MASK
#define TCA_FLOWER_KEY_TCP_DST_MASK 36
#endif
#ifndef HAVE_TCA_FLOWER_KEY_UDP_SRC
#define TCA_FLOWER_KEY_UDP_SRC 20
#endif
#ifndef HAVE_TCA_FLOWER_KEY_UDP_SRC_MASK
#define TCA_FLOWER_KEY_UDP_SRC_MASK 37
#endif
#ifndef HAVE_TCA_FLOWER_KEY_UDP_DST
#define TCA_FLOWER_KEY_UDP_DST 21
#endif
#ifndef HAVE_TCA_FLOWER_KEY_UDP_DST_MASK
#define TCA_FLOWER_KEY_UDP_DST_MASK 38
#endif
#ifndef HAVE_TCA_FLOWER_KEY_VLAN_ID
#define TCA_FLOWER_KEY_VLAN_ID 23
#endif
#ifndef HAVE_TCA_FLOWER_KEY_VLAN_PRIO
#define TCA_FLOWER_KEY_VLAN_PRIO 24
#endif
#ifndef HAVE_TCA_FLOWER_KEY_VLAN_ETH_TYPE
#define TCA_FLOWER_KEY_VLAN_ETH_TYPE 25
#endif
#ifndef IPV6_ADDR_LEN
#define IPV6_ADDR_LEN 16
#endif
/** Empty masks for known item types. */
static const union {
struct rte_flow_item_port_id port_id;
struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_item_ipv4 ipv4;
struct rte_flow_item_ipv6 ipv6;
struct rte_flow_item_tcp tcp;
struct rte_flow_item_udp udp;
} flow_tcf_mask_empty;
/** Supported masks for known item types. */
static const struct {
struct rte_flow_item_port_id port_id;
struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_item_ipv4 ipv4;
struct rte_flow_item_ipv6 ipv6;
struct rte_flow_item_tcp tcp;
struct rte_flow_item_udp udp;
} flow_tcf_mask_supported = {
.port_id = {
.id = 0xffffffff,
},
.eth = {
.type = RTE_BE16(0xffff),
.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
},
.vlan = {
/* PCP and VID only, no DEI. */
.tci = RTE_BE16(0xefff),
.inner_type = RTE_BE16(0xffff),
},
.ipv4.hdr = {
.next_proto_id = 0xff,
.src_addr = RTE_BE32(0xffffffff),
.dst_addr = RTE_BE32(0xffffffff),
},
.ipv6.hdr = {
.proto = 0xff,
.src_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.dst_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
},
.tcp.hdr = {
.src_port = RTE_BE16(0xffff),
.dst_port = RTE_BE16(0xffff),
},
.udp.hdr = {
.src_port = RTE_BE16(0xffff),
.dst_port = RTE_BE16(0xffff),
},
};
#define SZ_NLATTR_HDR MNL_ALIGN(sizeof(struct nlattr))
#define SZ_NLATTR_NEST SZ_NLATTR_HDR
#define SZ_NLATTR_DATA_OF(len) MNL_ALIGN(SZ_NLATTR_HDR + (len))
#define SZ_NLATTR_TYPE_OF(typ) SZ_NLATTR_DATA_OF(sizeof(typ))
#define SZ_NLATTR_STRZ_OF(str) SZ_NLATTR_DATA_OF(strlen(str) + 1)
#define PTOI_TABLE_SZ_MAX(dev) (mlx5_dev_to_port_id((dev)->device, NULL, 0) + 2)
/** DPDK port to network interface index (ifindex) conversion. */
struct flow_tcf_ptoi {
uint16_t port_id; /**< DPDK port ID. */
unsigned int ifindex; /**< Network interface index. */
};
#define MLX5_TCF_FATE_ACTIONS (MLX5_FLOW_ACTION_DROP | MLX5_FLOW_ACTION_PORT_ID)
#define MLX5_TCF_VLAN_ACTIONS \
(MLX5_FLOW_ACTION_OF_POP_VLAN | MLX5_FLOW_ACTION_OF_PUSH_VLAN | \
MLX5_FLOW_ACTION_OF_SET_VLAN_VID | MLX5_FLOW_ACTION_OF_SET_VLAN_PCP)
/**
* Retrieve mask for pattern item.
*
* This function does basic sanity checks on a pattern item in order to
* return the most appropriate mask for it.
*
* @param[in] item
* Item specification.
* @param[in] mask_default
* Default mask for pattern item as specified by the flow API.
* @param[in] mask_supported
* Mask fields supported by the implementation.
* @param[in] mask_empty
* Empty mask to return when there is no specification.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* Either @p item->mask or one of the mask parameters on success, NULL
* otherwise and rte_errno is set.
*/
static const void *
flow_tcf_item_mask(const struct rte_flow_item *item, const void *mask_default,
const void *mask_supported, const void *mask_empty,
size_t mask_size, struct rte_flow_error *error)
{
const uint8_t *mask;
size_t i;
/* item->last and item->mask cannot exist without item->spec. */
if (!item->spec && (item->mask || item->last)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"\"mask\" or \"last\" field provided without"
" a corresponding \"spec\"");
return NULL;
}
/* No spec, no mask, no problem. */
if (!item->spec)
return mask_empty;
mask = item->mask ? item->mask : mask_default;
assert(mask);
/*
* Single-pass check to make sure that:
* - Mask is supported, no bits are set outside mask_supported.
* - Both item->spec and item->last are included in mask.
*/
for (i = 0; i != mask_size; ++i) {
if (!mask[i])
continue;
if ((mask[i] | ((const uint8_t *)mask_supported)[i]) !=
((const uint8_t *)mask_supported)[i]) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"unsupported field found"
" in \"mask\"");
return NULL;
}
if (item->last &&
(((const uint8_t *)item->spec)[i] & mask[i]) !=
(((const uint8_t *)item->last)[i] & mask[i])) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_LAST,
item->last,
"range between \"spec\" and \"last\""
" not comprised in \"mask\"");
return NULL;
}
}
return mask;
}
/**
* Build a conversion table between port ID and ifindex.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[out] ptoi
* Pointer to ptoi table.
* @param[in] len
* Size of ptoi table provided.
*
* @return
* Size of ptoi table filled.
*/
static unsigned int
flow_tcf_build_ptoi_table(struct rte_eth_dev *dev, struct flow_tcf_ptoi *ptoi,
unsigned int len)
{
unsigned int n = mlx5_dev_to_port_id(dev->device, NULL, 0);
uint16_t port_id[n + 1];
unsigned int i;
unsigned int own = 0;
/* At least one port is needed when no switch domain is present. */
if (!n) {
n = 1;
port_id[0] = dev->data->port_id;
} else {
n = RTE_MIN(mlx5_dev_to_port_id(dev->device, port_id, n), n);
}
if (n > len)
return 0;
for (i = 0; i != n; ++i) {
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(port_id[i], &dev_info);
if (port_id[i] == dev->data->port_id)
own = i;
ptoi[i].port_id = port_id[i];
ptoi[i].ifindex = dev_info.if_index;
}
/* Ensure first entry of ptoi[] is the current device. */
if (own) {
ptoi[n] = ptoi[0];
ptoi[0] = ptoi[own];
ptoi[own] = ptoi[n];
}
/* An entry with zero ifindex terminates ptoi[]. */
ptoi[n].port_id = 0;
ptoi[n].ifindex = 0;
return n;
}
/**
* Verify the @p attr will be correctly understood by the E-switch.
*
* @param[in] attr
* Pointer to flow attributes
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_tcf_validate_attributes(const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
/*
* Supported attributes: no groups, some priorities and ingress only.
* Don't care about transfer as it is the caller's problem.
*/
if (attr->group)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
"groups are not supported");
if (attr->priority > 0xfffe)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr,
"lowest priority level is 0xfffe");
if (!attr->ingress)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "only ingress is supported");
if (attr->egress)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "egress is not supported");
return 0;
}
/**
* Validate flow for E-Switch.
*
* @param[in] priv
* Pointer to the priv structure.
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
* @param[in] actions
* Pointer to the list of actions.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
*/
static int
flow_tcf_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
union {
const struct rte_flow_item_port_id *port_id;
const struct rte_flow_item_eth *eth;
const struct rte_flow_item_vlan *vlan;
const struct rte_flow_item_ipv4 *ipv4;
const struct rte_flow_item_ipv6 *ipv6;
const struct rte_flow_item_tcp *tcp;
const struct rte_flow_item_udp *udp;
} spec, mask;
union {
const struct rte_flow_action_port_id *port_id;
const struct rte_flow_action_of_push_vlan *of_push_vlan;
const struct rte_flow_action_of_set_vlan_vid *
of_set_vlan_vid;
const struct rte_flow_action_of_set_vlan_pcp *
of_set_vlan_pcp;
} conf;
uint32_t item_flags = 0;
uint32_t action_flags = 0;
uint8_t next_protocol = -1;
unsigned int tcm_ifindex = 0;
struct flow_tcf_ptoi ptoi[PTOI_TABLE_SZ_MAX(dev)];
struct rte_eth_dev *port_id_dev = NULL;
bool in_port_id_set;
int ret;
claim_nonzero(flow_tcf_build_ptoi_table(dev, ptoi,
PTOI_TABLE_SZ_MAX(dev)));
ret = flow_tcf_validate_attributes(attr, error);
if (ret < 0)
return ret;
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
unsigned int i;
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_PORT_ID:
mask.port_id = flow_tcf_item_mask
(items, &rte_flow_item_port_id_mask,
&flow_tcf_mask_supported.port_id,
&flow_tcf_mask_empty.port_id,
sizeof(flow_tcf_mask_supported.port_id),
error);
if (!mask.port_id)
return -rte_errno;
if (mask.port_id == &flow_tcf_mask_empty.port_id) {
in_port_id_set = 1;
break;
}
spec.port_id = items->spec;
if (mask.port_id->id && mask.port_id->id != 0xffffffff)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.port_id,
"no support for partial mask on"
" \"id\" field");
if (!mask.port_id->id)
i = 0;
else
for (i = 0; ptoi[i].ifindex; ++i)
if (ptoi[i].port_id == spec.port_id->id)
break;
if (!ptoi[i].ifindex)
return rte_flow_error_set
(error, ENODEV,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
spec.port_id,
"missing data to convert port ID to"
" ifindex");
if (in_port_id_set && ptoi[i].ifindex != tcm_ifindex)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
spec.port_id,
"cannot match traffic for"
" several port IDs through"
" a single flow rule");
tcm_ifindex = ptoi[i].ifindex;
in_port_id_set = 1;
break;
case RTE_FLOW_ITEM_TYPE_ETH:
ret = mlx5_flow_validate_item_eth(items, item_flags,
error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L2;
/* TODO:
* Redundant check due to different supported mask.
* Same for the rest of items.
*/
mask.eth = flow_tcf_item_mask
(items, &rte_flow_item_eth_mask,
&flow_tcf_mask_supported.eth,
&flow_tcf_mask_empty.eth,
sizeof(flow_tcf_mask_supported.eth),
error);
if (!mask.eth)
return -rte_errno;
if (mask.eth->type && mask.eth->type !=
RTE_BE16(0xffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.eth,
"no support for partial mask on"
" \"type\" field");
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
ret = mlx5_flow_validate_item_vlan(items, item_flags,
error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_VLAN;
mask.vlan = flow_tcf_item_mask
(items, &rte_flow_item_vlan_mask,
&flow_tcf_mask_supported.vlan,
&flow_tcf_mask_empty.vlan,
sizeof(flow_tcf_mask_supported.vlan),
error);
if (!mask.vlan)
return -rte_errno;
if ((mask.vlan->tci & RTE_BE16(0xe000) &&
(mask.vlan->tci & RTE_BE16(0xe000)) !=
RTE_BE16(0xe000)) ||
(mask.vlan->tci & RTE_BE16(0x0fff) &&
(mask.vlan->tci & RTE_BE16(0x0fff)) !=
RTE_BE16(0x0fff)) ||
(mask.vlan->inner_type &&
mask.vlan->inner_type != RTE_BE16(0xffff)))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.vlan,
"no support for partial masks on"
" \"tci\" (PCP and VID parts) and"
" \"inner_type\" fields");
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ret = mlx5_flow_validate_item_ipv4(items, item_flags,
error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
mask.ipv4 = flow_tcf_item_mask
(items, &rte_flow_item_ipv4_mask,
&flow_tcf_mask_supported.ipv4,
&flow_tcf_mask_empty.ipv4,
sizeof(flow_tcf_mask_supported.ipv4),
error);
if (!mask.ipv4)
return -rte_errno;
if (mask.ipv4->hdr.next_proto_id &&
mask.ipv4->hdr.next_proto_id != 0xff)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.ipv4,
"no support for partial mask on"
" \"hdr.next_proto_id\" field");
else if (mask.ipv4->hdr.next_proto_id)
next_protocol =
((const struct rte_flow_item_ipv4 *)
(items->spec))->hdr.next_proto_id;
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ret = mlx5_flow_validate_item_ipv6(items, item_flags,
error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
mask.ipv6 = flow_tcf_item_mask
(items, &rte_flow_item_ipv6_mask,
&flow_tcf_mask_supported.ipv6,
&flow_tcf_mask_empty.ipv6,
sizeof(flow_tcf_mask_supported.ipv6),
error);
if (!mask.ipv6)
return -rte_errno;
if (mask.ipv6->hdr.proto &&
mask.ipv6->hdr.proto != 0xff)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.ipv6,
"no support for partial mask on"
" \"hdr.proto\" field");
else if (mask.ipv6->hdr.proto)
next_protocol =
((const struct rte_flow_item_ipv6 *)
(items->spec))->hdr.proto;
break;
case RTE_FLOW_ITEM_TYPE_UDP:
ret = mlx5_flow_validate_item_udp(items, item_flags,
next_protocol, error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
mask.udp = flow_tcf_item_mask
(items, &rte_flow_item_udp_mask,
&flow_tcf_mask_supported.udp,
&flow_tcf_mask_empty.udp,
sizeof(flow_tcf_mask_supported.udp),
error);
if (!mask.udp)
return -rte_errno;
break;
case RTE_FLOW_ITEM_TYPE_TCP:
ret = mlx5_flow_validate_item_tcp(items, item_flags,
next_protocol, error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
mask.tcp = flow_tcf_item_mask
(items, &rte_flow_item_tcp_mask,
&flow_tcf_mask_supported.tcp,
&flow_tcf_mask_empty.tcp,
sizeof(flow_tcf_mask_supported.tcp),
error);
if (!mask.tcp)
return -rte_errno;
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "item not supported");
}
}
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
unsigned int i;
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_PORT_ID:
if (action_flags & MLX5_TCF_FATE_ACTIONS)
return rte_flow_error_set
(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"can't have multiple fate actions");
conf.port_id = actions->conf;
if (conf.port_id->original)
i = 0;
else
for (i = 0; ptoi[i].ifindex; ++i)
if (ptoi[i].port_id == conf.port_id->id)
break;
if (!ptoi[i].ifindex)
return rte_flow_error_set
(error, ENODEV,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
conf.port_id,
"missing data to convert port ID to"
" ifindex");
action_flags |= MLX5_FLOW_ACTION_PORT_ID;
port_id_dev = &rte_eth_devices[conf.port_id->id];
break;
case RTE_FLOW_ACTION_TYPE_DROP:
if (action_flags & MLX5_TCF_FATE_ACTIONS)
return rte_flow_error_set
(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"can't have multiple fate actions");
action_flags |= MLX5_FLOW_ACTION_DROP;
break;
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
action_flags |= MLX5_FLOW_ACTION_OF_POP_VLAN;
break;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
action_flags |= MLX5_FLOW_ACTION_OF_PUSH_VLAN;
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
if (!(action_flags & MLX5_FLOW_ACTION_OF_PUSH_VLAN))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"vlan modify is not supported,"
" set action must follow push action");
action_flags |= MLX5_FLOW_ACTION_OF_SET_VLAN_VID;
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
if (!(action_flags & MLX5_FLOW_ACTION_OF_PUSH_VLAN))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"vlan modify is not supported,"
" set action must follow push action");
action_flags |= MLX5_FLOW_ACTION_OF_SET_VLAN_PCP;
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
}
/*
* FW syndrome (0xA9C090):
* set_flow_table_entry: push vlan action fte in fdb can ONLY be
* forward to the uplink.
*/
if ((action_flags & MLX5_FLOW_ACTION_OF_PUSH_VLAN) &&
(action_flags & MLX5_FLOW_ACTION_PORT_ID) &&
((struct priv *)port_id_dev->data->dev_private)->representor)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"vlan push can only be applied"
" when forwarding to uplink port");
/*
* FW syndrome (0x294609):
* set_flow_table_entry: modify/pop/push actions in fdb flow table
* are supported only while forwarding to vport.
*/
if ((action_flags & MLX5_TCF_VLAN_ACTIONS) &&
!(action_flags & MLX5_FLOW_ACTION_PORT_ID))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"vlan actions are supported"
" only with port_id action");
if (!(action_flags & MLX5_TCF_FATE_ACTIONS))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"no fate action is found");
return 0;
}
/**
* Calculate maximum size of memory for flow items of Linux TC flower and
* extract specified items.
*
* @param[in] items
* Pointer to the list of items.
* @param[out] item_flags
* Pointer to the detected items.
*
* @return
* Maximum size of memory for items.
*/
static int
flow_tcf_get_items_and_size(const struct rte_flow_item items[],
uint64_t *item_flags)
{
int size = 0;
uint64_t flags = 0;
size += SZ_NLATTR_STRZ_OF("flower") +
SZ_NLATTR_NEST + /* TCA_OPTIONS. */
SZ_NLATTR_TYPE_OF(uint32_t); /* TCA_CLS_FLAGS_SKIP_SW. */
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_PORT_ID:
break;
case RTE_FLOW_ITEM_TYPE_ETH:
size += SZ_NLATTR_TYPE_OF(uint16_t) + /* Ether type. */
SZ_NLATTR_DATA_OF(ETHER_ADDR_LEN) * 4;
/* dst/src MAC addr and mask. */
flags |= MLX5_FLOW_LAYER_OUTER_L2;
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
size += SZ_NLATTR_TYPE_OF(uint16_t) + /* Ether type. */
SZ_NLATTR_TYPE_OF(uint16_t) +
/* VLAN Ether type. */
SZ_NLATTR_TYPE_OF(uint8_t) + /* VLAN prio. */
SZ_NLATTR_TYPE_OF(uint16_t); /* VLAN ID. */
flags |= MLX5_FLOW_LAYER_OUTER_VLAN;
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
size += SZ_NLATTR_TYPE_OF(uint16_t) + /* Ether type. */
SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
SZ_NLATTR_TYPE_OF(uint32_t) * 4;
/* dst/src IP addr and mask. */
flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
size += SZ_NLATTR_TYPE_OF(uint16_t) + /* Ether type. */
SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
SZ_NLATTR_TYPE_OF(IPV6_ADDR_LEN) * 4;
/* dst/src IP addr and mask. */
flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
break;
case RTE_FLOW_ITEM_TYPE_UDP:
size += SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
SZ_NLATTR_TYPE_OF(uint16_t) * 4;
/* dst/src port and mask. */
flags |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
break;
case RTE_FLOW_ITEM_TYPE_TCP:
size += SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
SZ_NLATTR_TYPE_OF(uint16_t) * 4;
/* dst/src port and mask. */
flags |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
break;
default:
DRV_LOG(WARNING,
"unsupported item %p type %d,"
" items must be validated before flow creation",
(const void *)items, items->type);
break;
}
}
*item_flags = flags;
return size;
}
/**
* Calculate maximum size of memory for flow actions of Linux TC flower and
* extract specified actions.
*
* @param[in] actions
* Pointer to the list of actions.
* @param[out] action_flags
* Pointer to the detected actions.
*
* @return
* Maximum size of memory for actions.
*/
static int
flow_tcf_get_actions_and_size(const struct rte_flow_action actions[],
uint64_t *action_flags)
{
int size = 0;
uint64_t flags = 0;
size += SZ_NLATTR_NEST; /* TCA_FLOWER_ACT. */
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_PORT_ID:
size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("mirred") +
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
SZ_NLATTR_TYPE_OF(struct tc_mirred);
flags |= MLX5_FLOW_ACTION_PORT_ID;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("gact") +
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
SZ_NLATTR_TYPE_OF(struct tc_gact);
flags |= MLX5_FLOW_ACTION_DROP;
break;
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
flags |= MLX5_FLOW_ACTION_OF_POP_VLAN;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
flags |= MLX5_FLOW_ACTION_OF_PUSH_VLAN;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
flags |= MLX5_FLOW_ACTION_OF_SET_VLAN_VID;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
flags |= MLX5_FLOW_ACTION_OF_SET_VLAN_PCP;
goto action_of_vlan;
action_of_vlan:
size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("vlan") +
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
SZ_NLATTR_TYPE_OF(struct tc_vlan) +
SZ_NLATTR_TYPE_OF(uint16_t) +
/* VLAN protocol. */
SZ_NLATTR_TYPE_OF(uint16_t) + /* VLAN ID. */
SZ_NLATTR_TYPE_OF(uint8_t); /* VLAN prio. */
break;
default:
DRV_LOG(WARNING,
"unsupported action %p type %d,"
" items must be validated before flow creation",
(const void *)actions, actions->type);
break;
}
}
*action_flags = flags;
return size;
}
/**
* Brand rtnetlink buffer with unique handle.
*
* This handle should be unique for a given network interface to avoid
* collisions.
*
* @param nlh
* Pointer to Netlink message.
* @param handle
* Unique 32-bit handle to use.
*/
static void
flow_tcf_nl_brand(struct nlmsghdr *nlh, uint32_t handle)
{
struct tcmsg *tcm = mnl_nlmsg_get_payload(nlh);
tcm->tcm_handle = handle;
DRV_LOG(DEBUG, "Netlink msg %p is branded with handle %x",
(void *)nlh, handle);
}
/**
* Prepare a flow object for Linux TC flower. It calculates the maximum size of
* memory required, allocates the memory, initializes Netlink message headers
* and set unique TC message handle.
*
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
* @param[in] actions
* Pointer to the list of actions.
* @param[out] item_flags
* Pointer to bit mask of all items detected.
* @param[out] action_flags
* Pointer to bit mask of all actions detected.
* @param[out] error
* Pointer to the error structure.
*
* @return
* Pointer to mlx5_flow object on success,
* otherwise NULL and rte_ernno is set.
*/
static struct mlx5_flow *
flow_tcf_prepare(const struct rte_flow_attr *attr __rte_unused,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
uint64_t *item_flags, uint64_t *action_flags,
struct rte_flow_error *error)
{
size_t size = sizeof(struct mlx5_flow) +
MNL_ALIGN(sizeof(struct nlmsghdr)) +
MNL_ALIGN(sizeof(struct tcmsg));
struct mlx5_flow *dev_flow;
struct nlmsghdr *nlh;
struct tcmsg *tcm;
size += flow_tcf_get_items_and_size(items, item_flags);
size += flow_tcf_get_actions_and_size(actions, action_flags);
dev_flow = rte_zmalloc(__func__, size, MNL_ALIGNTO);
if (!dev_flow) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"not enough memory to create E-Switch flow");
return NULL;
}
nlh = mnl_nlmsg_put_header((void *)(dev_flow + 1));
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
*dev_flow = (struct mlx5_flow){
.tcf = (struct mlx5_flow_tcf){
.nlh = nlh,
.tcm = tcm,
},
};
/*
* Generate a reasonably unique handle based on the address of the
* target buffer.
*
* This is straightforward on 32-bit systems where the flow pointer can
* be used directly. Otherwise, its least significant part is taken
* after shifting it by the previous power of two of the pointed buffer
* size.
*/
if (sizeof(dev_flow) <= 4)
flow_tcf_nl_brand(nlh, (uintptr_t)dev_flow);
else
flow_tcf_nl_brand(nlh, (uintptr_t)dev_flow >>
rte_log2_u32(rte_align32prevpow2(size)));
return dev_flow;
}
/**
* Translate flow for Linux TC flower and construct Netlink message.
*
* @param[in] priv
* Pointer to the priv structure.
* @param[in, out] flow
* Pointer to the sub flow.
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
* @param[in] actions
* Pointer to the list of actions.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
*/
static int
flow_tcf_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
union {
const struct rte_flow_item_port_id *port_id;
const struct rte_flow_item_eth *eth;
const struct rte_flow_item_vlan *vlan;
const struct rte_flow_item_ipv4 *ipv4;
const struct rte_flow_item_ipv6 *ipv6;
const struct rte_flow_item_tcp *tcp;
const struct rte_flow_item_udp *udp;
} spec, mask;
union {
const struct rte_flow_action_port_id *port_id;
const struct rte_flow_action_of_push_vlan *of_push_vlan;
const struct rte_flow_action_of_set_vlan_vid *
of_set_vlan_vid;
const struct rte_flow_action_of_set_vlan_pcp *
of_set_vlan_pcp;
} conf;
struct flow_tcf_ptoi ptoi[PTOI_TABLE_SZ_MAX(dev)];
struct nlmsghdr *nlh = dev_flow->tcf.nlh;
struct tcmsg *tcm = dev_flow->tcf.tcm;
uint32_t na_act_index_cur;
bool eth_type_set = 0;
bool vlan_present = 0;
bool vlan_eth_type_set = 0;
bool ip_proto_set = 0;
struct nlattr *na_flower;
struct nlattr *na_flower_act;
struct nlattr *na_vlan_id = NULL;
struct nlattr *na_vlan_priority = NULL;
claim_nonzero(flow_tcf_build_ptoi_table(dev, ptoi,
PTOI_TABLE_SZ_MAX(dev)));
nlh = dev_flow->tcf.nlh;
tcm = dev_flow->tcf.tcm;
/* Prepare API must have been called beforehand. */
assert(nlh != NULL && tcm != NULL);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm_ifindex = ptoi[0].ifindex;
tcm->tcm_parent = TC_H_MAKE(TC_H_INGRESS, TC_H_MIN_INGRESS);
/*
* Priority cannot be zero to prevent the kernel from picking one
* automatically.
*/
tcm->tcm_info = TC_H_MAKE((attr->priority + 1) << 16,
RTE_BE16(ETH_P_ALL));
mnl_attr_put_strz(nlh, TCA_KIND, "flower");
na_flower = mnl_attr_nest_start(nlh, TCA_OPTIONS);
mnl_attr_put_u32(nlh, TCA_FLOWER_FLAGS, TCA_CLS_FLAGS_SKIP_SW);
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
unsigned int i;
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_PORT_ID:
mask.port_id = flow_tcf_item_mask
(items, &rte_flow_item_port_id_mask,
&flow_tcf_mask_supported.port_id,
&flow_tcf_mask_empty.port_id,
sizeof(flow_tcf_mask_supported.port_id),
error);
assert(mask.port_id);
if (mask.port_id == &flow_tcf_mask_empty.port_id)
break;
spec.port_id = items->spec;
if (!mask.port_id->id)
i = 0;
else
for (i = 0; ptoi[i].ifindex; ++i)
if (ptoi[i].port_id == spec.port_id->id)
break;
assert(ptoi[i].ifindex);
tcm->tcm_ifindex = ptoi[i].ifindex;
break;
case RTE_FLOW_ITEM_TYPE_ETH:
mask.eth = flow_tcf_item_mask
(items, &rte_flow_item_eth_mask,
&flow_tcf_mask_supported.eth,
&flow_tcf_mask_empty.eth,
sizeof(flow_tcf_mask_supported.eth),
error);
assert(mask.eth);
if (mask.eth == &flow_tcf_mask_empty.eth)
break;
spec.eth = items->spec;
if (mask.eth->type) {
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_ETH_TYPE,
spec.eth->type);
eth_type_set = 1;
}
if (!is_zero_ether_addr(&mask.eth->dst)) {
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_DST,
ETHER_ADDR_LEN,
spec.eth->dst.addr_bytes);
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_DST_MASK,
ETHER_ADDR_LEN,
mask.eth->dst.addr_bytes);
}
if (!is_zero_ether_addr(&mask.eth->src)) {
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_SRC,
ETHER_ADDR_LEN,
spec.eth->src.addr_bytes);
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_SRC_MASK,
ETHER_ADDR_LEN,
mask.eth->src.addr_bytes);
}
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
mask.vlan = flow_tcf_item_mask
(items, &rte_flow_item_vlan_mask,
&flow_tcf_mask_supported.vlan,
&flow_tcf_mask_empty.vlan,
sizeof(flow_tcf_mask_supported.vlan),
error);
assert(mask.vlan);
if (!eth_type_set)
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_ETH_TYPE,
RTE_BE16(ETH_P_8021Q));
eth_type_set = 1;
vlan_present = 1;
if (mask.vlan == &flow_tcf_mask_empty.vlan)
break;
spec.vlan = items->spec;
if (mask.vlan->inner_type) {
mnl_attr_put_u16(nlh,
TCA_FLOWER_KEY_VLAN_ETH_TYPE,
spec.vlan->inner_type);
vlan_eth_type_set = 1;
}
if (mask.vlan->tci & RTE_BE16(0xe000))
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_VLAN_PRIO,
(rte_be_to_cpu_16
(spec.vlan->tci) >> 13) & 0x7);
if (mask.vlan->tci & RTE_BE16(0x0fff))
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_VLAN_ID,
rte_be_to_cpu_16
(spec.vlan->tci &
RTE_BE16(0x0fff)));
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
mask.ipv4 = flow_tcf_item_mask
(items, &rte_flow_item_ipv4_mask,
&flow_tcf_mask_supported.ipv4,
&flow_tcf_mask_empty.ipv4,
sizeof(flow_tcf_mask_supported.ipv4),
error);
assert(mask.ipv4);
if (!eth_type_set || !vlan_eth_type_set)
mnl_attr_put_u16(nlh,
vlan_present ?
TCA_FLOWER_KEY_VLAN_ETH_TYPE :
TCA_FLOWER_KEY_ETH_TYPE,
RTE_BE16(ETH_P_IP));
eth_type_set = 1;
vlan_eth_type_set = 1;
if (mask.ipv4 == &flow_tcf_mask_empty.ipv4)
break;
spec.ipv4 = items->spec;
if (mask.ipv4->hdr.next_proto_id) {
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_IP_PROTO,
spec.ipv4->hdr.next_proto_id);
ip_proto_set = 1;
}
if (mask.ipv4->hdr.src_addr) {
mnl_attr_put_u32(nlh, TCA_FLOWER_KEY_IPV4_SRC,
spec.ipv4->hdr.src_addr);
mnl_attr_put_u32(nlh,
TCA_FLOWER_KEY_IPV4_SRC_MASK,
mask.ipv4->hdr.src_addr);
}
if (mask.ipv4->hdr.dst_addr) {
mnl_attr_put_u32(nlh, TCA_FLOWER_KEY_IPV4_DST,
spec.ipv4->hdr.dst_addr);
mnl_attr_put_u32(nlh,
TCA_FLOWER_KEY_IPV4_DST_MASK,
mask.ipv4->hdr.dst_addr);
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
mask.ipv6 = flow_tcf_item_mask
(items, &rte_flow_item_ipv6_mask,
&flow_tcf_mask_supported.ipv6,
&flow_tcf_mask_empty.ipv6,
sizeof(flow_tcf_mask_supported.ipv6),
error);
assert(mask.ipv6);
if (!eth_type_set || !vlan_eth_type_set)
mnl_attr_put_u16(nlh,
vlan_present ?
TCA_FLOWER_KEY_VLAN_ETH_TYPE :
TCA_FLOWER_KEY_ETH_TYPE,
RTE_BE16(ETH_P_IPV6));
eth_type_set = 1;
vlan_eth_type_set = 1;
if (mask.ipv6 == &flow_tcf_mask_empty.ipv6)
break;
spec.ipv6 = items->spec;
if (mask.ipv6->hdr.proto) {
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_IP_PROTO,
spec.ipv6->hdr.proto);
ip_proto_set = 1;
}
if (!IN6_IS_ADDR_UNSPECIFIED(mask.ipv6->hdr.src_addr)) {
mnl_attr_put(nlh, TCA_FLOWER_KEY_IPV6_SRC,
sizeof(spec.ipv6->hdr.src_addr),
spec.ipv6->hdr.src_addr);
mnl_attr_put(nlh, TCA_FLOWER_KEY_IPV6_SRC_MASK,
sizeof(mask.ipv6->hdr.src_addr),
mask.ipv6->hdr.src_addr);
}
if (!IN6_IS_ADDR_UNSPECIFIED(mask.ipv6->hdr.dst_addr)) {
mnl_attr_put(nlh, TCA_FLOWER_KEY_IPV6_DST,
sizeof(spec.ipv6->hdr.dst_addr),
spec.ipv6->hdr.dst_addr);
mnl_attr_put(nlh, TCA_FLOWER_KEY_IPV6_DST_MASK,
sizeof(mask.ipv6->hdr.dst_addr),
mask.ipv6->hdr.dst_addr);
}
break;
case RTE_FLOW_ITEM_TYPE_UDP:
mask.udp = flow_tcf_item_mask
(items, &rte_flow_item_udp_mask,
&flow_tcf_mask_supported.udp,
&flow_tcf_mask_empty.udp,
sizeof(flow_tcf_mask_supported.udp),
error);
assert(mask.udp);
if (!ip_proto_set)
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_IP_PROTO,
IPPROTO_UDP);
if (mask.udp == &flow_tcf_mask_empty.udp)
break;
spec.udp = items->spec;
if (mask.udp->hdr.src_port) {
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_UDP_SRC,
spec.udp->hdr.src_port);
mnl_attr_put_u16(nlh,
TCA_FLOWER_KEY_UDP_SRC_MASK,
mask.udp->hdr.src_port);
}
if (mask.udp->hdr.dst_port) {
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_UDP_DST,
spec.udp->hdr.dst_port);
mnl_attr_put_u16(nlh,
TCA_FLOWER_KEY_UDP_DST_MASK,
mask.udp->hdr.dst_port);
}
break;
case RTE_FLOW_ITEM_TYPE_TCP:
mask.tcp = flow_tcf_item_mask
(items, &rte_flow_item_tcp_mask,
&flow_tcf_mask_supported.tcp,
&flow_tcf_mask_empty.tcp,
sizeof(flow_tcf_mask_supported.tcp),
error);
assert(mask.tcp);
if (!ip_proto_set)
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_IP_PROTO,
IPPROTO_TCP);
if (mask.tcp == &flow_tcf_mask_empty.tcp)
break;
spec.tcp = items->spec;
if (mask.tcp->hdr.src_port) {
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_TCP_SRC,
spec.tcp->hdr.src_port);
mnl_attr_put_u16(nlh,
TCA_FLOWER_KEY_TCP_SRC_MASK,
mask.tcp->hdr.src_port);
}
if (mask.tcp->hdr.dst_port) {
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_TCP_DST,
spec.tcp->hdr.dst_port);
mnl_attr_put_u16(nlh,
TCA_FLOWER_KEY_TCP_DST_MASK,
mask.tcp->hdr.dst_port);
}
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "item not supported");
}
}
na_flower_act = mnl_attr_nest_start(nlh, TCA_FLOWER_ACT);
na_act_index_cur = 1;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
struct nlattr *na_act_index;
struct nlattr *na_act;
unsigned int vlan_act;
unsigned int i;
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_PORT_ID:
conf.port_id = actions->conf;
if (conf.port_id->original)
i = 0;
else
for (i = 0; ptoi[i].ifindex; ++i)
if (ptoi[i].port_id == conf.port_id->id)
break;
assert(ptoi[i].ifindex);
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
assert(na_act_index);
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "mirred");
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
assert(na_act);
mnl_attr_put(nlh, TCA_MIRRED_PARMS,
sizeof(struct tc_mirred),
&(struct tc_mirred){
.action = TC_ACT_STOLEN,
.eaction = TCA_EGRESS_REDIR,
.ifindex = ptoi[i].ifindex,
});
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
break;
case RTE_FLOW_ACTION_TYPE_DROP:
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
assert(na_act_index);
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "gact");
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
assert(na_act);
mnl_attr_put(nlh, TCA_GACT_PARMS,
sizeof(struct tc_gact),
&(struct tc_gact){
.action = TC_ACT_SHOT,
});
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
break;
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
conf.of_push_vlan = NULL;
vlan_act = TCA_VLAN_ACT_POP;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
conf.of_push_vlan = actions->conf;
vlan_act = TCA_VLAN_ACT_PUSH;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
conf.of_set_vlan_vid = actions->conf;
if (na_vlan_id)
goto override_na_vlan_id;
vlan_act = TCA_VLAN_ACT_MODIFY;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
conf.of_set_vlan_pcp = actions->conf;
if (na_vlan_priority)
goto override_na_vlan_priority;
vlan_act = TCA_VLAN_ACT_MODIFY;
goto action_of_vlan;
action_of_vlan:
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
assert(na_act_index);
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "vlan");
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
assert(na_act);
mnl_attr_put(nlh, TCA_VLAN_PARMS,
sizeof(struct tc_vlan),
&(struct tc_vlan){
.action = TC_ACT_PIPE,
.v_action = vlan_act,
});
if (vlan_act == TCA_VLAN_ACT_POP) {
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
break;
}
if (vlan_act == TCA_VLAN_ACT_PUSH)
mnl_attr_put_u16(nlh,
TCA_VLAN_PUSH_VLAN_PROTOCOL,
conf.of_push_vlan->ethertype);
na_vlan_id = mnl_nlmsg_get_payload_tail(nlh);
mnl_attr_put_u16(nlh, TCA_VLAN_PAD, 0);
na_vlan_priority = mnl_nlmsg_get_payload_tail(nlh);
mnl_attr_put_u8(nlh, TCA_VLAN_PAD, 0);
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
if (actions->type ==
RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID) {
override_na_vlan_id:
na_vlan_id->nla_type = TCA_VLAN_PUSH_VLAN_ID;
*(uint16_t *)mnl_attr_get_payload(na_vlan_id) =
rte_be_to_cpu_16
(conf.of_set_vlan_vid->vlan_vid);
} else if (actions->type ==
RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP) {
override_na_vlan_priority:
na_vlan_priority->nla_type =
TCA_VLAN_PUSH_VLAN_PRIORITY;
*(uint8_t *)mnl_attr_get_payload
(na_vlan_priority) =
conf.of_set_vlan_pcp->vlan_pcp;
}
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
}
assert(na_flower);
assert(na_flower_act);
mnl_attr_nest_end(nlh, na_flower_act);
mnl_attr_nest_end(nlh, na_flower);
return 0;
}
/**
* Send Netlink message with acknowledgment.
*
* @param nl
* Libmnl socket to use.
* @param nlh
* Message to send. This function always raises the NLM_F_ACK flag before
* sending.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_tcf_nl_ack(struct mnl_socket *nl, struct nlmsghdr *nlh)
{
alignas(struct nlmsghdr)
uint8_t ans[mnl_nlmsg_size(sizeof(struct nlmsgerr)) +
nlh->nlmsg_len - sizeof(*nlh)];
uint32_t seq = random();
int ret;
nlh->nlmsg_flags |= NLM_F_ACK;
nlh->nlmsg_seq = seq;
ret = mnl_socket_sendto(nl, nlh, nlh->nlmsg_len);
if (ret != -1)
ret = mnl_socket_recvfrom(nl, ans, sizeof(ans));
if (ret != -1)
ret = mnl_cb_run
(ans, ret, seq, mnl_socket_get_portid(nl), NULL, NULL);
if (ret > 0)
return 0;
rte_errno = errno;
return -rte_errno;
}
/**
* Apply flow to E-Switch by sending Netlink message.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in, out] flow
* Pointer to the sub flow.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
*/
static int
flow_tcf_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
struct mnl_socket *nl = priv->mnl_socket;
struct mlx5_flow *dev_flow;
struct nlmsghdr *nlh;
dev_flow = LIST_FIRST(&flow->dev_flows);
/* E-Switch flow can't be expanded. */
assert(!LIST_NEXT(dev_flow, next));
nlh = dev_flow->tcf.nlh;
nlh->nlmsg_type = RTM_NEWTFILTER;
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL;
if (!flow_tcf_nl_ack(nl, nlh))
return 0;
return rte_flow_error_set(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: failed to create TC flow rule");
}
/**
* Remove flow from E-Switch by sending Netlink message.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in, out] flow
* Pointer to the sub flow.
*/
static void
flow_tcf_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct priv *priv = dev->data->dev_private;
struct mnl_socket *nl = priv->mnl_socket;
struct mlx5_flow *dev_flow;
struct nlmsghdr *nlh;
if (!flow)
return;
dev_flow = LIST_FIRST(&flow->dev_flows);
if (!dev_flow)
return;
/* E-Switch flow can't be expanded. */
assert(!LIST_NEXT(dev_flow, next));
nlh = dev_flow->tcf.nlh;
nlh->nlmsg_type = RTM_DELTFILTER;
nlh->nlmsg_flags = NLM_F_REQUEST;
flow_tcf_nl_ack(nl, nlh);
}
/**
* Remove flow from E-Switch and release resources of the device flow.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in, out] flow
* Pointer to the sub flow.
*/
static void
flow_tcf_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct mlx5_flow *dev_flow;
if (!flow)
return;
flow_tcf_remove(dev, flow);
dev_flow = LIST_FIRST(&flow->dev_flows);
if (!dev_flow)
return;
/* E-Switch flow can't be expanded. */
assert(!LIST_NEXT(dev_flow, next));
LIST_REMOVE(dev_flow, next);
rte_free(dev_flow);
}
const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops = {
.validate = flow_tcf_validate,
.prepare = flow_tcf_prepare,
.translate = flow_tcf_translate,
.apply = flow_tcf_apply,
.remove = flow_tcf_remove,
.destroy = flow_tcf_destroy,
};
/**
* Initialize ingress qdisc of a given network interface.
*
* @param nl
* Libmnl socket of the @p NETLINK_ROUTE kind.
* @param ifindex
* Index of network interface to initialize.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_flow_tcf_init(struct mnl_socket *nl, unsigned int ifindex,
struct rte_flow_error *error)
{
struct nlmsghdr *nlh;
struct tcmsg *tcm;
alignas(struct nlmsghdr)
uint8_t buf[mnl_nlmsg_size(sizeof(*tcm) + 128)];
/* Destroy existing ingress qdisc and everything attached to it. */
nlh = mnl_nlmsg_put_header(buf);
nlh->nlmsg_type = RTM_DELQDISC;
nlh->nlmsg_flags = NLM_F_REQUEST;
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
tcm->tcm_family = AF_UNSPEC;
tcm->tcm_ifindex = ifindex;
tcm->tcm_handle = TC_H_MAKE(TC_H_INGRESS, 0);
tcm->tcm_parent = TC_H_INGRESS;
/* Ignore errors when qdisc is already absent. */
if (flow_tcf_nl_ack(nl, nlh) &&
rte_errno != EINVAL && rte_errno != ENOENT)
return rte_flow_error_set(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: failed to remove ingress"
" qdisc");
/* Create fresh ingress qdisc. */
nlh = mnl_nlmsg_put_header(buf);
nlh->nlmsg_type = RTM_NEWQDISC;
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL;
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
tcm->tcm_family = AF_UNSPEC;
tcm->tcm_ifindex = ifindex;
tcm->tcm_handle = TC_H_MAKE(TC_H_INGRESS, 0);
tcm->tcm_parent = TC_H_INGRESS;
mnl_attr_put_strz_check(nlh, sizeof(buf), TCA_KIND, "ingress");
if (flow_tcf_nl_ack(nl, nlh))
return rte_flow_error_set(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: failed to create ingress"
" qdisc");
return 0;
}
/**
* Create and configure a libmnl socket for Netlink flow rules.
*
* @return
* A valid libmnl socket object pointer on success, NULL otherwise and
* rte_errno is set.
*/
struct mnl_socket *
mlx5_flow_tcf_socket_create(void)
{
struct mnl_socket *nl = mnl_socket_open(NETLINK_ROUTE);
if (nl) {
mnl_socket_setsockopt(nl, NETLINK_CAP_ACK, &(int){ 1 },
sizeof(int));
if (!mnl_socket_bind(nl, 0, MNL_SOCKET_AUTOPID))
return nl;
}
rte_errno = errno;
if (nl)
mnl_socket_close(nl);
return NULL;
}
/**
* Destroy a libmnl socket.
*
* @param nl
* Libmnl socket of the @p NETLINK_ROUTE kind.
*/
void
mlx5_flow_tcf_socket_destroy(struct mnl_socket *nl)
{
mnl_socket_close(nl);
}