numam-dpdk/drivers/net/i40e/i40e_rxtx.c
Ferruh Yigit 70815c9eca ethdev: add new offload flag to keep CRC
DEV_RX_OFFLOAD_KEEP_CRC offload flag is added. PMDs that support
keeping CRC should advertise this offload capability.

DEV_RX_OFFLOAD_CRC_STRIP flag will remain one more release
default behavior in PMDs are to keep the CRC until this flag removed

Until DEV_RX_OFFLOAD_CRC_STRIP flag is removed:
- Setting both KEEP_CRC & CRC_STRIP is INVALID
- Setting only CRC_STRIP PMD should strip the CRC
- Setting only KEEP_CRC PMD should keep the CRC
- Not setting both PMD should keep the CRC

A helper function rte_eth_dev_is_keep_crc() has been added to be able to
change the no flag behavior with minimal changes in PMDs.

The PMDs that doesn't report the DEV_RX_OFFLOAD_KEEP_CRC offload can
remove rte_eth_dev_is_keep_crc() checks next release, related code
commented to help the maintenance task.

And DEV_RX_OFFLOAD_CRC_STRIP has been added to virtual drivers since
they don't use CRC at all, when an application requires this offload
virtual PMDs should not return error.

Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Allain Legacy <allain.legacy@windriver.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
2018-07-03 01:35:58 +02:00

3250 lines
86 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <rte_string_fns.h>
#include <rte_memzone.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_udp.h>
#include <rte_ip.h>
#include <rte_net.h>
#include "i40e_logs.h"
#include "base/i40e_prototype.h"
#include "base/i40e_type.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#define DEFAULT_TX_RS_THRESH 32
#define DEFAULT_TX_FREE_THRESH 32
#define I40E_TX_MAX_BURST 32
#define I40E_DMA_MEM_ALIGN 4096
/* Base address of the HW descriptor ring should be 128B aligned. */
#define I40E_RING_BASE_ALIGN 128
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
#ifdef RTE_LIBRTE_IEEE1588
#define I40E_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
#else
#define I40E_TX_IEEE1588_TMST 0
#endif
#define I40E_TX_CKSUM_OFFLOAD_MASK ( \
PKT_TX_IP_CKSUM | \
PKT_TX_L4_MASK | \
PKT_TX_TCP_SEG | \
PKT_TX_OUTER_IP_CKSUM)
#define I40E_TX_OFFLOAD_MASK ( \
PKT_TX_IP_CKSUM | \
PKT_TX_L4_MASK | \
PKT_TX_OUTER_IP_CKSUM | \
PKT_TX_TCP_SEG | \
PKT_TX_QINQ_PKT | \
PKT_TX_VLAN_PKT | \
PKT_TX_TUNNEL_MASK | \
I40E_TX_IEEE1588_TMST)
#define I40E_TX_OFFLOAD_NOTSUP_MASK \
(PKT_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
static inline void
i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
{
if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
(1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
mb->vlan_tci =
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
} else {
mb->vlan_tci = 0;
}
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
(1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
mb->ol_flags |= PKT_RX_QINQ_STRIPPED;
mb->vlan_tci_outer = mb->vlan_tci;
mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
} else {
mb->vlan_tci_outer = 0;
}
#endif
PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
mb->vlan_tci, mb->vlan_tci_outer);
}
/* Translate the rx descriptor status to pkt flags */
static inline uint64_t
i40e_rxd_status_to_pkt_flags(uint64_t qword)
{
uint64_t flags;
/* Check if RSS_HASH */
flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
/* Check if FDIR Match */
flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
PKT_RX_FDIR : 0);
return flags;
}
static inline uint64_t
i40e_rxd_error_to_pkt_flags(uint64_t qword)
{
uint64_t flags = 0;
uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
#define I40E_RX_ERR_BITS 0x3f
if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
return flags;
}
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
flags |= PKT_RX_IP_CKSUM_BAD;
else
flags |= PKT_RX_IP_CKSUM_GOOD;
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
flags |= PKT_RX_L4_CKSUM_BAD;
else
flags |= PKT_RX_L4_CKSUM_GOOD;
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
flags |= PKT_RX_EIP_CKSUM_BAD;
return flags;
}
/* Function to check and set the ieee1588 timesync index and get the
* appropriate flags.
*/
#ifdef RTE_LIBRTE_IEEE1588
static inline uint64_t
i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
{
uint64_t pkt_flags = 0;
uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
| I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
>> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
if ((mb->packet_type & RTE_PTYPE_L2_MASK)
== RTE_PTYPE_L2_ETHER_TIMESYNC)
pkt_flags = PKT_RX_IEEE1588_PTP;
if (tsyn & 0x04) {
pkt_flags |= PKT_RX_IEEE1588_TMST;
mb->timesync = tsyn & 0x03;
}
return pkt_flags;
}
#endif
#define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK 0x03
#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID 0x01
#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX 0x02
#define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK 0x03
#define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX 0x01
static inline uint64_t
i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
{
uint64_t flags = 0;
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
uint16_t flexbh, flexbl;
flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
mb->hash.fdir.hi =
rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
flags |= PKT_RX_FDIR_ID;
} else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
mb->hash.fdir.hi =
rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
flags |= PKT_RX_FDIR_FLX;
}
if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
mb->hash.fdir.lo =
rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
flags |= PKT_RX_FDIR_FLX;
}
#else
mb->hash.fdir.hi =
rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
flags |= PKT_RX_FDIR_ID;
#endif
return flags;
}
static inline void
i40e_parse_tunneling_params(uint64_t ol_flags,
union i40e_tx_offload tx_offload,
uint32_t *cd_tunneling)
{
/* EIPT: External (outer) IP header type */
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
else if (ol_flags & PKT_TX_OUTER_IPV4)
*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
else if (ol_flags & PKT_TX_OUTER_IPV6)
*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
/* EIPLEN: External (outer) IP header length, in DWords */
*cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
/* L4TUNT: L4 Tunneling Type */
switch (ol_flags & PKT_TX_TUNNEL_MASK) {
case PKT_TX_TUNNEL_IPIP:
/* for non UDP / GRE tunneling, set to 00b */
break;
case PKT_TX_TUNNEL_VXLAN:
case PKT_TX_TUNNEL_GENEVE:
*cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
break;
case PKT_TX_TUNNEL_GRE:
*cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
break;
default:
PMD_TX_LOG(ERR, "Tunnel type not supported");
return;
}
/* L4TUNLEN: L4 Tunneling Length, in Words
*
* We depend on app to set rte_mbuf.l2_len correctly.
* For IP in GRE it should be set to the length of the GRE
* header;
* for MAC in GRE or MAC in UDP it should be set to the length
* of the GRE or UDP headers plus the inner MAC up to including
* its last Ethertype.
*/
*cd_tunneling |= (tx_offload.l2_len >> 1) <<
I40E_TXD_CTX_QW0_NATLEN_SHIFT;
}
static inline void
i40e_txd_enable_checksum(uint64_t ol_flags,
uint32_t *td_cmd,
uint32_t *td_offset,
union i40e_tx_offload tx_offload)
{
/* Set MACLEN */
if (ol_flags & PKT_TX_TUNNEL_MASK)
*td_offset |= (tx_offload.outer_l2_len >> 1)
<< I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
else
*td_offset |= (tx_offload.l2_len >> 1)
<< I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
/* Enable L3 checksum offloads */
if (ol_flags & PKT_TX_IP_CKSUM) {
*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
*td_offset |= (tx_offload.l3_len >> 2)
<< I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
} else if (ol_flags & PKT_TX_IPV4) {
*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
*td_offset |= (tx_offload.l3_len >> 2)
<< I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
} else if (ol_flags & PKT_TX_IPV6) {
*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
*td_offset |= (tx_offload.l3_len >> 2)
<< I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
}
if (ol_flags & PKT_TX_TCP_SEG) {
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
*td_offset |= (tx_offload.l4_len >> 2)
<< I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
return;
}
/* Enable L4 checksum offloads */
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
*td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case PKT_TX_SCTP_CKSUM:
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
*td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case PKT_TX_UDP_CKSUM:
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
*td_offset |= (sizeof(struct udp_hdr) >> 2) <<
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
default:
break;
}
}
/* Construct the tx flags */
static inline uint64_t
i40e_build_ctob(uint32_t td_cmd,
uint32_t td_offset,
unsigned int size,
uint32_t td_tag)
{
return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
((uint64_t)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
((uint64_t)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
((uint64_t)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
}
static inline int
i40e_xmit_cleanup(struct i40e_tx_queue *txq)
{
struct i40e_tx_entry *sw_ring = txq->sw_ring;
volatile struct i40e_tx_desc *txd = txq->tx_ring;
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
"(port=%d queue=%d)", desc_to_clean_to,
txq->port_id, txq->queue_id);
return -1;
}
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
last_desc_cleaned);
txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
return 0;
}
static inline int
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
#else
check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
#endif
{
int ret = 0;
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->rx_free_thresh=%d, "
"RTE_PMD_I40E_RX_MAX_BURST=%d",
rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
ret = -EINVAL;
} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->rx_free_thresh=%d, "
"rxq->nb_rx_desc=%d",
rxq->rx_free_thresh, rxq->nb_rx_desc);
ret = -EINVAL;
} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->nb_rx_desc=%d, "
"rxq->rx_free_thresh=%d",
rxq->nb_rx_desc, rxq->rx_free_thresh);
ret = -EINVAL;
}
#else
ret = -EINVAL;
#endif
return ret;
}
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
#define I40E_LOOK_AHEAD 8
#if (I40E_LOOK_AHEAD != 8)
#error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
#endif
static inline int
i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t pkt_len;
uint64_t qword1;
uint32_t rx_status;
int32_t s[I40E_LOOK_AHEAD], nb_dd;
int32_t i, j, nb_rx = 0;
uint64_t pkt_flags;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
I40E_RXD_QW1_STATUS_SHIFT;
/* Make sure there is at least 1 packet to receive */
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/**
* Scan LOOK_AHEAD descriptors at a time to determine which
* descriptors reference packets that are ready to be received.
*/
for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
/* Read desc statuses backwards to avoid race condition */
for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
qword1 = rte_le_to_cpu_64(\
rxdp[j].wb.qword1.status_error_len);
s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
I40E_RXD_QW1_STATUS_SHIFT;
}
rte_smp_rmb();
/* Compute how many status bits were set */
for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
nb_rx += nb_dd;
/* Translate descriptor info to mbuf parameters */
for (j = 0; j < nb_dd; j++) {
mb = rxep[j].mbuf;
qword1 = rte_le_to_cpu_64(\
rxdp[j].wb.qword1.status_error_len);
pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
mb->data_len = pkt_len;
mb->pkt_len = pkt_len;
mb->ol_flags = 0;
i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
mb->packet_type =
ptype_tbl[(uint8_t)((qword1 &
I40E_RXD_QW1_PTYPE_MASK) >>
I40E_RXD_QW1_PTYPE_SHIFT)];
if (pkt_flags & PKT_RX_RSS_HASH)
mb->hash.rss = rte_le_to_cpu_32(\
rxdp[j].wb.qword0.hi_dword.rss);
if (pkt_flags & PKT_RX_FDIR)
pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
#ifdef RTE_LIBRTE_IEEE1588
pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
#endif
mb->ol_flags |= pkt_flags;
}
for (j = 0; j < I40E_LOOK_AHEAD; j++)
rxq->rx_stage[i + j] = rxep[j].mbuf;
if (nb_dd != I40E_LOOK_AHEAD)
break;
}
/* Clear software ring entries */
for (i = 0; i < nb_rx; i++)
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
return nb_rx;
}
static inline uint16_t
i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t i;
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
for (i = 0; i < nb_pkts; i++)
rx_pkts[i] = stage[i];
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
return nb_pkts;
}
static inline int
i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t alloc_idx, i;
uint64_t dma_addr;
int diag;
/* Allocate buffers in bulk */
alloc_idx = (uint16_t)(rxq->rx_free_trigger -
(rxq->rx_free_thresh - 1));
rxep = &(rxq->sw_ring[alloc_idx]);
diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
rxq->rx_free_thresh);
if (unlikely(diag != 0)) {
PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
return -ENOMEM;
}
rxdp = &rxq->rx_ring[alloc_idx];
for (i = 0; i < rxq->rx_free_thresh; i++) {
if (likely(i < (rxq->rx_free_thresh - 1)))
/* Prefetch next mbuf */
rte_prefetch0(rxep[i + 1].mbuf);
mb = rxep[i].mbuf;
rte_mbuf_refcnt_set(mb, 1);
mb->next = NULL;
mb->data_off = RTE_PKTMBUF_HEADROOM;
mb->nb_segs = 1;
mb->port = rxq->port_id;
dma_addr = rte_cpu_to_le_64(\
rte_mbuf_data_iova_default(mb));
rxdp[i].read.hdr_addr = 0;
rxdp[i].read.pkt_addr = dma_addr;
}
/* Update rx tail regsiter */
rte_wmb();
I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
rxq->rx_free_trigger =
(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
return 0;
}
static inline uint16_t
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
struct rte_eth_dev *dev;
uint16_t nb_rx = 0;
if (!nb_pkts)
return 0;
if (rxq->rx_nb_avail)
return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
rxq->rx_next_avail = 0;
rxq->rx_nb_avail = nb_rx;
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
if (rxq->rx_tail > rxq->rx_free_trigger) {
if (i40e_rx_alloc_bufs(rxq) != 0) {
uint16_t i, j;
dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
dev->data->rx_mbuf_alloc_failed +=
rxq->rx_free_thresh;
rxq->rx_nb_avail = 0;
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
return 0;
}
}
if (rxq->rx_tail >= rxq->nb_rx_desc)
rxq->rx_tail = 0;
if (rxq->rx_nb_avail)
return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
return 0;
}
static uint16_t
i40e_recv_pkts_bulk_alloc(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_rx = 0, n, count;
if (unlikely(nb_pkts == 0))
return 0;
if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
while (nb_pkts) {
n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
nb_rx = (uint16_t)(nb_rx + count);
nb_pkts = (uint16_t)(nb_pkts - count);
if (count < n)
break;
}
return nb_rx;
}
#else
static uint16_t
i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
struct rte_mbuf __rte_unused **rx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
uint16_t
i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq;
volatile union i40e_rx_desc *rx_ring;
volatile union i40e_rx_desc *rxdp;
union i40e_rx_desc rxd;
struct i40e_rx_entry *sw_ring;
struct i40e_rx_entry *rxe;
struct rte_eth_dev *dev;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
uint16_t nb_rx;
uint32_t rx_status;
uint64_t qword1;
uint16_t rx_packet_len;
uint16_t rx_id, nb_hold;
uint64_t dma_addr;
uint64_t pkt_flags;
uint32_t *ptype_tbl;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
ptype_tbl = rxq->vsi->adapter->ptype_tbl;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
>> I40E_RXD_QW1_STATUS_SHIFT;
/* Check the DD bit first */
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
break;
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
dev->data->rx_mbuf_alloc_failed++;
break;
}
rxd = *rxdp;
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(sw_ring[rx_id].mbuf);
/**
* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = rx_packet_len;
rxm->data_len = rx_packet_len;
rxm->port = rxq->port_id;
rxm->ol_flags = 0;
i40e_rxd_to_vlan_tci(rxm, &rxd);
pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
rxm->packet_type =
ptype_tbl[(uint8_t)((qword1 &
I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
if (pkt_flags & PKT_RX_RSS_HASH)
rxm->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
if (pkt_flags & PKT_RX_FDIR)
pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
#ifdef RTE_LIBRTE_IEEE1588
pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
#endif
rxm->ol_flags |= pkt_flags;
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/**
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the receive tail register of queue.
* Update that register with the value of the last processed RX
* descriptor minus 1.
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
uint16_t
i40e_recv_scattered_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq = rx_queue;
volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
volatile union i40e_rx_desc *rxdp;
union i40e_rx_desc rxd;
struct i40e_rx_entry *sw_ring = rxq->sw_ring;
struct i40e_rx_entry *rxe;
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
struct rte_mbuf *nmb, *rxm;
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
struct rte_eth_dev *dev;
uint32_t rx_status;
uint64_t qword1;
uint64_t dma_addr;
uint64_t pkt_flags;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
I40E_RXD_QW1_STATUS_SHIFT;
/* Check the DD bit */
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
break;
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
dev->data->rx_mbuf_alloc_failed++;
break;
}
rxd = *rxdp;
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(sw_ring[rx_id].mbuf);
/**
* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
/* Set data buffer address and data length of the mbuf */
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
rxm->data_len = rx_packet_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
/**
* If this is the first buffer of the received packet, set the
* pointer to the first mbuf of the packet and initialize its
* context. Otherwise, update the total length and the number
* of segments of the current scattered packet, and update the
* pointer to the last mbuf of the current packet.
*/
if (!first_seg) {
first_seg = rxm;
first_seg->nb_segs = 1;
first_seg->pkt_len = rx_packet_len;
} else {
first_seg->pkt_len =
(uint16_t)(first_seg->pkt_len +
rx_packet_len);
first_seg->nb_segs++;
last_seg->next = rxm;
}
/**
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
last_seg = rxm;
continue;
}
/**
* This is the last buffer of the received packet. If the CRC
* is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer. If part
* of the CRC is also contained in the previous mbuf, subtract
* the length of that CRC part from the data length of the
* previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= ETHER_CRC_LEN;
if (rx_packet_len <= ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len =
(uint16_t)(last_seg->data_len -
(ETHER_CRC_LEN - rx_packet_len));
last_seg->next = NULL;
} else
rxm->data_len = (uint16_t)(rx_packet_len -
ETHER_CRC_LEN);
}
first_seg->port = rxq->port_id;
first_seg->ol_flags = 0;
i40e_rxd_to_vlan_tci(first_seg, &rxd);
pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
first_seg->packet_type =
ptype_tbl[(uint8_t)((qword1 &
I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
if (pkt_flags & PKT_RX_RSS_HASH)
first_seg->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
if (pkt_flags & PKT_RX_FDIR)
pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
#ifdef RTE_LIBRTE_IEEE1588
pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
#endif
first_seg->ol_flags |= pkt_flags;
/* Prefetch data of first segment, if configured to do so. */
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
first_seg->data_off));
rx_pkts[nb_rx++] = first_seg;
first_seg = NULL;
}
/* Record index of the next RX descriptor to probe. */
rxq->rx_tail = rx_id;
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/**
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register. Update the RDT with the value of the last processed RX
* descriptor minus 1, to guarantee that the RDT register is never
* equal to the RDH register, which creates a "full" ring situtation
* from the hardware point of view.
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
rx_id = (uint16_t)(rx_id == 0 ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
/* Check if the context descriptor is needed for TX offloading */
static inline uint16_t
i40e_calc_context_desc(uint64_t flags)
{
static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
PKT_TX_TCP_SEG |
PKT_TX_QINQ_PKT |
PKT_TX_TUNNEL_MASK;
#ifdef RTE_LIBRTE_IEEE1588
mask |= PKT_TX_IEEE1588_TMST;
#endif
return (flags & mask) ? 1 : 0;
}
/* set i40e TSO context descriptor */
static inline uint64_t
i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
{
uint64_t ctx_desc = 0;
uint32_t cd_cmd, hdr_len, cd_tso_len;
if (!tx_offload.l4_len) {
PMD_DRV_LOG(DEBUG, "L4 length set to 0");
return ctx_desc;
}
/**
* in case of non tunneling packet, the outer_l2_len and
* outer_l3_len must be 0.
*/
hdr_len = tx_offload.outer_l2_len +
tx_offload.outer_l3_len +
tx_offload.l2_len +
tx_offload.l3_len +
tx_offload.l4_len;
cd_cmd = I40E_TX_CTX_DESC_TSO;
cd_tso_len = mbuf->pkt_len - hdr_len;
ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
((uint64_t)cd_tso_len <<
I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
((uint64_t)mbuf->tso_segsz <<
I40E_TXD_CTX_QW1_MSS_SHIFT);
return ctx_desc;
}
uint16_t
i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct i40e_tx_queue *txq;
struct i40e_tx_entry *sw_ring;
struct i40e_tx_entry *txe, *txn;
volatile struct i40e_tx_desc *txd;
volatile struct i40e_tx_desc *txr;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint32_t cd_tunneling_params;
uint16_t tx_id;
uint16_t nb_tx;
uint32_t td_cmd;
uint32_t td_offset;
uint32_t td_tag;
uint64_t ol_flags;
uint16_t nb_used;
uint16_t nb_ctx;
uint16_t tx_last;
uint16_t slen;
uint64_t buf_dma_addr;
union i40e_tx_offload tx_offload = {0};
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
/* Check if the descriptor ring needs to be cleaned. */
if (txq->nb_tx_free < txq->tx_free_thresh)
i40e_xmit_cleanup(txq);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
td_cmd = 0;
td_tag = 0;
td_offset = 0;
tx_pkt = *tx_pkts++;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
ol_flags = tx_pkt->ol_flags;
tx_offload.l2_len = tx_pkt->l2_len;
tx_offload.l3_len = tx_pkt->l3_len;
tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
tx_offload.l4_len = tx_pkt->l4_len;
tx_offload.tso_segsz = tx_pkt->tso_segsz;
/* Calculate the number of context descriptors needed. */
nb_ctx = i40e_calc_context_desc(ol_flags);
/**
* The number of descriptors that must be allocated for
* a packet equals to the number of the segments of that
* packet plus 1 context descriptor if needed.
*/
nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
tx_last = (uint16_t)(tx_id + nb_used - 1);
/* Circular ring */
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
if (nb_used > txq->nb_tx_free) {
if (i40e_xmit_cleanup(txq) != 0) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
if (unlikely(nb_used > txq->tx_rs_thresh)) {
while (nb_used > txq->nb_tx_free) {
if (i40e_xmit_cleanup(txq) != 0) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
}
}
}
/* Descriptor based VLAN insertion */
if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
td_tag = tx_pkt->vlan_tci;
}
/* Always enable CRC offload insertion */
td_cmd |= I40E_TX_DESC_CMD_ICRC;
/* Fill in tunneling parameters if necessary */
cd_tunneling_params = 0;
if (ol_flags & PKT_TX_TUNNEL_MASK)
i40e_parse_tunneling_params(ol_flags, tx_offload,
&cd_tunneling_params);
/* Enable checksum offloading */
if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
i40e_txd_enable_checksum(ol_flags, &td_cmd,
&td_offset, tx_offload);
if (nb_ctx) {
/* Setup TX context descriptor if required */
volatile struct i40e_tx_context_desc *ctx_txd =
(volatile struct i40e_tx_context_desc *)\
&txr[tx_id];
uint16_t cd_l2tag2 = 0;
uint64_t cd_type_cmd_tso_mss =
I40E_TX_DESC_DTYPE_CONTEXT;
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
/* TSO enabled means no timestamp */
if (ol_flags & PKT_TX_TCP_SEG)
cd_type_cmd_tso_mss |=
i40e_set_tso_ctx(tx_pkt, tx_offload);
else {
#ifdef RTE_LIBRTE_IEEE1588
if (ol_flags & PKT_TX_IEEE1588_TMST)
cd_type_cmd_tso_mss |=
((uint64_t)I40E_TX_CTX_DESC_TSYN <<
I40E_TXD_CTX_QW1_CMD_SHIFT);
#endif
}
ctx_txd->tunneling_params =
rte_cpu_to_le_32(cd_tunneling_params);
if (ol_flags & PKT_TX_QINQ_PKT) {
cd_l2tag2 = tx_pkt->vlan_tci_outer;
cd_type_cmd_tso_mss |=
((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
I40E_TXD_CTX_QW1_CMD_SHIFT);
}
ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
ctx_txd->type_cmd_tso_mss =
rte_cpu_to_le_64(cd_type_cmd_tso_mss);
PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
"tunneling_params: %#x;\n"
"l2tag2: %#hx;\n"
"rsvd: %#hx;\n"
"type_cmd_tso_mss: %#"PRIx64";\n",
tx_pkt, tx_id,
ctx_txd->tunneling_params,
ctx_txd->l2tag2,
ctx_txd->rsvd,
ctx_txd->type_cmd_tso_mss);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
m_seg = tx_pkt;
do {
txd = &txr[tx_id];
txn = &sw_ring[txe->next_id];
if (txe->mbuf)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/* Setup TX Descriptor */
slen = m_seg->data_len;
buf_dma_addr = rte_mbuf_data_iova(m_seg);
PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
"buf_dma_addr: %#"PRIx64";\n"
"td_cmd: %#x;\n"
"td_offset: %#x;\n"
"td_len: %u;\n"
"td_tag: %#x;\n",
tx_pkt, tx_id, buf_dma_addr,
td_cmd, td_offset, slen, td_tag);
txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
td_offset, slen, td_tag);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg != NULL);
/* The last packet data descriptor needs End Of Packet (EOP) */
td_cmd |= I40E_TX_DESC_CMD_EOP;
txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
PMD_TX_FREE_LOG(DEBUG,
"Setting RS bit on TXD id="
"%4u (port=%d queue=%d)",
tx_last, txq->port_id, txq->queue_id);
td_cmd |= I40E_TX_DESC_CMD_RS;
/* Update txq RS bit counters */
txq->nb_tx_used = 0;
}
txd->cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)td_cmd) <<
I40E_TXD_QW1_CMD_SHIFT);
}
end_of_tx:
rte_wmb();
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(unsigned) txq->port_id, (unsigned) txq->queue_id,
(unsigned) tx_id, (unsigned) nb_tx);
I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
txq->tx_tail = tx_id;
return nb_tx;
}
static __rte_always_inline int
i40e_tx_free_bufs(struct i40e_tx_queue *txq)
{
struct i40e_tx_entry *txep;
uint16_t i;
if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
return 0;
txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
for (i = 0; i < txq->tx_rs_thresh; i++)
rte_prefetch0((txep + i)->mbuf);
if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
rte_mempool_put(txep->mbuf->pool, txep->mbuf);
txep->mbuf = NULL;
}
} else {
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
rte_pktmbuf_free_seg(txep->mbuf);
txep->mbuf = NULL;
}
}
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
if (txq->tx_next_dd >= txq->nb_tx_desc)
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
return txq->tx_rs_thresh;
}
/* Populate 4 descriptors with data from 4 mbufs */
static inline void
tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t dma_addr;
uint32_t i;
for (i = 0; i < 4; i++, txdp++, pkts++) {
dma_addr = rte_mbuf_data_iova(*pkts);
txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
txdp->cmd_type_offset_bsz =
i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
(*pkts)->data_len, 0);
}
}
/* Populate 1 descriptor with data from 1 mbuf */
static inline void
tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t dma_addr;
dma_addr = rte_mbuf_data_iova(*pkts);
txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
txdp->cmd_type_offset_bsz =
i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
(*pkts)->data_len, 0);
}
/* Fill hardware descriptor ring with mbuf data */
static inline void
i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
const int N_PER_LOOP = 4;
const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
int mainpart, leftover;
int i, j;
mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
for (i = 0; i < mainpart; i += N_PER_LOOP) {
for (j = 0; j < N_PER_LOOP; ++j) {
(txep + i + j)->mbuf = *(pkts + i + j);
}
tx4(txdp + i, pkts + i);
}
if (unlikely(leftover > 0)) {
for (i = 0; i < leftover; ++i) {
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
tx1(txdp + mainpart + i, pkts + mainpart + i);
}
}
}
static inline uint16_t
tx_xmit_pkts(struct i40e_tx_queue *txq,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
volatile struct i40e_tx_desc *txr = txq->tx_ring;
uint16_t n = 0;
/**
* Begin scanning the H/W ring for done descriptors when the number
* of available descriptors drops below tx_free_thresh. For each done
* descriptor, free the associated buffer.
*/
if (txq->nb_tx_free < txq->tx_free_thresh)
i40e_tx_free_bufs(txq);
/* Use available descriptor only */
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(!nb_pkts))
return 0;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
i40e_tx_fill_hw_ring(txq, tx_pkts, n);
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
I40E_TXD_QW1_CMD_SHIFT);
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_tail = 0;
}
/* Fill hardware descriptor ring with mbuf data */
i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
/* Determin if RS bit needs to be set */
if (txq->tx_tail > txq->tx_next_rs) {
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
I40E_TXD_QW1_CMD_SHIFT);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
if (txq->tx_next_rs >= txq->nb_tx_desc)
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
}
if (txq->tx_tail >= txq->nb_tx_desc)
txq->tx_tail = 0;
/* Update the tx tail register */
rte_wmb();
I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
static uint16_t
i40e_xmit_pkts_simple(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
if (likely(nb_pkts <= I40E_TX_MAX_BURST))
return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
tx_pkts, nb_pkts);
while (nb_pkts) {
uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
I40E_TX_MAX_BURST);
ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
&tx_pkts[nb_tx], num);
nb_tx = (uint16_t)(nb_tx + ret);
nb_pkts = (uint16_t)(nb_pkts - ret);
if (ret < num)
break;
}
return nb_tx;
}
static uint16_t
i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
/*********************************************************************
*
* TX prep functions
*
**********************************************************************/
uint16_t
i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int i, ret;
uint64_t ol_flags;
struct rte_mbuf *m;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
/* Check for m->nb_segs to not exceed the limits. */
if (!(ol_flags & PKT_TX_TCP_SEG)) {
if (m->nb_segs > I40E_TX_MAX_MTU_SEG) {
rte_errno = -EINVAL;
return i;
}
} else if (m->nb_segs > I40E_TX_MAX_SEG ||
m->tso_segsz < I40E_MIN_TSO_MSS ||
m->tso_segsz > I40E_MAX_TSO_MSS) {
/* MSS outside the range (256B - 9674B) are considered
* malicious
*/
rte_errno = -EINVAL;
return i;
}
if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = -ENOTSUP;
return i;
}
/* check the size of packet */
if (m->pkt_len > I40E_FRAME_SIZE_MAX ||
m->pkt_len < I40E_TX_MIN_PKT_LEN) {
rte_errno = -EINVAL;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
}
return i;
}
/*
* Find the VSI the queue belongs to. 'queue_idx' is the queue index
* application used, which assume having sequential ones. But from driver's
* perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
* to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
* running on host, q1-64 and q97-128 can be used, total 96 queues. They can
* use queue_idx from 0 to 95 to access queues, while real queue would be
* different. This function will do a queue mapping to find VSI the queue
* belongs to.
*/
static struct i40e_vsi*
i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
{
/* the queue in MAIN VSI range */
if (queue_idx < pf->main_vsi->nb_qps)
return pf->main_vsi;
queue_idx -= pf->main_vsi->nb_qps;
/* queue_idx is greater than VMDQ VSIs range */
if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
return NULL;
}
return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
}
static uint16_t
i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
{
/* the queue in MAIN VSI range */
if (queue_idx < pf->main_vsi->nb_qps)
return queue_idx;
/* It's VMDQ queues */
queue_idx -= pf->main_vsi->nb_qps;
if (pf->nb_cfg_vmdq_vsi)
return queue_idx % pf->vmdq_nb_qps;
else {
PMD_INIT_LOG(ERR, "Fail to get queue offset");
return (uint16_t)(-1);
}
}
int
i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct i40e_rx_queue *rxq;
int err = -1;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
err = i40e_alloc_rx_queue_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail regieter. */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
i40e_rx_queue_release_mbufs(rxq);
i40e_reset_rx_queue(rxq);
} else
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
}
return err;
}
int
i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct i40e_rx_queue *rxq;
int err;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
/*
* rx_queue_id is queue id application refers to, while
* rxq->reg_idx is the real queue index.
*/
err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return err;
}
i40e_rx_queue_release_mbufs(rxq);
i40e_reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
}
return 0;
}
int
i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
int err = -1;
struct i40e_tx_queue *txq;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (tx_queue_id < dev->data->nb_tx_queues) {
txq = dev->data->tx_queues[tx_queue_id];
/*
* tx_queue_id is queue id application refers to, while
* rxq->reg_idx is the real queue index.
*/
err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
if (err)
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
tx_queue_id);
else
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
}
return err;
}
int
i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct i40e_tx_queue *txq;
int err;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (tx_queue_id < dev->data->nb_tx_queues) {
txq = dev->data->tx_queues[tx_queue_id];
/*
* tx_queue_id is queue id application refers to, while
* txq->reg_idx is the real queue index.
*/
err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
tx_queue_id);
return err;
}
i40e_tx_queue_release_mbufs(txq);
i40e_reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
}
return 0;
}
const uint32_t *
i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
/* refers to i40e_rxd_pkt_type_mapping() */
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_LLDP,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_NONFRAG,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_TUNNEL_GRENAT,
RTE_PTYPE_TUNNEL_IP,
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L2_ETHER_VLAN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_INNER_L4_FRAG,
RTE_PTYPE_INNER_L4_ICMP,
RTE_PTYPE_INNER_L4_NONFRAG,
RTE_PTYPE_INNER_L4_SCTP,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_UNKNOWN
};
if (dev->rx_pkt_burst == i40e_recv_pkts ||
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
#endif
dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
dev->rx_pkt_burst == i40e_recv_pkts_vec ||
dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2)
return ptypes;
return NULL;
}
static int
i40e_dev_first_queue(uint16_t idx, void **queues, int num)
{
uint16_t i;
for (i = 0; i < num; i++) {
if (i != idx && queues[i])
return 0;
}
return 1;
}
static int
i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev *dev,
struct i40e_rx_queue *rxq)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
int use_def_burst_func =
check_rx_burst_bulk_alloc_preconditions(rxq);
uint16_t buf_size =
(uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
int use_scattered_rx =
((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size);
if (i40e_rx_queue_init(rxq) != I40E_SUCCESS) {
PMD_DRV_LOG(ERR,
"Failed to do RX queue initialization");
return -EINVAL;
}
if (i40e_dev_first_queue(rxq->queue_id,
dev->data->rx_queues,
dev->data->nb_rx_queues)) {
/**
* If it is the first queue to setup,
* set all flags to default and call
* i40e_set_rx_function.
*/
ad->rx_bulk_alloc_allowed = true;
ad->rx_vec_allowed = true;
dev->data->scattered_rx = use_scattered_rx;
if (use_def_burst_func)
ad->rx_bulk_alloc_allowed = false;
i40e_set_rx_function(dev);
return 0;
}
/* check bulk alloc conflict */
if (ad->rx_bulk_alloc_allowed && use_def_burst_func) {
PMD_DRV_LOG(ERR, "Can't use default burst.");
return -EINVAL;
}
/* check scatterred conflict */
if (!dev->data->scattered_rx && use_scattered_rx) {
PMD_DRV_LOG(ERR, "Scattered rx is required.");
return -EINVAL;
}
/* check vector conflict */
if (ad->rx_vec_allowed && i40e_rxq_vec_setup(rxq)) {
PMD_DRV_LOG(ERR, "Failed vector rx setup.");
return -EINVAL;
}
return 0;
}
int
i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct i40e_vsi *vsi;
struct i40e_pf *pf = NULL;
struct i40e_vf *vf = NULL;
struct i40e_rx_queue *rxq;
const struct rte_memzone *rz;
uint32_t ring_size;
uint16_t len, i;
uint16_t reg_idx, base, bsf, tc_mapping;
int q_offset, use_def_burst_func = 1;
uint64_t offloads;
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
vsi = &vf->vsi;
if (!vsi)
return -EINVAL;
reg_idx = queue_idx;
} else {
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
if (!vsi)
return -EINVAL;
q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
if (q_offset < 0)
return -EINVAL;
reg_idx = vsi->base_queue + q_offset;
}
if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
(nb_desc > I40E_MAX_RING_DESC) ||
(nb_desc < I40E_MIN_RING_DESC)) {
PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
"invalid", nb_desc);
return -EINVAL;
}
/* Free memory if needed */
if (dev->data->rx_queues[queue_idx]) {
i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Allocate the rx queue data structure */
rxq = rte_zmalloc_socket("i40e rx queue",
sizeof(struct i40e_rx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"rx queue data structure");
return -ENOMEM;
}
rxq->mp = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->reg_idx = reg_idx;
rxq->port_id = dev->data->port_id;
if (rte_eth_dev_must_keep_crc(dev->data->dev_conf.rxmode.offloads))
rxq->crc_len = ETHER_CRC_LEN;
else
rxq->crc_len = 0;
rxq->drop_en = rx_conf->rx_drop_en;
rxq->vsi = vsi;
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
rxq->offloads = offloads;
/* Allocate the maximun number of RX ring hardware descriptor. */
len = I40E_MAX_RING_DESC;
/**
* Allocating a little more memory because vectorized/bulk_alloc Rx
* functions doesn't check boundaries each time.
*/
len += RTE_PMD_I40E_RX_MAX_BURST;
ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
I40E_DMA_MEM_ALIGN);
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
ring_size, I40E_RING_BASE_ALIGN, socket_id);
if (!rz) {
i40e_dev_rx_queue_release(rxq);
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
return -ENOMEM;
}
/* Zero all the descriptors in the ring. */
memset(rz->addr, 0, ring_size);
rxq->rx_ring_phys_addr = rz->iova;
rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
/* Allocate the software ring. */
rxq->sw_ring =
rte_zmalloc_socket("i40e rx sw ring",
sizeof(struct i40e_rx_entry) * len,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq->sw_ring) {
i40e_dev_rx_queue_release(rxq);
PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
return -ENOMEM;
}
i40e_reset_rx_queue(rxq);
rxq->q_set = TRUE;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (!(vsi->enabled_tc & (1 << i)))
continue;
tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
rxq->dcb_tc = i;
}
if (dev->data->dev_started) {
if (i40e_dev_rx_queue_setup_runtime(dev, rxq)) {
i40e_dev_rx_queue_release(rxq);
return -EINVAL;
}
} else {
use_def_burst_func =
check_rx_burst_bulk_alloc_preconditions(rxq);
if (!use_def_burst_func) {
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
PMD_INIT_LOG(DEBUG,
"Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function will be "
"used on port=%d, queue=%d.",
rxq->port_id, rxq->queue_id);
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
} else {
PMD_INIT_LOG(DEBUG,
"Rx Burst Bulk Alloc Preconditions are "
"not satisfied, Scattered Rx is requested, "
"or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
"not enabled on port=%d, queue=%d.",
rxq->port_id, rxq->queue_id);
ad->rx_bulk_alloc_allowed = false;
}
}
dev->data->rx_queues[queue_idx] = rxq;
return 0;
}
void
i40e_dev_rx_queue_release(void *rxq)
{
struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
if (!q) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
return;
}
i40e_rx_queue_release_mbufs(q);
rte_free(q->sw_ring);
rte_free(q);
}
uint32_t
i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
#define I40E_RXQ_SCAN_INTERVAL 4
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_queue *rxq;
uint16_t desc = 0;
rxq = dev->data->rx_queues[rx_queue_id];
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
while ((desc < rxq->nb_rx_desc) &&
((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
(1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
/**
* Check the DD bit of a rx descriptor of each 4 in a group,
* to avoid checking too frequently and downgrading performance
* too much.
*/
desc += I40E_RXQ_SCAN_INTERVAL;
rxdp += I40E_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
int
i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_queue *rxq = rx_queue;
uint16_t desc;
int ret;
if (unlikely(offset >= rxq->nb_rx_desc)) {
PMD_DRV_LOG(ERR, "Invalid RX descriptor id %u", offset);
return 0;
}
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
rxdp = &(rxq->rx_ring[desc]);
ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
(1 << I40E_RX_DESC_STATUS_DD_SHIFT));
return ret;
}
int
i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct i40e_rx_queue *rxq = rx_queue;
volatile uint64_t *status;
uint64_t mask;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return -EINVAL;
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
<< I40E_RXD_QW1_STATUS_SHIFT);
if (*status & mask)
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
int
i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct i40e_tx_queue *txq = tx_queue;
volatile uint64_t *status;
uint64_t mask, expect;
uint32_t desc;
if (unlikely(offset >= txq->nb_tx_desc))
return -EINVAL;
desc = txq->tx_tail + offset;
/* go to next desc that has the RS bit */
desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
txq->tx_rs_thresh;
if (desc >= txq->nb_tx_desc) {
desc -= txq->nb_tx_desc;
if (desc >= txq->nb_tx_desc)
desc -= txq->nb_tx_desc;
}
status = &txq->tx_ring[desc].cmd_type_offset_bsz;
mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
expect = rte_cpu_to_le_64(
I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
if ((*status & mask) == expect)
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
static int
i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev *dev,
struct i40e_tx_queue *txq)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
if (i40e_tx_queue_init(txq) != I40E_SUCCESS) {
PMD_DRV_LOG(ERR,
"Failed to do TX queue initialization");
return -EINVAL;
}
if (i40e_dev_first_queue(txq->queue_id,
dev->data->tx_queues,
dev->data->nb_tx_queues)) {
/**
* If it is the first queue to setup,
* set all flags and call
* i40e_set_tx_function.
*/
i40e_set_tx_function_flag(dev, txq);
i40e_set_tx_function(dev);
return 0;
}
/* check vector conflict */
if (ad->tx_vec_allowed) {
if (txq->tx_rs_thresh > RTE_I40E_TX_MAX_FREE_BUF_SZ ||
i40e_txq_vec_setup(txq)) {
PMD_DRV_LOG(ERR, "Failed vector tx setup.");
return -EINVAL;
}
}
/* check simple tx conflict */
if (ad->tx_simple_allowed) {
if (txq->offloads != 0 ||
txq->tx_rs_thresh < RTE_PMD_I40E_TX_MAX_BURST) {
PMD_DRV_LOG(ERR, "No-simple tx is required.");
return -EINVAL;
}
}
return 0;
}
int
i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi;
struct i40e_pf *pf = NULL;
struct i40e_vf *vf = NULL;
struct i40e_tx_queue *txq;
const struct rte_memzone *tz;
uint32_t ring_size;
uint16_t tx_rs_thresh, tx_free_thresh;
uint16_t reg_idx, i, base, bsf, tc_mapping;
int q_offset;
uint64_t offloads;
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
vsi = &vf->vsi;
if (!vsi)
return -EINVAL;
reg_idx = queue_idx;
} else {
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
if (!vsi)
return -EINVAL;
q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
if (q_offset < 0)
return -EINVAL;
reg_idx = vsi->base_queue + q_offset;
}
if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
(nb_desc > I40E_MAX_RING_DESC) ||
(nb_desc < I40E_MIN_RING_DESC)) {
PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
"invalid", nb_desc);
return -EINVAL;
}
/**
* The following two parameters control the setting of the RS bit on
* transmit descriptors. TX descriptors will have their RS bit set
* after txq->tx_rs_thresh descriptors have been used. The TX
* descriptor ring will be cleaned after txq->tx_free_thresh
* descriptors are used or if the number of descriptors required to
* transmit a packet is greater than the number of free TX descriptors.
*
* The following constraints must be satisfied:
* - tx_rs_thresh must be greater than 0.
* - tx_rs_thresh must be less than the size of the ring minus 2.
* - tx_rs_thresh must be less than or equal to tx_free_thresh.
* - tx_rs_thresh must be a divisor of the ring size.
* - tx_free_thresh must be greater than 0.
* - tx_free_thresh must be less than the size of the ring minus 3.
*
* One descriptor in the TX ring is used as a sentinel to avoid a H/W
* race condition, hence the maximum threshold constraints. When set
* to zero use default values.
*/
tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
if (tx_rs_thresh >= (nb_desc - 2)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
"number of TX descriptors minus 2. "
"(tx_rs_thresh=%u port=%d queue=%d)",
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
if (tx_free_thresh >= (nb_desc - 3)) {
PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
"number of TX descriptors minus 3. "
"(tx_free_thresh=%u port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
if (tx_rs_thresh > tx_free_thresh) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
"equal to tx_free_thresh. (tx_free_thresh=%u"
" tx_rs_thresh=%u port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
if ((nb_desc % tx_rs_thresh) != 0) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
"number of TX descriptors. (tx_rs_thresh=%u"
" port=%d queue=%d)",
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
"tx_rs_thresh is greater than 1. "
"(tx_rs_thresh=%u port=%d queue=%d)",
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
/* Free memory if needed. */
if (dev->data->tx_queues[queue_idx]) {
i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket("i40e tx queue",
sizeof(struct i40e_tx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"tx queue structure");
return -ENOMEM;
}
/* Allocate TX hardware ring descriptors. */
ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
ring_size, I40E_RING_BASE_ALIGN, socket_id);
if (!tz) {
i40e_dev_tx_queue_release(txq);
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
return -ENOMEM;
}
txq->nb_tx_desc = nb_desc;
txq->tx_rs_thresh = tx_rs_thresh;
txq->tx_free_thresh = tx_free_thresh;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
txq->queue_id = queue_idx;
txq->reg_idx = reg_idx;
txq->port_id = dev->data->port_id;
txq->offloads = offloads;
txq->vsi = vsi;
txq->tx_deferred_start = tx_conf->tx_deferred_start;
txq->tx_ring_phys_addr = tz->iova;
txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
/* Allocate software ring */
txq->sw_ring =
rte_zmalloc_socket("i40e tx sw ring",
sizeof(struct i40e_tx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq->sw_ring) {
i40e_dev_tx_queue_release(txq);
PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
return -ENOMEM;
}
i40e_reset_tx_queue(txq);
txq->q_set = TRUE;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (!(vsi->enabled_tc & (1 << i)))
continue;
tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
txq->dcb_tc = i;
}
if (dev->data->dev_started) {
if (i40e_dev_tx_queue_setup_runtime(dev, txq)) {
i40e_dev_tx_queue_release(txq);
return -EINVAL;
}
} else {
/**
* Use a simple TX queue without offloads or
* multi segs if possible
*/
i40e_set_tx_function_flag(dev, txq);
}
dev->data->tx_queues[queue_idx] = txq;
return 0;
}
void
i40e_dev_tx_queue_release(void *txq)
{
struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
if (!q) {
PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
return;
}
i40e_tx_queue_release_mbufs(q);
rte_free(q->sw_ring);
rte_free(q);
}
const struct rte_memzone *
i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
{
const struct rte_memzone *mz;
mz = rte_memzone_lookup(name);
if (mz)
return mz;
mz = rte_memzone_reserve_aligned(name, len, socket_id,
RTE_MEMZONE_IOVA_CONTIG, I40E_RING_BASE_ALIGN);
return mz;
}
void
i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
{
uint16_t i;
/* SSE Vector driver has a different way of releasing mbufs. */
if (rxq->rx_using_sse) {
i40e_rx_queue_release_mbufs_vec(rxq);
return;
}
if (!rxq->sw_ring) {
PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
return;
}
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
if (rxq->rx_nb_avail == 0)
return;
for (i = 0; i < rxq->rx_nb_avail; i++) {
struct rte_mbuf *mbuf;
mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
rte_pktmbuf_free_seg(mbuf);
}
rxq->rx_nb_avail = 0;
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
}
void
i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
{
unsigned i;
uint16_t len;
if (!rxq) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
return;
}
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
else
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
len = rxq->nb_rx_desc;
for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
((volatile char *)rxq->rx_ring)[i] = 0;
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
rxq->rxrearm_start = 0;
rxq->rxrearm_nb = 0;
}
void
i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
{
struct rte_eth_dev *dev;
uint16_t i;
dev = &rte_eth_devices[txq->port_id];
if (!txq || !txq->sw_ring) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
return;
}
/**
* vPMD tx will not set sw_ring's mbuf to NULL after free,
* so need to free remains more carefully.
*/
if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx2 ||
dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
if (txq->tx_tail < i) {
for (; i < txq->nb_tx_desc; i++) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
i = 0;
}
for (; i < txq->tx_tail; i++) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
} else {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
void
i40e_reset_tx_queue(struct i40e_tx_queue *txq)
{
struct i40e_tx_entry *txe;
uint16_t i, prev, size;
if (!txq) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
return;
}
txe = txq->sw_ring;
size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->tx_ring)[i] = 0;
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
txd->cmd_type_offset_bsz =
rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_tail = 0;
txq->nb_tx_used = 0;
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
}
/* Init the TX queue in hardware */
int
i40e_tx_queue_init(struct i40e_tx_queue *txq)
{
enum i40e_status_code err = I40E_SUCCESS;
struct i40e_vsi *vsi = txq->vsi;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t pf_q = txq->reg_idx;
struct i40e_hmc_obj_txq tx_ctx;
uint32_t qtx_ctl;
/* clear the context structure first */
memset(&tx_ctx, 0, sizeof(tx_ctx));
tx_ctx.new_context = 1;
tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
tx_ctx.qlen = txq->nb_tx_desc;
#ifdef RTE_LIBRTE_IEEE1588
tx_ctx.timesync_ena = 1;
#endif
tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
if (vsi->type == I40E_VSI_FDIR)
tx_ctx.fd_ena = TRUE;
err = i40e_clear_lan_tx_queue_context(hw, pf_q);
if (err != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
return err;
}
err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
if (err != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
return err;
}
/* Now associate this queue with this PCI function */
qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
I40E_QTX_CTL_PF_INDX_MASK);
I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
I40E_WRITE_FLUSH(hw);
txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
return err;
}
int
i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
{
struct i40e_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union i40e_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!mbuf)) {
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.pkt_addr = dma_addr;
rxd->read.hdr_addr = 0;
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
rxd->read.rsvd1 = 0;
rxd->read.rsvd2 = 0;
#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
rxe[i].mbuf = mbuf;
}
return 0;
}
/*
* Calculate the buffer length, and check the jumbo frame
* and maximum packet length.
*/
static int
i40e_rx_queue_config(struct i40e_rx_queue *rxq)
{
struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
struct rte_eth_dev_data *data = pf->dev_data;
uint16_t buf_size, len;
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
I40E_FLAG_HEADER_SPLIT_ENABLED)) {
case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
(1 << I40E_RXQ_CTX_HBUFF_SHIFT));
rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
(1 << I40E_RXQ_CTX_DBUFF_SHIFT));
rxq->hs_mode = i40e_header_split_enabled;
break;
case I40E_FLAG_HEADER_SPLIT_DISABLED:
default:
rxq->rx_hdr_len = 0;
rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
(1 << I40E_RXQ_CTX_DBUFF_SHIFT));
rxq->hs_mode = i40e_header_split_none;
break;
}
len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
if (data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must "
"be larger than %u and smaller than %u,"
"as jumbo frame is enabled",
(uint32_t)ETHER_MAX_LEN,
(uint32_t)I40E_FRAME_SIZE_MAX);
return I40E_ERR_CONFIG;
}
} else {
if (rxq->max_pkt_len < ETHER_MIN_LEN ||
rxq->max_pkt_len > ETHER_MAX_LEN) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, "
"as jumbo frame is disabled",
(uint32_t)ETHER_MIN_LEN,
(uint32_t)ETHER_MAX_LEN);
return I40E_ERR_CONFIG;
}
}
return 0;
}
/* Init the RX queue in hardware */
int
i40e_rx_queue_init(struct i40e_rx_queue *rxq)
{
int err = I40E_SUCCESS;
struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
uint16_t pf_q = rxq->reg_idx;
uint16_t buf_size;
struct i40e_hmc_obj_rxq rx_ctx;
err = i40e_rx_queue_config(rxq);
if (err < 0) {
PMD_DRV_LOG(ERR, "Failed to config RX queue");
return err;
}
/* Clear the context structure first */
memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
rx_ctx.qlen = rxq->nb_rx_desc;
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
rx_ctx.dsize = 1;
#endif
rx_ctx.dtype = rxq->hs_mode;
if (rxq->hs_mode)
rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
else
rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
rx_ctx.rxmax = rxq->max_pkt_len;
rx_ctx.tphrdesc_ena = 1;
rx_ctx.tphwdesc_ena = 1;
rx_ctx.tphdata_ena = 1;
rx_ctx.tphhead_ena = 1;
rx_ctx.lrxqthresh = 2;
rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
rx_ctx.l2tsel = 1;
/* showiv indicates if inner VLAN is stripped inside of tunnel
* packet. When set it to 1, vlan information is stripped from
* the inner header, but the hardware does not put it in the
* descriptor. So set it zero by default.
*/
rx_ctx.showiv = 0;
rx_ctx.prefena = 1;
err = i40e_clear_lan_rx_queue_context(hw, pf_q);
if (err != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
return err;
}
err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
if (err != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
return err;
}
rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
/* Check if scattered RX needs to be used. */
if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
dev_data->scattered_rx = 1;
}
/* Init the RX tail regieter. */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
return 0;
}
void
i40e_dev_clear_queues(struct rte_eth_dev *dev)
{
uint16_t i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (!dev->data->tx_queues[i])
continue;
i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
i40e_reset_tx_queue(dev->data->tx_queues[i]);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!dev->data->rx_queues[i])
continue;
i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
i40e_reset_rx_queue(dev->data->rx_queues[i]);
}
}
void
i40e_dev_free_queues(struct rte_eth_dev *dev)
{
uint16_t i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!dev->data->rx_queues[i])
continue;
i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (!dev->data->tx_queues[i])
continue;
i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
#define I40E_FDIR_NUM_TX_DESC I40E_MIN_RING_DESC
#define I40E_FDIR_NUM_RX_DESC I40E_MIN_RING_DESC
enum i40e_status_code
i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
{
struct i40e_tx_queue *txq;
const struct rte_memzone *tz = NULL;
uint32_t ring_size;
struct rte_eth_dev *dev;
if (!pf) {
PMD_DRV_LOG(ERR, "PF is not available");
return I40E_ERR_BAD_PTR;
}
dev = pf->adapter->eth_dev;
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket("i40e fdir tx queue",
sizeof(struct i40e_tx_queue),
RTE_CACHE_LINE_SIZE,
SOCKET_ID_ANY);
if (!txq) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"tx queue structure.");
return I40E_ERR_NO_MEMORY;
}
/* Allocate TX hardware ring descriptors. */
ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
I40E_FDIR_QUEUE_ID, ring_size,
I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
if (!tz) {
i40e_dev_tx_queue_release(txq);
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
return I40E_ERR_NO_MEMORY;
}
txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
txq->queue_id = I40E_FDIR_QUEUE_ID;
txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
txq->vsi = pf->fdir.fdir_vsi;
txq->tx_ring_phys_addr = tz->iova;
txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
/*
* don't need to allocate software ring and reset for the fdir
* program queue just set the queue has been configured.
*/
txq->q_set = TRUE;
pf->fdir.txq = txq;
return I40E_SUCCESS;
}
enum i40e_status_code
i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
{
struct i40e_rx_queue *rxq;
const struct rte_memzone *rz = NULL;
uint32_t ring_size;
struct rte_eth_dev *dev;
if (!pf) {
PMD_DRV_LOG(ERR, "PF is not available");
return I40E_ERR_BAD_PTR;
}
dev = pf->adapter->eth_dev;
/* Allocate the RX queue data structure. */
rxq = rte_zmalloc_socket("i40e fdir rx queue",
sizeof(struct i40e_rx_queue),
RTE_CACHE_LINE_SIZE,
SOCKET_ID_ANY);
if (!rxq) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"rx queue structure.");
return I40E_ERR_NO_MEMORY;
}
/* Allocate RX hardware ring descriptors. */
ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
I40E_FDIR_QUEUE_ID, ring_size,
I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
if (!rz) {
i40e_dev_rx_queue_release(rxq);
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
return I40E_ERR_NO_MEMORY;
}
rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
rxq->queue_id = I40E_FDIR_QUEUE_ID;
rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
rxq->vsi = pf->fdir.fdir_vsi;
rxq->rx_ring_phys_addr = rz->iova;
memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
/*
* Don't need to allocate software ring and reset for the fdir
* rx queue, just set the queue has been configured.
*/
rxq->q_set = TRUE;
pf->fdir.rxq = rxq;
return I40E_SUCCESS;
}
void
i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct i40e_rx_queue *rxq;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mp;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = rxq->drop_en;
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
qinfo->conf.offloads = rxq->offloads;
}
void
i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct i40e_tx_queue *txq;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
qinfo->conf.offloads = txq->offloads;
}
void __attribute__((cold))
i40e_set_rx_function(struct rte_eth_dev *dev)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
uint16_t rx_using_sse, i;
/* In order to allow Vector Rx there are a few configuration
* conditions to be met and Rx Bulk Allocation should be allowed.
*/
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
if (i40e_rx_vec_dev_conf_condition_check(dev) ||
!ad->rx_bulk_alloc_allowed) {
PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
" Vector Rx preconditions",
dev->data->port_id);
ad->rx_vec_allowed = false;
}
if (ad->rx_vec_allowed) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct i40e_rx_queue *rxq =
dev->data->rx_queues[i];
if (rxq && i40e_rxq_vec_setup(rxq)) {
ad->rx_vec_allowed = false;
break;
}
}
}
}
if (dev->data->scattered_rx) {
/* Set the non-LRO scattered callback: there are Vector and
* single allocation versions.
*/
if (ad->rx_vec_allowed) {
PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
"callback (port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
#ifdef RTE_ARCH_X86
/*
* since AVX frequency can be different to base
* frequency, limit use of AVX2 version to later
* plaforms, not all those that could theoretically
* run it.
*/
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
dev->rx_pkt_burst =
i40e_recv_scattered_pkts_vec_avx2;
#endif
} else {
PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
"allocation callback (port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = i40e_recv_scattered_pkts;
}
/* If parameters allow we are going to choose between the following
* callbacks:
* - Vector
* - Bulk Allocation
* - Single buffer allocation (the simplest one)
*/
} else if (ad->rx_vec_allowed) {
PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
"burst size no less than %d (port=%d).",
RTE_I40E_DESCS_PER_LOOP,
dev->data->port_id);
dev->rx_pkt_burst = i40e_recv_pkts_vec;
#ifdef RTE_ARCH_X86
/*
* since AVX frequency can be different to base
* frequency, limit use of AVX2 version to later
* plaforms, not all those that could theoretically
* run it.
*/
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
dev->rx_pkt_burst = i40e_recv_pkts_vec_avx2;
#endif
} else if (ad->rx_bulk_alloc_allowed) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function "
"will be used on port=%d.",
dev->data->port_id);
dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
} else {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
"satisfied, or Scattered Rx is requested "
"(port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = i40e_recv_pkts;
}
/* Propagate information about RX function choice through all queues. */
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
rx_using_sse =
(dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
dev->rx_pkt_burst == i40e_recv_pkts_vec ||
dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2);
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
if (rxq)
rxq->rx_using_sse = rx_using_sse;
}
}
}
void __attribute__((cold))
i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
/* Use a simple Tx queue if possible (only fast free is allowed) */
ad->tx_simple_allowed =
(txq->offloads ==
(txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST);
ad->tx_vec_allowed = (ad->tx_simple_allowed &&
txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ);
if (ad->tx_vec_allowed)
PMD_INIT_LOG(DEBUG, "Vector Tx can be enabled on Tx queue %u.",
txq->queue_id);
else if (ad->tx_simple_allowed)
PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
txq->queue_id);
else
PMD_INIT_LOG(DEBUG,
"Neither simple nor vector Tx enabled on Tx queue %u\n",
txq->queue_id);
}
void __attribute__((cold))
i40e_set_tx_function(struct rte_eth_dev *dev)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
int i;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
if (ad->tx_vec_allowed) {
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct i40e_tx_queue *txq =
dev->data->tx_queues[i];
if (txq && i40e_txq_vec_setup(txq)) {
ad->tx_vec_allowed = false;
break;
}
}
}
}
if (ad->tx_simple_allowed) {
if (ad->tx_vec_allowed) {
PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
dev->tx_pkt_burst = i40e_xmit_pkts_vec;
#ifdef RTE_ARCH_X86
/*
* since AVX frequency can be different to base
* frequency, limit use of AVX2 version to later
* plaforms, not all those that could theoretically
* run it.
*/
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
dev->tx_pkt_burst = i40e_xmit_pkts_vec_avx2;
#endif
} else {
PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
dev->tx_pkt_burst = i40e_xmit_pkts_simple;
}
dev->tx_pkt_prepare = NULL;
} else {
PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
dev->tx_pkt_burst = i40e_xmit_pkts;
dev->tx_pkt_prepare = i40e_prep_pkts;
}
}
void __attribute__((cold))
i40e_set_default_ptype_table(struct rte_eth_dev *dev)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
int i;
for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
}
void __attribute__((cold))
i40e_set_default_pctype_table(struct rte_eth_dev *dev)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int i;
for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
ad->pctypes_tbl[i] = 0ULL;
ad->flow_types_mask = 0ULL;
ad->pctypes_mask = 0ULL;
ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
(1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
(1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
(1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
if (hw->mac.type == I40E_MAC_X722) {
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
(1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
(1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
(1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
(1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
}
for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
if (ad->pctypes_tbl[i])
ad->flow_types_mask |= (1ULL << i);
ad->pctypes_mask |= ad->pctypes_tbl[i];
}
}
/* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
int __attribute__((weak))
i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
{
return -1;
}
uint16_t __attribute__((weak))
i40e_recv_pkts_vec(
void __rte_unused *rx_queue,
struct rte_mbuf __rte_unused **rx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
uint16_t __attribute__((weak))
i40e_recv_scattered_pkts_vec(
void __rte_unused *rx_queue,
struct rte_mbuf __rte_unused **rx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
uint16_t __attribute__((weak))
i40e_recv_pkts_vec_avx2(void __rte_unused *rx_queue,
struct rte_mbuf __rte_unused **rx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
uint16_t __attribute__((weak))
i40e_recv_scattered_pkts_vec_avx2(void __rte_unused *rx_queue,
struct rte_mbuf __rte_unused **rx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
int __attribute__((weak))
i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
{
return -1;
}
int __attribute__((weak))
i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
{
return -1;
}
void __attribute__((weak))
i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
{
return;
}
uint16_t __attribute__((weak))
i40e_xmit_fixed_burst_vec(void __rte_unused * tx_queue,
struct rte_mbuf __rte_unused **tx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
uint16_t __attribute__((weak))
i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,
struct rte_mbuf __rte_unused **tx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}