numam-dpdk/drivers/net/mlx5/mlx5_rxtx_vec_sse.h
Yongseok Koh c618e7e82b net/mlx5: fix assert for Tx completion queue count
There should be at least one Tx CQE remained if Tx WQ and txq->elts[] have
available slots to send a packet because the size of Tx CQ is exactly
calculated from the size of other resources. As it is guaranteed, it is
checked by an assertion.

max_elts is checked after the assertion for Tx CQ. If no slot is available
in txq->elts[], the assertion would be wrong.

Fixes: 2eefbec531c7 ("net/mlx5: add missing sanity checks for Tx completion queue")
Fixes: 6ce84bd88919 ("net/mlx5: add enhanced multi-packet send for ConnectX-5")
Cc: stable@dpdk.org

Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
Acked-by: Xueming Li <xuemingl@mellanox.com>
2018-07-26 14:05:52 +02:00

970 lines
33 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
#ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
#define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <smmintrin.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_rxtx_vec.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
/**
* Fill in buffer descriptors in a multi-packet send descriptor.
*
* @param txq
* Pointer to TX queue structure.
* @param dseg
* Pointer to buffer descriptor to be written.
* @param pkts
* Pointer to array of packets to be sent.
* @param n
* Number of packets to be filled.
*/
static inline void
txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg,
struct rte_mbuf **pkts, unsigned int n)
{
unsigned int pos;
uintptr_t addr;
const __m128i shuf_mask_dseg =
_mm_set_epi8(8, 9, 10, 11, /* addr, bswap64 */
12, 13, 14, 15,
7, 6, 5, 4, /* lkey */
0, 1, 2, 3 /* length, bswap32 */);
#ifdef MLX5_PMD_SOFT_COUNTERS
uint32_t tx_byte = 0;
#endif
for (pos = 0; pos < n; ++pos, ++dseg) {
__m128i desc;
struct rte_mbuf *pkt = pkts[pos];
addr = rte_pktmbuf_mtod(pkt, uintptr_t);
desc = _mm_set_epi32(addr >> 32,
addr,
mlx5_tx_mb2mr(txq, pkt),
DATA_LEN(pkt));
desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
_mm_store_si128(dseg, desc);
#ifdef MLX5_PMD_SOFT_COUNTERS
tx_byte += DATA_LEN(pkt);
#endif
}
#ifdef MLX5_PMD_SOFT_COUNTERS
txq->stats.obytes += tx_byte;
#endif
}
/**
* Send multi-segmented packets until it encounters a single segment packet in
* the pkts list.
*
* @param txq
* Pointer to TX queue structure.
* @param pkts
* Pointer to array of packets to be sent.
* @param pkts_n
* Number of packets to be sent.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static uint16_t
txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
uint16_t pkts_n)
{
uint16_t elts_head = txq->elts_head;
const uint16_t elts_n = 1 << txq->elts_n;
const uint16_t elts_m = elts_n - 1;
const uint16_t wq_n = 1 << txq->wqe_n;
const uint16_t wq_mask = wq_n - 1;
const unsigned int nb_dword_per_wqebb =
MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
const unsigned int nb_dword_in_hdr =
sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
unsigned int n;
volatile struct mlx5_wqe *wqe = NULL;
assert(elts_n > pkts_n);
mlx5_tx_complete(txq);
if (unlikely(!pkts_n))
return 0;
for (n = 0; n < pkts_n; ++n) {
struct rte_mbuf *buf = pkts[n];
unsigned int segs_n = buf->nb_segs;
unsigned int ds = nb_dword_in_hdr;
unsigned int len = PKT_LEN(buf);
uint16_t wqe_ci = txq->wqe_ci;
const __m128i shuf_mask_ctrl =
_mm_set_epi8(15, 14, 13, 12,
8, 9, 10, 11, /* bswap32 */
4, 5, 6, 7, /* bswap32 */
0, 1, 2, 3 /* bswap32 */);
uint8_t cs_flags;
uint16_t max_elts;
uint16_t max_wqe;
__m128i *t_wqe, *dseg;
__m128i ctrl;
assert(segs_n);
max_elts = elts_n - (elts_head - txq->elts_tail);
max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
/*
* A MPW session consumes 2 WQEs at most to
* include MLX5_MPW_DSEG_MAX pointers.
*/
if (segs_n == 1 ||
max_elts < segs_n || max_wqe < 2)
break;
if (segs_n > MLX5_MPW_DSEG_MAX) {
txq->stats.oerrors++;
break;
}
wqe = &((volatile struct mlx5_wqe64 *)
txq->wqes)[wqe_ci & wq_mask].hdr;
cs_flags = txq_ol_cksum_to_cs(buf);
/* Title WQEBB pointer. */
t_wqe = (__m128i *)wqe;
dseg = (__m128i *)(wqe + 1);
do {
if (!(ds++ % nb_dword_per_wqebb)) {
dseg = (__m128i *)
&((volatile struct mlx5_wqe64 *)
txq->wqes)[++wqe_ci & wq_mask];
}
txq_wr_dseg_v(txq, dseg++, &buf, 1);
(*txq->elts)[elts_head++ & elts_m] = buf;
buf = buf->next;
} while (--segs_n);
++wqe_ci;
/* Fill CTRL in the header. */
ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
MLX5_OPC_MOD_MPW << 24 |
txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
_mm_store_si128(t_wqe, ctrl);
/* Fill ESEG in the header. */
_mm_store_si128(t_wqe + 1,
_mm_set_epi16(0, 0, 0, 0,
rte_cpu_to_be_16(len), cs_flags,
0, 0));
txq->wqe_ci = wqe_ci;
}
if (!n)
return 0;
txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
txq->elts_head = elts_head;
if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
/* A CQE slot must always be available. */
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
wqe->ctrl[2] = rte_cpu_to_be_32(8);
wqe->ctrl[3] = txq->elts_head;
txq->elts_comp = 0;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
txq->stats.opackets += n;
#endif
mlx5_tx_dbrec(txq, wqe);
return n;
}
/**
* Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
* it returns to make it processed by txq_scatter_v(). All the packets in
* the pkts list should be single segment packets having same offload flags.
* This must be checked by txq_count_contig_single_seg() and txq_calc_offload().
*
* @param txq
* Pointer to TX queue structure.
* @param pkts
* Pointer to array of packets to be sent.
* @param pkts_n
* Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
* @param cs_flags
* Checksum offload flags to be written in the descriptor.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static inline uint16_t
txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
uint8_t cs_flags)
{
struct rte_mbuf **elts;
uint16_t elts_head = txq->elts_head;
const uint16_t elts_n = 1 << txq->elts_n;
const uint16_t elts_m = elts_n - 1;
const unsigned int nb_dword_per_wqebb =
MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
const unsigned int nb_dword_in_hdr =
sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
unsigned int n = 0;
unsigned int pos;
uint16_t max_elts;
uint16_t max_wqe;
uint32_t comp_req = 0;
const uint16_t wq_n = 1 << txq->wqe_n;
const uint16_t wq_mask = wq_n - 1;
uint16_t wq_idx = txq->wqe_ci & wq_mask;
volatile struct mlx5_wqe64 *wq =
&((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
const __m128i shuf_mask_ctrl =
_mm_set_epi8(15, 14, 13, 12,
8, 9, 10, 11, /* bswap32 */
4, 5, 6, 7, /* bswap32 */
0, 1, 2, 3 /* bswap32 */);
__m128i *t_wqe, *dseg;
__m128i ctrl;
/* Make sure all packets can fit into a single WQE. */
assert(elts_n > pkts_n);
mlx5_tx_complete(txq);
max_elts = (elts_n - (elts_head - txq->elts_tail));
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr);
if (unlikely(!pkts_n))
return 0;
elts = &(*txq->elts)[elts_head & elts_m];
/* Loop for available tailroom first. */
n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
for (pos = 0; pos < (n & -2); pos += 2)
_mm_storeu_si128((__m128i *)&elts[pos],
_mm_loadu_si128((__m128i *)&pkts[pos]));
if (n & 1)
elts[pos] = pkts[pos];
/* Check if it crosses the end of the queue. */
if (unlikely(n < pkts_n)) {
elts = &(*txq->elts)[0];
for (pos = 0; pos < pkts_n - n; ++pos)
elts[pos] = pkts[n + pos];
}
txq->elts_head += pkts_n;
/* Save title WQEBB pointer. */
t_wqe = (__m128i *)wqe;
dseg = (__m128i *)(wqe + 1);
/* Calculate the number of entries to the end. */
n = RTE_MIN(
(wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
pkts_n);
/* Fill DSEGs. */
txq_wr_dseg_v(txq, dseg, pkts, n);
/* Check if it crosses the end of the queue. */
if (n < pkts_n) {
dseg = (__m128i *)txq->wqes;
txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
}
if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
txq->elts_comp += pkts_n;
} else {
/* A CQE slot must always be available. */
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
/* Request a completion. */
txq->elts_comp = 0;
comp_req = 8;
}
/* Fill CTRL in the header. */
ctrl = _mm_set_epi32(txq->elts_head, comp_req,
txq->qp_num_8s | (pkts_n + 2),
MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
_mm_store_si128(t_wqe, ctrl);
/* Fill ESEG in the header. */
_mm_store_si128(t_wqe + 1,
_mm_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, cs_flags,
0, 0, 0, 0));
#ifdef MLX5_PMD_SOFT_COUNTERS
txq->stats.opackets += pkts_n;
#endif
txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
nb_dword_per_wqebb;
/* Ring QP doorbell. */
mlx5_tx_dbrec_cond_wmb(txq, wqe, pkts_n < MLX5_VPMD_TX_MAX_BURST);
return pkts_n;
}
/**
* Store free buffers to RX SW ring.
*
* @param rxq
* Pointer to RX queue structure.
* @param pkts
* Pointer to array of packets to be stored.
* @param pkts_n
* Number of packets to be stored.
*/
static inline void
rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
{
const uint16_t q_mask = (1 << rxq->elts_n) - 1;
struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
unsigned int pos;
uint16_t p = n & -2;
for (pos = 0; pos < p; pos += 2) {
__m128i mbp;
mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
}
if (n & 1)
pkts[pos] = elts[pos];
}
/**
* Decompress a compressed completion and fill in mbufs in RX SW ring with data
* extracted from the title completion descriptor.
*
* @param rxq
* Pointer to RX queue structure.
* @param cq
* Pointer to completion array having a compressed completion at first.
* @param elts
* Pointer to SW ring to be filled. The first mbuf has to be pre-built from
* the title completion descriptor to be copied to the rest of mbufs.
*/
static inline void
rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
struct rte_mbuf **elts)
{
volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
unsigned int pos;
unsigned int i;
unsigned int inv = 0;
/* Mask to shuffle from extracted mini CQE to mbuf. */
const __m128i shuf_mask1 =
_mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
-1, -1, /* skip vlan_tci */
6, 7, /* data_len, bswap16 */
-1, -1, 6, 7, /* pkt_len, bswap16 */
-1, -1, -1, -1 /* skip packet_type */);
const __m128i shuf_mask2 =
_mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
-1, -1, /* skip vlan_tci */
14, 15, /* data_len, bswap16 */
-1, -1, 14, 15, /* pkt_len, bswap16 */
-1, -1, -1, -1 /* skip packet_type */);
/* Restore the compressed count. Must be 16 bits. */
const uint16_t mcqe_n = t_pkt->data_len +
(rxq->crc_present * ETHER_CRC_LEN);
const __m128i rearm =
_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
const __m128i rxdf =
_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
const __m128i crc_adj =
_mm_set_epi16(0, 0, 0,
rxq->crc_present * ETHER_CRC_LEN,
0,
rxq->crc_present * ETHER_CRC_LEN,
0, 0);
const uint32_t flow_tag = t_pkt->hash.fdir.hi;
#ifdef MLX5_PMD_SOFT_COUNTERS
const __m128i zero = _mm_setzero_si128();
const __m128i ones = _mm_cmpeq_epi32(zero, zero);
uint32_t rcvd_byte = 0;
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
const __m128i len_shuf_mask =
_mm_set_epi8(-1, -1, -1, -1,
-1, -1, -1, -1,
14, 15, 6, 7,
10, 11, 2, 3);
#endif
/*
* A. load mCQEs into a 128bit register.
* B. store rearm data to mbuf.
* C. combine data from mCQEs with rx_descriptor_fields1.
* D. store rx_descriptor_fields1.
* E. store flow tag (rte_flow mark).
*/
for (pos = 0; pos < mcqe_n; ) {
__m128i mcqe1, mcqe2;
__m128i rxdf1, rxdf2;
#ifdef MLX5_PMD_SOFT_COUNTERS
__m128i byte_cnt, invalid_mask;
#endif
if (!(pos & 0x7) && pos + 8 < mcqe_n)
rte_prefetch0((void *)(cq + pos + 8));
/* A.1 load mCQEs into a 128bit register. */
mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
/* B.1 store rearm data to mbuf. */
_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
/* D.1 store rx_descriptor_fields1. */
_mm_storeu_si128((__m128i *)
&elts[pos]->rx_descriptor_fields1,
rxdf1);
_mm_storeu_si128((__m128i *)
&elts[pos + 1]->rx_descriptor_fields1,
rxdf2);
/* B.1 store rearm data to mbuf. */
_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
/* D.1 store rx_descriptor_fields1. */
_mm_storeu_si128((__m128i *)
&elts[pos + 2]->rx_descriptor_fields1,
rxdf1);
_mm_storeu_si128((__m128i *)
&elts[pos + 3]->rx_descriptor_fields1,
rxdf2);
#ifdef MLX5_PMD_SOFT_COUNTERS
invalid_mask = _mm_set_epi64x(0,
(mcqe_n - pos) *
sizeof(uint16_t) * 8);
invalid_mask = _mm_sll_epi64(ones, invalid_mask);
mcqe1 = _mm_srli_si128(mcqe1, 4);
byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
#endif
if (rxq->mark) {
/* E.1 store flow tag (rte_flow mark). */
elts[pos]->hash.fdir.hi = flow_tag;
elts[pos + 1]->hash.fdir.hi = flow_tag;
elts[pos + 2]->hash.fdir.hi = flow_tag;
elts[pos + 3]->hash.fdir.hi = flow_tag;
}
pos += MLX5_VPMD_DESCS_PER_LOOP;
/* Move to next CQE and invalidate consumed CQEs. */
if (!(pos & 0x7) && pos < mcqe_n) {
mcq = (void *)(cq + pos);
for (i = 0; i < 8; ++i)
cq[inv++].op_own = MLX5_CQE_INVALIDATE;
}
}
/* Invalidate the rest of CQEs. */
for (; inv < mcqe_n; ++inv)
cq[inv].op_own = MLX5_CQE_INVALIDATE;
#ifdef MLX5_PMD_SOFT_COUNTERS
rxq->stats.ipackets += mcqe_n;
rxq->stats.ibytes += rcvd_byte;
#endif
rxq->cq_ci += mcqe_n;
}
/**
* Calculate packet type and offload flag for mbuf and store it.
*
* @param rxq
* Pointer to RX queue structure.
* @param cqes[4]
* Array of four 16bytes completions extracted from the original completion
* descriptor.
* @param op_err
* Opcode vector having responder error status. Each field is 4B.
* @param pkts
* Pointer to array of packets to be filled.
*/
static inline void
rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
__m128i op_err, struct rte_mbuf **pkts)
{
__m128i pinfo0, pinfo1;
__m128i pinfo, ptype;
__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
rxq->hw_timestamp * PKT_RX_TIMESTAMP);
__m128i cv_flags;
const __m128i zero = _mm_setzero_si128();
const __m128i ptype_mask =
_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
const __m128i ptype_ol_mask =
_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
const __m128i pinfo_mask =
_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
const __m128i cv_flag_sel =
_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
(uint8_t)((PKT_RX_IP_CKSUM_GOOD |
PKT_RX_L4_CKSUM_GOOD) >> 1),
0,
(uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
0,
(uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
(uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
0);
const __m128i cv_mask =
_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
const __m128i mbuf_init =
_mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
__m128i rearm0, rearm1, rearm2, rearm3;
uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
/* Extract pkt_info field. */
pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
/* Extract hdr_type_etc field. */
pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
if (rxq->mark) {
const __m128i pinfo_ft_mask =
_mm_set_epi32(0xffffff00, 0xffffff00,
0xffffff00, 0xffffff00);
const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
__m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
__m128i flow_tag, invalid_mask;
flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
ol_flags = _mm_or_si128(ol_flags,
_mm_andnot_si128(invalid_mask,
fdir_flags));
/* Mask out invalid entries. */
fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
ol_flags = _mm_or_si128(ol_flags,
_mm_andnot_si128(
_mm_cmpeq_epi32(flow_tag,
pinfo_ft_mask),
fdir_id_flags));
}
/*
* Merge the two fields to generate the following:
* bit[1] = l3_ok
* bit[2] = l4_ok
* bit[8] = cv
* bit[11:10] = l3_hdr_type
* bit[14:12] = l4_hdr_type
* bit[15] = ip_frag
* bit[16] = tunneled
* bit[17] = outer_l3_type
*/
ptype = _mm_and_si128(ptype, ptype_mask);
pinfo = _mm_and_si128(pinfo, pinfo_mask);
pinfo = _mm_slli_epi32(pinfo, 16);
/* Make pinfo has merged fields for ol_flags calculation. */
pinfo = _mm_or_si128(ptype, pinfo);
ptype = _mm_srli_epi32(pinfo, 10);
ptype = _mm_packs_epi32(ptype, zero);
/* Errored packets will have RTE_PTYPE_ALL_MASK. */
op_err = _mm_srli_epi16(op_err, 8);
ptype = _mm_or_si128(ptype, op_err);
pt_idx0 = _mm_extract_epi8(ptype, 0);
pt_idx1 = _mm_extract_epi8(ptype, 2);
pt_idx2 = _mm_extract_epi8(ptype, 4);
pt_idx3 = _mm_extract_epi8(ptype, 6);
pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
!!(pt_idx0 & (1 << 6)) * rxq->tunnel;
pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
!!(pt_idx1 & (1 << 6)) * rxq->tunnel;
pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
!!(pt_idx2 & (1 << 6)) * rxq->tunnel;
pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
!!(pt_idx3 & (1 << 6)) * rxq->tunnel;
/* Fill flags for checksum and VLAN. */
pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
cv_flags = _mm_slli_epi32(pinfo, 9);
cv_flags = _mm_or_si128(pinfo, cv_flags);
/* Move back flags to start from byte[0]. */
cv_flags = _mm_srli_epi32(cv_flags, 8);
/* Mask out garbage bits. */
cv_flags = _mm_and_si128(cv_flags, cv_mask);
/* Merge to ol_flags. */
ol_flags = _mm_or_si128(ol_flags, cv_flags);
/* Merge mbuf_init and ol_flags. */
rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
/* Write 8B rearm_data and 8B ol_flags. */
_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
}
/**
* Receive burst of packets. An errored completion also consumes a mbuf, but the
* packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
* before returning to application.
*
* @param rxq
* Pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
* @param[out] err
* Pointer to a flag. Set non-zero value if pkts array has at least one error
* packet to handle.
*
* @return
* Number of packets received including errors (<= pkts_n).
*/
static inline uint16_t
rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
uint64_t *err)
{
const uint16_t q_n = 1 << rxq->cqe_n;
const uint16_t q_mask = q_n - 1;
volatile struct mlx5_cqe *cq;
struct rte_mbuf **elts;
unsigned int pos;
uint64_t n;
uint16_t repl_n;
uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
uint16_t nocmp_n = 0;
uint16_t rcvd_pkt = 0;
unsigned int cq_idx = rxq->cq_ci & q_mask;
unsigned int elts_idx;
unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
const __m128i owner_check =
_mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
const __m128i opcode_check =
_mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
const __m128i format_check =
_mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
const __m128i resp_err_check =
_mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
#ifdef MLX5_PMD_SOFT_COUNTERS
uint32_t rcvd_byte = 0;
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
const __m128i len_shuf_mask =
_mm_set_epi8(-1, -1, -1, -1,
-1, -1, -1, -1,
12, 13, 8, 9,
4, 5, 0, 1);
#endif
/* Mask to shuffle from extracted CQE to mbuf. */
const __m128i shuf_mask =
_mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
12, 13, 14, 15, /* rss, bswap32 */
10, 11, /* vlan_tci, bswap16 */
4, 5, /* data_len, bswap16 */
-1, -1, /* zero out 2nd half of pkt_len */
4, 5 /* pkt_len, bswap16 */);
/* Mask to blend from the last Qword to the first DQword. */
const __m128i blend_mask =
_mm_set_epi8(-1, -1, -1, -1,
-1, -1, -1, -1,
0, 0, 0, 0,
0, 0, 0, -1);
const __m128i zero = _mm_setzero_si128();
const __m128i ones = _mm_cmpeq_epi32(zero, zero);
const __m128i crc_adj =
_mm_set_epi16(0, 0, 0, 0, 0,
rxq->crc_present * ETHER_CRC_LEN,
0,
rxq->crc_present * ETHER_CRC_LEN);
const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
assert(rxq->sges_n == 0);
assert(rxq->cqe_n == rxq->elts_n);
cq = &(*rxq->cqes)[cq_idx];
rte_prefetch0(cq);
rte_prefetch0(cq + 1);
rte_prefetch0(cq + 2);
rte_prefetch0(cq + 3);
pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
/*
* Order of indexes:
* rq_ci >= cq_ci >= rq_pi
* Definition of indexes:
* rq_ci - cq_ci := # of buffers owned by HW (posted).
* cq_ci - rq_pi := # of buffers not returned to app (decompressed).
* N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
*/
repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
if (repl_n >= MLX5_VPMD_RXQ_RPLNSH_THRESH(q_n))
mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
/* See if there're unreturned mbufs from compressed CQE. */
rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
if (rcvd_pkt > 0) {
rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
rxq->rq_pi += rcvd_pkt;
pkts += rcvd_pkt;
}
elts_idx = rxq->rq_pi & q_mask;
elts = &(*rxq->elts)[elts_idx];
/* Not to overflow pkts array. */
pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
/* Not to cross queue end. */
pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
if (!pkts_n)
return rcvd_pkt;
/* At this point, there shouldn't be any remained packets. */
assert(rxq->rq_pi == rxq->cq_ci);
/*
* A. load first Qword (8bytes) in one loop.
* B. copy 4 mbuf pointers from elts ring to returing pkts.
* C. load remained CQE data and extract necessary fields.
* Final 16bytes cqes[] extracted from original 64bytes CQE has the
* following structure:
* struct {
* uint8_t pkt_info;
* uint8_t flow_tag[3];
* uint16_t byte_cnt;
* uint8_t rsvd4;
* uint8_t op_own;
* uint16_t hdr_type_etc;
* uint16_t vlan_info;
* uint32_t rx_has_res;
* } c;
* D. fill in mbuf.
* E. get valid CQEs.
* F. find compressed CQE.
*/
for (pos = 0;
pos < pkts_n;
pos += MLX5_VPMD_DESCS_PER_LOOP) {
__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
__m128i cqe_tmp1, cqe_tmp2;
__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
__m128i op_own, op_own_tmp1, op_own_tmp2;
__m128i opcode, owner_mask, invalid_mask;
__m128i comp_mask;
__m128i mask;
#ifdef MLX5_PMD_SOFT_COUNTERS
__m128i byte_cnt;
#endif
__m128i mbp1, mbp2;
__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
unsigned int p1, p2, p3;
/* Prefetch next 4 CQEs. */
if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
}
/* A.0 do not cross the end of CQ. */
mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
mask = _mm_sll_epi64(ones, mask);
p = _mm_andnot_si128(mask, p);
/* A.1 load cqes. */
p3 = _mm_extract_epi16(p, 3);
cqes[3] = _mm_loadl_epi64((__m128i *)
&cq[pos + p3].sop_drop_qpn);
rte_compiler_barrier();
p2 = _mm_extract_epi16(p, 2);
cqes[2] = _mm_loadl_epi64((__m128i *)
&cq[pos + p2].sop_drop_qpn);
rte_compiler_barrier();
/* B.1 load mbuf pointers. */
mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
/* A.1 load a block having op_own. */
p1 = _mm_extract_epi16(p, 1);
cqes[1] = _mm_loadl_epi64((__m128i *)
&cq[pos + p1].sop_drop_qpn);
rte_compiler_barrier();
cqes[0] = _mm_loadl_epi64((__m128i *)
&cq[pos].sop_drop_qpn);
/* B.2 copy mbuf pointers. */
_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
rte_cio_rmb();
/* C.1 load remained CQE data and extract necessary fields. */
cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
/* C.2 generate final structure for mbuf with swapping bytes. */
pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
/* C.3 adjust CRC length. */
pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
/* C.4 adjust flow mark. */
pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
/* D.1 fill in mbuf - rx_descriptor_fields1. */
_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
/* E.1 extract op_own field. */
op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
/* C.1 load remained CQE data and extract necessary fields. */
cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
/* C.2 generate final structure for mbuf with swapping bytes. */
pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
/* C.3 adjust CRC length. */
pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
/* C.4 adjust flow mark. */
pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
/* E.1 extract op_own byte. */
op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
/* D.1 fill in mbuf - rx_descriptor_fields1. */
_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
/* E.2 flip owner bit to mark CQEs from last round. */
owner_mask = _mm_and_si128(op_own, owner_check);
if (ownership)
owner_mask = _mm_xor_si128(owner_mask, owner_check);
owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
owner_mask = _mm_packs_epi32(owner_mask, zero);
/* E.3 get mask for invalidated CQEs. */
opcode = _mm_and_si128(op_own, opcode_check);
invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
invalid_mask = _mm_packs_epi32(invalid_mask, zero);
/* E.4 mask out beyond boundary. */
invalid_mask = _mm_or_si128(invalid_mask, mask);
/* E.5 merge invalid_mask with invalid owner. */
invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
/* F.1 find compressed CQE format. */
comp_mask = _mm_and_si128(op_own, format_check);
comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
comp_mask = _mm_packs_epi32(comp_mask, zero);
/* F.2 mask out invalid entries. */
comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
comp_idx = _mm_cvtsi128_si64(comp_mask);
/* F.3 get the first compressed CQE. */
comp_idx = comp_idx ?
__builtin_ctzll(comp_idx) /
(sizeof(uint16_t) * 8) :
MLX5_VPMD_DESCS_PER_LOOP;
/* E.6 mask out entries after the compressed CQE. */
mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
mask = _mm_sll_epi64(ones, mask);
invalid_mask = _mm_or_si128(invalid_mask, mask);
/* E.7 count non-compressed valid CQEs. */
n = _mm_cvtsi128_si64(invalid_mask);
n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
MLX5_VPMD_DESCS_PER_LOOP;
nocmp_n += n;
/* D.2 get the final invalid mask. */
mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
mask = _mm_sll_epi64(ones, mask);
invalid_mask = _mm_or_si128(invalid_mask, mask);
/* D.3 check error in opcode. */
opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
opcode = _mm_packs_epi32(opcode, zero);
opcode = _mm_andnot_si128(invalid_mask, opcode);
/* D.4 mark if any error is set */
*err |= _mm_cvtsi128_si64(opcode);
/* D.5 fill in mbuf - rearm_data and packet_type. */
rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
if (rxq->hw_timestamp) {
pkts[pos]->timestamp =
rte_be_to_cpu_64(cq[pos].timestamp);
pkts[pos + 1]->timestamp =
rte_be_to_cpu_64(cq[pos + p1].timestamp);
pkts[pos + 2]->timestamp =
rte_be_to_cpu_64(cq[pos + p2].timestamp);
pkts[pos + 3]->timestamp =
rte_be_to_cpu_64(cq[pos + p3].timestamp);
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Add up received bytes count. */
byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
#endif
/*
* Break the loop unless more valid CQE is expected, or if
* there's a compressed CQE.
*/
if (n != MLX5_VPMD_DESCS_PER_LOOP)
break;
}
/* If no new CQE seen, return without updating cq_db. */
if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
return rcvd_pkt;
/* Update the consumer indexes for non-compressed CQEs. */
assert(nocmp_n <= pkts_n);
rxq->cq_ci += nocmp_n;
rxq->rq_pi += nocmp_n;
rcvd_pkt += nocmp_n;
#ifdef MLX5_PMD_SOFT_COUNTERS
rxq->stats.ipackets += nocmp_n;
rxq->stats.ibytes += rcvd_byte;
#endif
/* Decompress the last CQE if compressed. */
if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
/* Return more packets if needed. */
if (nocmp_n < pkts_n) {
uint16_t n = rxq->cq_ci - rxq->rq_pi;
n = RTE_MIN(n, pkts_n - nocmp_n);
rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
rxq->rq_pi += n;
rcvd_pkt += n;
}
}
rte_compiler_barrier();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
return rcvd_pkt;
}
#endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */