numam-dpdk/lib/librte_kni/rte_kni.c
Scott Wasson eab71b8463 kni: fix not contiguous FIFO
KNI requires FIFO to be physically contiguous, with existing
'rte_memzone_reserve()' API this is not guaranteed by default and as a
result KNI rings and packet delivery may be broken if reserved memory
is not physically contiguous.

Fixing it by providing 'RTE_MEMZONE_IOVA_CONTIG' flag to ask physically
contiguous memory.

Bugzilla ID: 389
Fixes: 23fa86e529 ("memzone: enable IOVA-contiguous reserving")
Cc: stable@dpdk.org

Signed-off-by: Scott Wasson <scott_wasson@affirmednetworks.com>
Acked-by: Ferruh Yigit <ferruh.yigit@intel.com>
2020-02-14 11:59:01 +01:00

831 lines
20 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef RTE_EXEC_ENV_LINUX
#error "KNI is not supported"
#endif
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/version.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include <rte_kni.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_rwlock.h>
#include <rte_eal_memconfig.h>
#include <rte_kni_common.h>
#include "rte_kni_fifo.h"
#define MAX_MBUF_BURST_NUM 32
/* Maximum number of ring entries */
#define KNI_FIFO_COUNT_MAX 1024
#define KNI_FIFO_SIZE (KNI_FIFO_COUNT_MAX * sizeof(void *) + \
sizeof(struct rte_kni_fifo))
#define KNI_REQUEST_MBUF_NUM_MAX 32
#define KNI_MEM_CHECK(cond, fail) do { if (cond) goto fail; } while (0)
#define KNI_MZ_NAME_FMT "kni_info_%s"
#define KNI_TX_Q_MZ_NAME_FMT "kni_tx_%s"
#define KNI_RX_Q_MZ_NAME_FMT "kni_rx_%s"
#define KNI_ALLOC_Q_MZ_NAME_FMT "kni_alloc_%s"
#define KNI_FREE_Q_MZ_NAME_FMT "kni_free_%s"
#define KNI_REQ_Q_MZ_NAME_FMT "kni_req_%s"
#define KNI_RESP_Q_MZ_NAME_FMT "kni_resp_%s"
#define KNI_SYNC_ADDR_MZ_NAME_FMT "kni_sync_%s"
TAILQ_HEAD(rte_kni_list, rte_tailq_entry);
static struct rte_tailq_elem rte_kni_tailq = {
.name = "RTE_KNI",
};
EAL_REGISTER_TAILQ(rte_kni_tailq)
/**
* KNI context
*/
struct rte_kni {
char name[RTE_KNI_NAMESIZE]; /**< KNI interface name */
uint16_t group_id; /**< Group ID of KNI devices */
uint32_t slot_id; /**< KNI pool slot ID */
struct rte_mempool *pktmbuf_pool; /**< pkt mbuf mempool */
unsigned int mbuf_size; /**< mbuf size */
const struct rte_memzone *m_tx_q; /**< TX queue memzone */
const struct rte_memzone *m_rx_q; /**< RX queue memzone */
const struct rte_memzone *m_alloc_q;/**< Alloc queue memzone */
const struct rte_memzone *m_free_q; /**< Free queue memzone */
struct rte_kni_fifo *tx_q; /**< TX queue */
struct rte_kni_fifo *rx_q; /**< RX queue */
struct rte_kni_fifo *alloc_q; /**< Allocated mbufs queue */
struct rte_kni_fifo *free_q; /**< To be freed mbufs queue */
const struct rte_memzone *m_req_q; /**< Request queue memzone */
const struct rte_memzone *m_resp_q; /**< Response queue memzone */
const struct rte_memzone *m_sync_addr;/**< Sync addr memzone */
/* For request & response */
struct rte_kni_fifo *req_q; /**< Request queue */
struct rte_kni_fifo *resp_q; /**< Response queue */
void *sync_addr; /**< Req/Resp Mem address */
struct rte_kni_ops ops; /**< operations for request */
};
enum kni_ops_status {
KNI_REQ_NO_REGISTER = 0,
KNI_REQ_REGISTERED,
};
static void kni_free_mbufs(struct rte_kni *kni);
static void kni_allocate_mbufs(struct rte_kni *kni);
static volatile int kni_fd = -1;
/* Shall be called before any allocation happens */
int
rte_kni_init(unsigned int max_kni_ifaces __rte_unused)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
if (rte_eal_iova_mode() != RTE_IOVA_PA) {
RTE_LOG(ERR, KNI, "KNI requires IOVA as PA\n");
return -1;
}
#endif
/* Check FD and open */
if (kni_fd < 0) {
kni_fd = open("/dev/" KNI_DEVICE, O_RDWR);
if (kni_fd < 0) {
RTE_LOG(ERR, KNI,
"Can not open /dev/%s\n", KNI_DEVICE);
return -1;
}
}
return 0;
}
static struct rte_kni *
__rte_kni_get(const char *name)
{
struct rte_kni *kni;
struct rte_tailq_entry *te;
struct rte_kni_list *kni_list;
kni_list = RTE_TAILQ_CAST(rte_kni_tailq.head, rte_kni_list);
TAILQ_FOREACH(te, kni_list, next) {
kni = te->data;
if (strncmp(name, kni->name, RTE_KNI_NAMESIZE) == 0)
break;
}
if (te == NULL)
kni = NULL;
return kni;
}
static int
kni_reserve_mz(struct rte_kni *kni)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_TX_Q_MZ_NAME_FMT, kni->name);
kni->m_tx_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_tx_q == NULL, tx_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_RX_Q_MZ_NAME_FMT, kni->name);
kni->m_rx_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_rx_q == NULL, rx_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_ALLOC_Q_MZ_NAME_FMT, kni->name);
kni->m_alloc_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_alloc_q == NULL, alloc_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_FREE_Q_MZ_NAME_FMT, kni->name);
kni->m_free_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_free_q == NULL, free_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_REQ_Q_MZ_NAME_FMT, kni->name);
kni->m_req_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_req_q == NULL, req_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_RESP_Q_MZ_NAME_FMT, kni->name);
kni->m_resp_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_resp_q == NULL, resp_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_SYNC_ADDR_MZ_NAME_FMT, kni->name);
kni->m_sync_addr = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_sync_addr == NULL, sync_addr_fail);
return 0;
sync_addr_fail:
rte_memzone_free(kni->m_resp_q);
resp_q_fail:
rte_memzone_free(kni->m_req_q);
req_q_fail:
rte_memzone_free(kni->m_free_q);
free_q_fail:
rte_memzone_free(kni->m_alloc_q);
alloc_q_fail:
rte_memzone_free(kni->m_rx_q);
rx_q_fail:
rte_memzone_free(kni->m_tx_q);
tx_q_fail:
return -1;
}
static void
kni_release_mz(struct rte_kni *kni)
{
rte_memzone_free(kni->m_tx_q);
rte_memzone_free(kni->m_rx_q);
rte_memzone_free(kni->m_alloc_q);
rte_memzone_free(kni->m_free_q);
rte_memzone_free(kni->m_req_q);
rte_memzone_free(kni->m_resp_q);
rte_memzone_free(kni->m_sync_addr);
}
struct rte_kni *
rte_kni_alloc(struct rte_mempool *pktmbuf_pool,
const struct rte_kni_conf *conf,
struct rte_kni_ops *ops)
{
int ret;
struct rte_kni_device_info dev_info;
struct rte_kni *kni;
struct rte_tailq_entry *te;
struct rte_kni_list *kni_list;
if (!pktmbuf_pool || !conf || !conf->name[0])
return NULL;
/* Check if KNI subsystem has been initialized */
if (kni_fd < 0) {
RTE_LOG(ERR, KNI, "KNI subsystem has not been initialized. Invoke rte_kni_init() first\n");
return NULL;
}
rte_mcfg_tailq_write_lock();
kni = __rte_kni_get(conf->name);
if (kni != NULL) {
RTE_LOG(ERR, KNI, "KNI already exists\n");
goto unlock;
}
te = rte_zmalloc("KNI_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, KNI, "Failed to allocate tailq entry\n");
goto unlock;
}
kni = rte_zmalloc("KNI", sizeof(struct rte_kni), RTE_CACHE_LINE_SIZE);
if (kni == NULL) {
RTE_LOG(ERR, KNI, "KNI memory allocation failed\n");
goto kni_fail;
}
strlcpy(kni->name, conf->name, RTE_KNI_NAMESIZE);
if (ops)
memcpy(&kni->ops, ops, sizeof(struct rte_kni_ops));
else
kni->ops.port_id = UINT16_MAX;
memset(&dev_info, 0, sizeof(dev_info));
dev_info.core_id = conf->core_id;
dev_info.force_bind = conf->force_bind;
dev_info.group_id = conf->group_id;
dev_info.mbuf_size = conf->mbuf_size;
dev_info.mtu = conf->mtu;
dev_info.min_mtu = conf->min_mtu;
dev_info.max_mtu = conf->max_mtu;
memcpy(dev_info.mac_addr, conf->mac_addr, RTE_ETHER_ADDR_LEN);
strlcpy(dev_info.name, conf->name, RTE_KNI_NAMESIZE);
ret = kni_reserve_mz(kni);
if (ret < 0)
goto mz_fail;
/* TX RING */
kni->tx_q = kni->m_tx_q->addr;
kni_fifo_init(kni->tx_q, KNI_FIFO_COUNT_MAX);
dev_info.tx_phys = kni->m_tx_q->phys_addr;
/* RX RING */
kni->rx_q = kni->m_rx_q->addr;
kni_fifo_init(kni->rx_q, KNI_FIFO_COUNT_MAX);
dev_info.rx_phys = kni->m_rx_q->phys_addr;
/* ALLOC RING */
kni->alloc_q = kni->m_alloc_q->addr;
kni_fifo_init(kni->alloc_q, KNI_FIFO_COUNT_MAX);
dev_info.alloc_phys = kni->m_alloc_q->phys_addr;
/* FREE RING */
kni->free_q = kni->m_free_q->addr;
kni_fifo_init(kni->free_q, KNI_FIFO_COUNT_MAX);
dev_info.free_phys = kni->m_free_q->phys_addr;
/* Request RING */
kni->req_q = kni->m_req_q->addr;
kni_fifo_init(kni->req_q, KNI_FIFO_COUNT_MAX);
dev_info.req_phys = kni->m_req_q->phys_addr;
/* Response RING */
kni->resp_q = kni->m_resp_q->addr;
kni_fifo_init(kni->resp_q, KNI_FIFO_COUNT_MAX);
dev_info.resp_phys = kni->m_resp_q->phys_addr;
/* Req/Resp sync mem area */
kni->sync_addr = kni->m_sync_addr->addr;
dev_info.sync_va = kni->m_sync_addr->addr;
dev_info.sync_phys = kni->m_sync_addr->phys_addr;
kni->pktmbuf_pool = pktmbuf_pool;
kni->group_id = conf->group_id;
kni->mbuf_size = conf->mbuf_size;
dev_info.iova_mode = (rte_eal_iova_mode() == RTE_IOVA_VA) ? 1 : 0;
ret = ioctl(kni_fd, RTE_KNI_IOCTL_CREATE, &dev_info);
if (ret < 0)
goto ioctl_fail;
te->data = kni;
kni_list = RTE_TAILQ_CAST(rte_kni_tailq.head, rte_kni_list);
TAILQ_INSERT_TAIL(kni_list, te, next);
rte_mcfg_tailq_write_unlock();
/* Allocate mbufs and then put them into alloc_q */
kni_allocate_mbufs(kni);
return kni;
ioctl_fail:
kni_release_mz(kni);
mz_fail:
rte_free(kni);
kni_fail:
rte_free(te);
unlock:
rte_mcfg_tailq_write_unlock();
return NULL;
}
static void
kni_free_fifo(struct rte_kni_fifo *fifo)
{
int ret;
struct rte_mbuf *pkt;
do {
ret = kni_fifo_get(fifo, (void **)&pkt, 1);
if (ret)
rte_pktmbuf_free(pkt);
} while (ret);
}
static void *
va2pa(struct rte_mbuf *m)
{
return (void *)((unsigned long)m -
((unsigned long)m->buf_addr -
(unsigned long)m->buf_iova));
}
static void *
va2pa_all(struct rte_mbuf *mbuf)
{
void *phy_mbuf = va2pa(mbuf);
struct rte_mbuf *next = mbuf->next;
while (next) {
mbuf->next = va2pa(next);
mbuf = next;
next = mbuf->next;
}
return phy_mbuf;
}
static void
obj_free(struct rte_mempool *mp __rte_unused, void *opaque, void *obj,
unsigned obj_idx __rte_unused)
{
struct rte_mbuf *m = obj;
void *mbuf_phys = opaque;
if (va2pa(m) == mbuf_phys)
rte_pktmbuf_free(m);
}
static void
kni_free_fifo_phy(struct rte_mempool *mp, struct rte_kni_fifo *fifo)
{
void *mbuf_phys;
int ret;
do {
ret = kni_fifo_get(fifo, &mbuf_phys, 1);
if (ret)
rte_mempool_obj_iter(mp, obj_free, mbuf_phys);
} while (ret);
}
int
rte_kni_release(struct rte_kni *kni)
{
struct rte_tailq_entry *te;
struct rte_kni_list *kni_list;
struct rte_kni_device_info dev_info;
uint32_t retry = 5;
if (!kni)
return -1;
kni_list = RTE_TAILQ_CAST(rte_kni_tailq.head, rte_kni_list);
rte_mcfg_tailq_write_lock();
TAILQ_FOREACH(te, kni_list, next) {
if (te->data == kni)
break;
}
if (te == NULL)
goto unlock;
strlcpy(dev_info.name, kni->name, sizeof(dev_info.name));
if (ioctl(kni_fd, RTE_KNI_IOCTL_RELEASE, &dev_info) < 0) {
RTE_LOG(ERR, KNI, "Fail to release kni device\n");
goto unlock;
}
TAILQ_REMOVE(kni_list, te, next);
rte_mcfg_tailq_write_unlock();
/* mbufs in all fifo should be released, except request/response */
/* wait until all rxq packets processed by kernel */
while (kni_fifo_count(kni->rx_q) && retry--)
usleep(1000);
if (kni_fifo_count(kni->rx_q))
RTE_LOG(ERR, KNI, "Fail to free all Rx-q items\n");
kni_free_fifo_phy(kni->pktmbuf_pool, kni->alloc_q);
kni_free_fifo(kni->tx_q);
kni_free_fifo(kni->free_q);
kni_release_mz(kni);
rte_free(kni);
rte_free(te);
return 0;
unlock:
rte_mcfg_tailq_write_unlock();
return -1;
}
/* default callback for request of configuring device mac address */
static int
kni_config_mac_address(uint16_t port_id, uint8_t mac_addr[])
{
int ret = 0;
if (!rte_eth_dev_is_valid_port(port_id)) {
RTE_LOG(ERR, KNI, "Invalid port id %d\n", port_id);
return -EINVAL;
}
RTE_LOG(INFO, KNI, "Configure mac address of %d", port_id);
ret = rte_eth_dev_default_mac_addr_set(port_id,
(struct rte_ether_addr *)mac_addr);
if (ret < 0)
RTE_LOG(ERR, KNI, "Failed to config mac_addr for port %d\n",
port_id);
return ret;
}
/* default callback for request of configuring promiscuous mode */
static int
kni_config_promiscusity(uint16_t port_id, uint8_t to_on)
{
int ret;
if (!rte_eth_dev_is_valid_port(port_id)) {
RTE_LOG(ERR, KNI, "Invalid port id %d\n", port_id);
return -EINVAL;
}
RTE_LOG(INFO, KNI, "Configure promiscuous mode of %d to %d\n",
port_id, to_on);
if (to_on)
ret = rte_eth_promiscuous_enable(port_id);
else
ret = rte_eth_promiscuous_disable(port_id);
if (ret != 0)
RTE_LOG(ERR, KNI,
"Failed to %s promiscuous mode for port %u: %s\n",
to_on ? "enable" : "disable", port_id,
rte_strerror(-ret));
return ret;
}
/* default callback for request of configuring allmulticast mode */
static int
kni_config_allmulticast(uint16_t port_id, uint8_t to_on)
{
if (!rte_eth_dev_is_valid_port(port_id)) {
RTE_LOG(ERR, KNI, "Invalid port id %d\n", port_id);
return -EINVAL;
}
RTE_LOG(INFO, KNI, "Configure allmulticast mode of %d to %d\n",
port_id, to_on);
if (to_on)
rte_eth_allmulticast_enable(port_id);
else
rte_eth_allmulticast_disable(port_id);
return 0;
}
int
rte_kni_handle_request(struct rte_kni *kni)
{
unsigned int ret;
struct rte_kni_request *req = NULL;
if (kni == NULL)
return -1;
/* Get request mbuf */
ret = kni_fifo_get(kni->req_q, (void **)&req, 1);
if (ret != 1)
return 0; /* It is OK of can not getting the request mbuf */
if (req != kni->sync_addr) {
RTE_LOG(ERR, KNI, "Wrong req pointer %p\n", req);
return -1;
}
/* Analyze the request and call the relevant actions for it */
switch (req->req_id) {
case RTE_KNI_REQ_CHANGE_MTU: /* Change MTU */
if (kni->ops.change_mtu)
req->result = kni->ops.change_mtu(kni->ops.port_id,
req->new_mtu);
break;
case RTE_KNI_REQ_CFG_NETWORK_IF: /* Set network interface up/down */
if (kni->ops.config_network_if)
req->result = kni->ops.config_network_if(kni->ops.port_id,
req->if_up);
break;
case RTE_KNI_REQ_CHANGE_MAC_ADDR: /* Change MAC Address */
if (kni->ops.config_mac_address)
req->result = kni->ops.config_mac_address(
kni->ops.port_id, req->mac_addr);
else if (kni->ops.port_id != UINT16_MAX)
req->result = kni_config_mac_address(
kni->ops.port_id, req->mac_addr);
break;
case RTE_KNI_REQ_CHANGE_PROMISC: /* Change PROMISCUOUS MODE */
if (kni->ops.config_promiscusity)
req->result = kni->ops.config_promiscusity(
kni->ops.port_id, req->promiscusity);
else if (kni->ops.port_id != UINT16_MAX)
req->result = kni_config_promiscusity(
kni->ops.port_id, req->promiscusity);
break;
case RTE_KNI_REQ_CHANGE_ALLMULTI: /* Change ALLMULTICAST MODE */
if (kni->ops.config_allmulticast)
req->result = kni->ops.config_allmulticast(
kni->ops.port_id, req->allmulti);
else if (kni->ops.port_id != UINT16_MAX)
req->result = kni_config_allmulticast(
kni->ops.port_id, req->allmulti);
break;
default:
RTE_LOG(ERR, KNI, "Unknown request id %u\n", req->req_id);
req->result = -EINVAL;
break;
}
/* Construct response mbuf and put it back to resp_q */
ret = kni_fifo_put(kni->resp_q, (void **)&req, 1);
if (ret != 1) {
RTE_LOG(ERR, KNI, "Fail to put the muf back to resp_q\n");
return -1; /* It is an error of can't putting the mbuf back */
}
return 0;
}
unsigned
rte_kni_tx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned int num)
{
num = RTE_MIN(kni_fifo_free_count(kni->rx_q), num);
void *phy_mbufs[num];
unsigned int ret;
unsigned int i;
for (i = 0; i < num; i++)
phy_mbufs[i] = va2pa_all(mbufs[i]);
ret = kni_fifo_put(kni->rx_q, phy_mbufs, num);
/* Get mbufs from free_q and then free them */
kni_free_mbufs(kni);
return ret;
}
unsigned
rte_kni_rx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned int num)
{
unsigned int ret = kni_fifo_get(kni->tx_q, (void **)mbufs, num);
/* If buffers removed, allocate mbufs and then put them into alloc_q */
if (ret)
kni_allocate_mbufs(kni);
return ret;
}
static void
kni_free_mbufs(struct rte_kni *kni)
{
int i, ret;
struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM];
ret = kni_fifo_get(kni->free_q, (void **)pkts, MAX_MBUF_BURST_NUM);
if (likely(ret > 0)) {
for (i = 0; i < ret; i++)
rte_pktmbuf_free(pkts[i]);
}
}
static void
kni_allocate_mbufs(struct rte_kni *kni)
{
int i, ret;
struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM];
void *phys[MAX_MBUF_BURST_NUM];
int allocq_free;
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pool) !=
offsetof(struct rte_kni_mbuf, pool));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_addr) !=
offsetof(struct rte_kni_mbuf, buf_addr));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, next) !=
offsetof(struct rte_kni_mbuf, next));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) !=
offsetof(struct rte_kni_mbuf, data_off));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_kni_mbuf, data_len));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_kni_mbuf, pkt_len));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_kni_mbuf, ol_flags));
/* Check if pktmbuf pool has been configured */
if (kni->pktmbuf_pool == NULL) {
RTE_LOG(ERR, KNI, "No valid mempool for allocating mbufs\n");
return;
}
allocq_free = (kni->alloc_q->read - kni->alloc_q->write - 1)
& (MAX_MBUF_BURST_NUM - 1);
for (i = 0; i < allocq_free; i++) {
pkts[i] = rte_pktmbuf_alloc(kni->pktmbuf_pool);
if (unlikely(pkts[i] == NULL)) {
/* Out of memory */
RTE_LOG(ERR, KNI, "Out of memory\n");
break;
}
phys[i] = va2pa(pkts[i]);
}
/* No pkt mbuf allocated */
if (i <= 0)
return;
ret = kni_fifo_put(kni->alloc_q, phys, i);
/* Check if any mbufs not put into alloc_q, and then free them */
if (ret >= 0 && ret < i && ret < MAX_MBUF_BURST_NUM) {
int j;
for (j = ret; j < i; j++)
rte_pktmbuf_free(pkts[j]);
}
}
struct rte_kni *
rte_kni_get(const char *name)
{
struct rte_kni *kni;
if (name == NULL || name[0] == '\0')
return NULL;
rte_mcfg_tailq_read_lock();
kni = __rte_kni_get(name);
rte_mcfg_tailq_read_unlock();
return kni;
}
const char *
rte_kni_get_name(const struct rte_kni *kni)
{
return kni->name;
}
static enum kni_ops_status
kni_check_request_register(struct rte_kni_ops *ops)
{
/* check if KNI request ops has been registered*/
if (ops == NULL)
return KNI_REQ_NO_REGISTER;
if (ops->change_mtu == NULL
&& ops->config_network_if == NULL
&& ops->config_mac_address == NULL
&& ops->config_promiscusity == NULL
&& ops->config_allmulticast == NULL)
return KNI_REQ_NO_REGISTER;
return KNI_REQ_REGISTERED;
}
int
rte_kni_register_handlers(struct rte_kni *kni, struct rte_kni_ops *ops)
{
enum kni_ops_status req_status;
if (ops == NULL) {
RTE_LOG(ERR, KNI, "Invalid KNI request operation.\n");
return -1;
}
if (kni == NULL) {
RTE_LOG(ERR, KNI, "Invalid kni info.\n");
return -1;
}
req_status = kni_check_request_register(&kni->ops);
if (req_status == KNI_REQ_REGISTERED) {
RTE_LOG(ERR, KNI, "The KNI request operation has already registered.\n");
return -1;
}
memcpy(&kni->ops, ops, sizeof(struct rte_kni_ops));
return 0;
}
int
rte_kni_unregister_handlers(struct rte_kni *kni)
{
if (kni == NULL) {
RTE_LOG(ERR, KNI, "Invalid kni info.\n");
return -1;
}
memset(&kni->ops, 0, sizeof(struct rte_kni_ops));
return 0;
}
int
rte_kni_update_link(struct rte_kni *kni, unsigned int linkup)
{
char path[64];
char old_carrier[2];
const char *new_carrier;
int old_linkup;
int fd, ret;
if (kni == NULL)
return -1;
snprintf(path, sizeof(path), "/sys/devices/virtual/net/%s/carrier",
kni->name);
fd = open(path, O_RDWR);
if (fd == -1) {
RTE_LOG(ERR, KNI, "Failed to open file: %s.\n", path);
return -1;
}
ret = read(fd, old_carrier, 2);
if (ret < 1) {
close(fd);
return -1;
}
old_linkup = (old_carrier[0] == '1');
new_carrier = linkup ? "1" : "0";
ret = write(fd, new_carrier, 1);
if (ret < 1) {
RTE_LOG(ERR, KNI, "Failed to write file: %s.\n", path);
close(fd);
return -1;
}
close(fd);
return old_linkup;
}
void
rte_kni_close(void)
{
if (kni_fd < 0)
return;
close(kni_fd);
kni_fd = -1;
}