numam-dpdk/drivers/net/ipn3ke/ipn3ke_flow.c
David Marchand 925c074e37 bus/ifpga: make driver-only headers private
The ifpga bus interface is for drivers only.
Mark as internal and move the header in the driver headers list.

While at it, cleanup the code:
- remove unneeded list head structure type,
- reorder the definitions and macro manipulating the bus singleton object,
- remove inclusion of rte_bus.h and fix the code that relied on implicit
  inclusion,

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Rosen Xu <rosen.xu@intel.com>
2022-09-23 16:14:34 +02:00

1381 lines
29 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <rte_io.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_eth_ctrl.h>
#include <rte_tailq.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include <bus_ifpga_driver.h>
#include <ifpga_common.h>
#include <ifpga_logs.h>
#include <ifpga_rawdev.h>
#include "ipn3ke_rawdev_api.h"
#include "ipn3ke_flow.h"
#include "ipn3ke_logs.h"
#include "ipn3ke_ethdev.h"
/** Static initializer for items. */
#define FLOW_PATTERNS(...) \
((const enum rte_flow_item_type []) { \
__VA_ARGS__, RTE_FLOW_ITEM_TYPE_END, \
})
enum IPN3KE_HASH_KEY_TYPE {
IPN3KE_HASH_KEY_VXLAN,
IPN3KE_HASH_KEY_MAC,
IPN3KE_HASH_KEY_QINQ,
IPN3KE_HASH_KEY_MPLS,
IPN3KE_HASH_KEY_IP_TCP,
IPN3KE_HASH_KEY_IP_UDP,
IPN3KE_HASH_KEY_IP_NVGRE,
IPN3KE_HASH_KEY_VXLAN_IP_UDP,
};
struct ipn3ke_flow_parse {
uint32_t mark:1; /**< Set if the flow is marked. */
uint32_t drop:1; /**< ACL drop. */
uint32_t key_type:IPN3KE_FLOW_KEY_ID_BITS;
uint32_t mark_id:IPN3KE_FLOW_RESULT_UID_BITS; /**< Mark identifier. */
uint8_t key_len; /**< Length in bit. */
uint8_t key[BITS_TO_BYTES(IPN3KE_FLOW_KEY_DATA_BITS)];
/**< key1, key2 */
};
typedef int (*pattern_filter_t)(const struct rte_flow_item patterns[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser);
struct ipn3ke_flow_pattern {
const enum rte_flow_item_type *const items;
pattern_filter_t filter;
};
/*
* @ RTL definition:
* typedef struct packed {
* logic [47:0] vxlan_inner_mac;
* logic [23:0] vxlan_vni;
* } Hash_Key_Vxlan_t;
*
* @ flow items:
* RTE_FLOW_ITEM_TYPE_VXLAN
* RTE_FLOW_ITEM_TYPE_ETH
*/
static int
ipn3ke_pattern_vxlan(const struct rte_flow_item patterns[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
const struct rte_flow_item_vxlan *vxlan = NULL;
const struct rte_flow_item_eth *eth = NULL;
const struct rte_flow_item *item;
for (item = patterns; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (/*!item->spec || item->mask || */item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Only support item with 'spec'");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
eth = item->spec;
rte_memcpy(&parser->key[0],
eth->src.addr_bytes,
RTE_ETHER_ADDR_LEN);
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
vxlan = item->spec;
rte_memcpy(&parser->key[6], vxlan->vni, 3);
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support item type");
return -rte_errno;
}
}
if (vxlan != NULL && eth != NULL) {
parser->key_len = 48 + 24;
return 0;
}
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
patterns,
"Missed some patterns");
return -rte_errno;
}
/*
* @ RTL definition:
* typedef struct packed {
* logic [47:0] eth_smac;
* } Hash_Key_Mac_t;
*
* @ flow items:
* RTE_FLOW_ITEM_TYPE_ETH
*/
static int
ipn3ke_pattern_mac(const struct rte_flow_item patterns[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
const struct rte_flow_item_eth *eth = NULL;
const struct rte_flow_item *item;
for (item = patterns; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (!item->spec || item->mask || item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Only support item with 'spec'");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
eth = item->spec;
rte_memcpy(parser->key,
eth->src.addr_bytes,
RTE_ETHER_ADDR_LEN);
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support item type");
return -rte_errno;
}
}
if (eth != NULL) {
parser->key_len = 48;
return 0;
}
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
patterns,
"Missed some patterns");
return -rte_errno;
}
/*
* @ RTL definition:
* typedef struct packed {
* logic [11:0] outer_vlan_id;
* logic [11:0] inner_vlan_id;
* } Hash_Key_QinQ_t;
*
* @ flow items:
* RTE_FLOW_ITEM_TYPE_VLAN
* RTE_FLOW_ITEM_TYPE_VLAN
*/
static int
ipn3ke_pattern_qinq(const struct rte_flow_item patterns[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
const struct rte_flow_item_vlan *outer_vlan = NULL;
const struct rte_flow_item_vlan *inner_vlan = NULL;
const struct rte_flow_item *item;
uint16_t tci;
for (item = patterns; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (!item->spec || item->mask || item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Only support item with 'spec'");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_VLAN:
if (!outer_vlan) {
outer_vlan = item->spec;
tci = rte_be_to_cpu_16(outer_vlan->tci);
parser->key[0] = (tci & 0xff0) >> 4;
parser->key[1] |= (tci & 0x00f) << 4;
} else {
inner_vlan = item->spec;
tci = rte_be_to_cpu_16(inner_vlan->tci);
parser->key[1] |= (tci & 0xf00) >> 8;
parser->key[2] = (tci & 0x0ff);
}
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support item type");
return -rte_errno;
}
}
if (outer_vlan != NULL && inner_vlan != NULL) {
parser->key_len = 12 + 12;
return 0;
}
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
patterns,
"Missed some patterns");
return -rte_errno;
}
/*
* @ RTL definition:
* typedef struct packed {
* logic [19:0] mpls_label1;
* logic [19:0] mpls_label2;
* } Hash_Key_Mpls_t;
*
* @ flow items:
* RTE_FLOW_ITEM_TYPE_MPLS
* RTE_FLOW_ITEM_TYPE_MPLS
*/
static int
ipn3ke_pattern_mpls(const struct rte_flow_item patterns[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
const struct rte_flow_item_mpls *mpls1 = NULL;
const struct rte_flow_item_mpls *mpls2 = NULL;
const struct rte_flow_item *item;
for (item = patterns; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (!item->spec || item->mask || item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Only support item with 'spec'");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_MPLS:
if (!mpls1) {
mpls1 = item->spec;
parser->key[0] = mpls1->label_tc_s[0];
parser->key[1] = mpls1->label_tc_s[1];
parser->key[2] = mpls1->label_tc_s[2] & 0xf0;
} else {
mpls2 = item->spec;
parser->key[2] |=
((mpls2->label_tc_s[0] & 0xf0) >> 4);
parser->key[3] =
((mpls2->label_tc_s[0] & 0xf) << 4) |
((mpls2->label_tc_s[1] & 0xf0) >> 4);
parser->key[4] =
((mpls2->label_tc_s[1] & 0xf) << 4) |
((mpls2->label_tc_s[2] & 0xf0) >> 4);
}
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support item type");
return -rte_errno;
}
}
if (mpls1 != NULL && mpls2 != NULL) {
parser->key_len = 20 + 20;
return 0;
}
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
patterns,
"Missed some patterns");
return -rte_errno;
}
/*
* @ RTL definition:
* typedef struct packed {
* logic [31:0] ip_sa;
* logic [15:0] tcp_sport;
* } Hash_Key_Ip_Tcp_t;
*
* @ flow items:
* RTE_FLOW_ITEM_TYPE_IPV4
* RTE_FLOW_ITEM_TYPE_TCP
*/
static int
ipn3ke_pattern_ip_tcp(const struct rte_flow_item patterns[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
const struct rte_flow_item_ipv4 *ipv4 = NULL;
const struct rte_flow_item_tcp *tcp = NULL;
const struct rte_flow_item *item;
for (item = patterns; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (!item->spec || item->mask || item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Only support item with 'spec'");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_IPV4:
ipv4 = item->spec;
rte_memcpy(&parser->key[0], &ipv4->hdr.src_addr, 4);
break;
case RTE_FLOW_ITEM_TYPE_TCP:
tcp = item->spec;
rte_memcpy(&parser->key[4], &tcp->hdr.src_port, 2);
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support item type");
return -rte_errno;
}
}
if (ipv4 != NULL && tcp != NULL) {
parser->key_len = 32 + 16;
return 0;
}
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
patterns,
"Missed some patterns");
return -rte_errno;
}
/*
* @ RTL definition:
* typedef struct packed {
* logic [31:0] ip_sa;
* logic [15:0] udp_sport;
* } Hash_Key_Ip_Udp_t;
*
* @ flow items:
* RTE_FLOW_ITEM_TYPE_IPV4
* RTE_FLOW_ITEM_TYPE_UDP
*/
static int
ipn3ke_pattern_ip_udp(const struct rte_flow_item patterns[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
const struct rte_flow_item_ipv4 *ipv4 = NULL;
const struct rte_flow_item_udp *udp = NULL;
const struct rte_flow_item *item;
for (item = patterns; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (!item->spec || item->mask || item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Only support item with 'spec'");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_IPV4:
ipv4 = item->spec;
rte_memcpy(&parser->key[0], &ipv4->hdr.src_addr, 4);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp = item->spec;
rte_memcpy(&parser->key[4], &udp->hdr.src_port, 2);
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support item type");
return -rte_errno;
}
}
if (ipv4 != NULL && udp != NULL) {
parser->key_len = 32 + 16;
return 0;
}
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
patterns,
"Missed some patterns");
return -rte_errno;
}
/*
* @ RTL definition:
* typedef struct packed {
* logic [31:0] ip_sa;
* logic [15:0] udp_sport;
* logic [23:0] vsid;
* } Hash_Key_Ip_Nvgre_t;
*
* @ flow items:
* RTE_FLOW_ITEM_TYPE_IPV4
* RTE_FLOW_ITEM_TYPE_UDP
* RTE_FLOW_ITEM_TYPE_NVGRE
*/
static int
ipn3ke_pattern_ip_nvgre(const struct rte_flow_item patterns[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
const struct rte_flow_item_nvgre *nvgre = NULL;
const struct rte_flow_item_ipv4 *ipv4 = NULL;
const struct rte_flow_item_udp *udp = NULL;
const struct rte_flow_item *item;
for (item = patterns; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (!item->spec || item->mask || item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Only support item with 'spec'");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_IPV4:
ipv4 = item->spec;
rte_memcpy(&parser->key[0], &ipv4->hdr.src_addr, 4);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp = item->spec;
rte_memcpy(&parser->key[4], &udp->hdr.src_port, 2);
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
nvgre = item->spec;
rte_memcpy(&parser->key[6], nvgre->tni, 3);
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support item type");
return -rte_errno;
}
}
if (ipv4 != NULL && udp != NULL && nvgre != NULL) {
parser->key_len = 32 + 16 + 24;
return 0;
}
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
patterns,
"Missed some patterns");
return -rte_errno;
}
/*
* @ RTL definition:
* typedef struct packed{
* logic [23:0] vxlan_vni;
* logic [31:0] ip_sa;
* logic [15:0] udp_sport;
* } Hash_Key_Vxlan_Ip_Udp_t;
*
* @ flow items:
* RTE_FLOW_ITEM_TYPE_VXLAN
* RTE_FLOW_ITEM_TYPE_IPV4
* RTE_FLOW_ITEM_TYPE_UDP
*/
static int
ipn3ke_pattern_vxlan_ip_udp(const struct rte_flow_item patterns[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
const struct rte_flow_item_vxlan *vxlan = NULL;
const struct rte_flow_item_ipv4 *ipv4 = NULL;
const struct rte_flow_item_udp *udp = NULL;
const struct rte_flow_item *item;
for (item = patterns; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (!item->spec || item->mask || item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Only support item with 'spec'");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_VXLAN:
vxlan = item->spec;
rte_memcpy(&parser->key[0], vxlan->vni, 3);
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ipv4 = item->spec;
rte_memcpy(&parser->key[3], &ipv4->hdr.src_addr, 4);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp = item->spec;
rte_memcpy(&parser->key[7], &udp->hdr.src_port, 2);
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support item type");
return -rte_errno;
}
}
if (vxlan != NULL && ipv4 != NULL && udp != NULL) {
parser->key_len = 24 + 32 + 16;
return 0;
}
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
patterns,
"Missed some patterns");
return -rte_errno;
}
static const struct ipn3ke_flow_pattern ipn3ke_supported_patterns[] = {
[IPN3KE_HASH_KEY_VXLAN] = {
.items = FLOW_PATTERNS(RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH),
.filter = ipn3ke_pattern_vxlan,
},
[IPN3KE_HASH_KEY_MAC] = {
.items = FLOW_PATTERNS(RTE_FLOW_ITEM_TYPE_ETH),
.filter = ipn3ke_pattern_mac,
},
[IPN3KE_HASH_KEY_QINQ] = {
.items = FLOW_PATTERNS(RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_VLAN),
.filter = ipn3ke_pattern_qinq,
},
[IPN3KE_HASH_KEY_MPLS] = {
.items = FLOW_PATTERNS(RTE_FLOW_ITEM_TYPE_MPLS,
RTE_FLOW_ITEM_TYPE_MPLS),
.filter = ipn3ke_pattern_mpls,
},
[IPN3KE_HASH_KEY_IP_TCP] = {
.items = FLOW_PATTERNS(RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP),
.filter = ipn3ke_pattern_ip_tcp,
},
[IPN3KE_HASH_KEY_IP_UDP] = {
.items = FLOW_PATTERNS(RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP),
.filter = ipn3ke_pattern_ip_udp,
},
[IPN3KE_HASH_KEY_IP_NVGRE] = {
.items = FLOW_PATTERNS(RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_NVGRE),
.filter = ipn3ke_pattern_ip_nvgre,
},
[IPN3KE_HASH_KEY_VXLAN_IP_UDP] = {
.items = FLOW_PATTERNS(RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP),
.filter = ipn3ke_pattern_vxlan_ip_udp,
},
};
static int
ipn3ke_flow_convert_attributes(const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
if (!attr) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL,
"NULL attribute.");
return -rte_errno;
}
if (attr->group) {
rte_flow_error_set(error,
ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
NULL,
"groups are not supported");
return -rte_errno;
}
if (attr->egress) {
rte_flow_error_set(error,
ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
NULL,
"egress is not supported");
return -rte_errno;
}
if (attr->transfer) {
rte_flow_error_set(error,
ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
NULL,
"transfer is not supported");
return -rte_errno;
}
if (!attr->ingress) {
rte_flow_error_set(error,
ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
NULL,
"only ingress is supported");
return -rte_errno;
}
return 0;
}
static int
ipn3ke_flow_convert_actions(const struct rte_flow_action actions[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
const struct rte_flow_action_mark *mark = NULL;
if (!actions) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL,
"NULL action.");
return -rte_errno;
}
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; ++actions) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_MARK:
if (mark) {
rte_flow_error_set(error,
ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"duplicated mark");
return -rte_errno;
}
mark = actions->conf;
if (!mark) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"mark must be defined");
return -rte_errno;
} else if (mark->id > IPN3KE_FLOW_RESULT_UID_MAX) {
rte_flow_error_set(error,
ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"mark id is out of range");
return -rte_errno;
}
parser->mark = 1;
parser->mark_id = mark->id;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
parser->drop = 1;
break;
default:
rte_flow_error_set(error,
ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"invalid action");
return -rte_errno;
}
}
if (!parser->drop && !parser->mark) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"no valid actions");
return -rte_errno;
}
return 0;
}
static bool
ipn3ke_match_pattern(const enum rte_flow_item_type *patterns,
const struct rte_flow_item *input)
{
const struct rte_flow_item *item = input;
while ((*patterns == item->type) &&
(*patterns != RTE_FLOW_ITEM_TYPE_END)) {
patterns++;
item++;
}
return (*patterns == RTE_FLOW_ITEM_TYPE_END &&
item->type == RTE_FLOW_ITEM_TYPE_END);
}
static pattern_filter_t
ipn3ke_find_filter_func(const struct rte_flow_item *input,
uint32_t *idx)
{
pattern_filter_t filter = NULL;
uint32_t i;
for (i = 0; i < RTE_DIM(ipn3ke_supported_patterns); i++) {
if (ipn3ke_match_pattern(ipn3ke_supported_patterns[i].items,
input)) {
filter = ipn3ke_supported_patterns[i].filter;
*idx = i;
break;
}
}
return filter;
}
static int
ipn3ke_flow_convert_items(const struct rte_flow_item items[],
struct rte_flow_error *error, struct ipn3ke_flow_parse *parser)
{
pattern_filter_t filter = NULL;
uint32_t idx;
if (!items) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL,
"NULL pattern.");
return -rte_errno;
}
filter = ipn3ke_find_filter_func(items, &idx);
if (!filter) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
items,
"Unsupported pattern");
return -rte_errno;
}
parser->key_type = idx;
return filter(items, error, parser);
}
/* Put the least @nbits of @data into @offset of @dst bits stream, and
* the @offset starts from MSB to LSB in each byte.
*
* MSB LSB
* +------+------+------+------+
* | | | | |
* +------+------+------+------+
* ^ ^
* |<- data: nbits ->|
* |
* offset
*/
static void
copy_data_bits(uint8_t *dst, uint64_t data,
uint32_t offset, uint8_t nbits)
{
uint8_t set, *p = &dst[offset / BITS_PER_BYTE];
uint8_t bits_to_set = BITS_PER_BYTE - (offset % BITS_PER_BYTE);
uint8_t mask_to_set = 0xff >> (offset % BITS_PER_BYTE);
uint32_t size = offset + nbits;
if (nbits > (sizeof(data) * BITS_PER_BYTE)) {
IPN3KE_AFU_PMD_ERR("nbits is out of range");
return;
}
while (nbits - bits_to_set >= 0) {
set = data >> (nbits - bits_to_set);
*p &= ~mask_to_set;
*p |= (set & mask_to_set);
nbits -= bits_to_set;
bits_to_set = BITS_PER_BYTE;
mask_to_set = 0xff;
p++;
}
if (nbits) {
uint8_t shift = BITS_PER_BYTE - (size % BITS_PER_BYTE);
set = data << shift;
mask_to_set = 0xff << shift;
*p &= ~mask_to_set;
*p |= (set & mask_to_set);
}
}
static void
ipn3ke_flow_key_generation(struct ipn3ke_flow_parse *parser,
struct rte_flow *flow)
{
uint32_t i, shift_bytes, len_in_bytes, offset;
uint64_t key;
uint8_t *dst;
dst = flow->rule.key;
copy_data_bits(dst,
parser->key_type,
IPN3KE_FLOW_KEY_ID_OFFSET,
IPN3KE_FLOW_KEY_ID_BITS);
/* The MSb of key is filled to 0 when it is less than
* IPN3KE_FLOW_KEY_DATA_BITS bit. And the parsed key data is
* save as MSB byte first in the array, it needs to move
* the bits before formatting them.
*/
key = 0;
shift_bytes = 0;
len_in_bytes = BITS_TO_BYTES(parser->key_len);
offset = (IPN3KE_FLOW_KEY_DATA_OFFSET +
IPN3KE_FLOW_KEY_DATA_BITS -
parser->key_len);
for (i = 0; i < len_in_bytes; i++) {
key = (key << 8) | parser->key[i];
if (++shift_bytes == sizeof(key)) {
shift_bytes = 0;
copy_data_bits(dst, key, offset,
sizeof(key) * BITS_PER_BYTE);
offset += sizeof(key) * BITS_PER_BYTE;
key = 0;
}
}
if (shift_bytes != 0) {
uint32_t rem_bits;
rem_bits = parser->key_len % (sizeof(key) * BITS_PER_BYTE);
key >>= (shift_bytes * 8 - rem_bits);
copy_data_bits(dst, key, offset, rem_bits);
}
}
static void
ipn3ke_flow_result_generation(struct ipn3ke_flow_parse *parser,
struct rte_flow *flow)
{
uint8_t *dst;
if (parser->drop)
return;
dst = flow->rule.result;
copy_data_bits(dst,
1,
IPN3KE_FLOW_RESULT_ACL_OFFSET,
IPN3KE_FLOW_RESULT_ACL_BITS);
copy_data_bits(dst,
parser->mark_id,
IPN3KE_FLOW_RESULT_UID_OFFSET,
IPN3KE_FLOW_RESULT_UID_BITS);
}
#define MHL_COMMAND_TIME_COUNT 0xFFFF
#define MHL_COMMAND_TIME_INTERVAL_US 10
static int
ipn3ke_flow_hw_update(struct ipn3ke_hw *hw,
struct rte_flow *flow, uint32_t is_add)
{
uint32_t *pdata = NULL;
uint32_t data;
uint32_t time_out = MHL_COMMAND_TIME_COUNT;
uint32_t i;
IPN3KE_AFU_PMD_DEBUG("IPN3KE flow dump start\n");
pdata = (uint32_t *)flow->rule.key;
IPN3KE_AFU_PMD_DEBUG(" - key :");
for (i = 0; i < RTE_DIM(flow->rule.key); i++)
IPN3KE_AFU_PMD_DEBUG(" %02x", flow->rule.key[i]);
for (i = 0; i < 4; i++)
IPN3KE_AFU_PMD_DEBUG(" %02x", ipn3ke_swap32(pdata[3 - i]));
IPN3KE_AFU_PMD_DEBUG("\n");
pdata = (uint32_t *)flow->rule.result;
IPN3KE_AFU_PMD_DEBUG(" - result:");
for (i = 0; i < RTE_DIM(flow->rule.result); i++)
IPN3KE_AFU_PMD_DEBUG(" %02x", flow->rule.result[i]);
for (i = 0; i < 1; i++)
IPN3KE_AFU_PMD_DEBUG(" %02x", pdata[i]);
IPN3KE_AFU_PMD_DEBUG("IPN3KE flow dump end\n");
pdata = (uint32_t *)flow->rule.key;
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_KEY_0,
0,
ipn3ke_swap32(pdata[3]),
IPN3KE_CLF_MHL_KEY_MASK);
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_KEY_1,
0,
ipn3ke_swap32(pdata[2]),
IPN3KE_CLF_MHL_KEY_MASK);
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_KEY_2,
0,
ipn3ke_swap32(pdata[1]),
IPN3KE_CLF_MHL_KEY_MASK);
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_KEY_3,
0,
ipn3ke_swap32(pdata[0]),
IPN3KE_CLF_MHL_KEY_MASK);
pdata = (uint32_t *)flow->rule.result;
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_RES,
0,
ipn3ke_swap32(pdata[0]),
IPN3KE_CLF_MHL_RES_MASK);
/* insert/delete the key and result */
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_MHL_MGMT_CTRL,
0,
0x80000000);
time_out = MHL_COMMAND_TIME_COUNT;
while (IPN3KE_BIT_ISSET(data, IPN3KE_CLF_MHL_MGMT_CTRL_BIT_BUSY) &&
(time_out > 0)) {
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_MHL_MGMT_CTRL,
0,
0x80000000);
time_out--;
rte_delay_us(MHL_COMMAND_TIME_INTERVAL_US);
}
if (!time_out)
return -1;
if (is_add)
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_MGMT_CTRL,
0,
IPN3KE_CLF_MHL_MGMT_CTRL_INSERT,
0x3);
else
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_MGMT_CTRL,
0,
IPN3KE_CLF_MHL_MGMT_CTRL_DELETE,
0x3);
return 0;
}
static int
ipn3ke_flow_hw_flush(struct ipn3ke_hw *hw)
{
uint32_t data;
uint32_t time_out = MHL_COMMAND_TIME_COUNT;
/* flush the MHL lookup table */
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_MHL_MGMT_CTRL,
0,
0x80000000);
time_out = MHL_COMMAND_TIME_COUNT;
while (IPN3KE_BIT_ISSET(data, IPN3KE_CLF_MHL_MGMT_CTRL_BIT_BUSY) &&
(time_out > 0)) {
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_MHL_MGMT_CTRL,
0,
0x80000000);
time_out--;
rte_delay_us(MHL_COMMAND_TIME_INTERVAL_US);
}
if (!time_out)
return -1;
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_MGMT_CTRL,
0,
IPN3KE_CLF_MHL_MGMT_CTRL_FLUSH,
0x3);
return 0;
}
static void
ipn3ke_flow_convert_finalise(struct ipn3ke_hw *hw,
struct ipn3ke_flow_parse *parser, struct rte_flow *flow)
{
ipn3ke_flow_key_generation(parser, flow);
ipn3ke_flow_result_generation(parser, flow);
ipn3ke_flow_hw_update(hw, flow, 1);
}
static int
ipn3ke_flow_convert(const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[], struct rte_flow_error *error,
struct ipn3ke_flow_parse *parser)
{
int ret;
ret = ipn3ke_flow_convert_attributes(attr, error);
if (ret)
return ret;
ret = ipn3ke_flow_convert_actions(actions, error, parser);
if (ret)
return ret;
ret = ipn3ke_flow_convert_items(items, error, parser);
if (ret)
return ret;
return 0;
}
static int
ipn3ke_flow_validate(__rte_unused struct rte_eth_dev *dev,
const struct rte_flow_attr *attr, const struct rte_flow_item pattern[],
const struct rte_flow_action actions[], struct rte_flow_error *error)
{
struct ipn3ke_flow_parse parser = {0};
return ipn3ke_flow_convert(attr, pattern, actions, error, &parser);
}
static struct rte_flow *
ipn3ke_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr, const struct rte_flow_item pattern[],
const struct rte_flow_action actions[], struct rte_flow_error *error)
{
struct ipn3ke_hw *hw = IPN3KE_DEV_PRIVATE_TO_HW(dev);
struct ipn3ke_flow_parse parser = {0};
struct rte_flow *flow;
int ret;
if (hw->flow_num_entries == hw->flow_max_entries) {
rte_flow_error_set(error,
ENOBUFS,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"The flow table is full.");
return NULL;
}
ret = ipn3ke_flow_convert(attr, pattern, actions, error, &parser);
if (ret < 0) {
rte_flow_error_set(error,
-ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"Failed to create flow.");
return NULL;
}
flow = rte_zmalloc("ipn3ke_flow", sizeof(struct rte_flow), 0);
if (!flow) {
rte_flow_error_set(error,
ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"Failed to allocate memory");
return flow;
}
ipn3ke_flow_convert_finalise(hw, &parser, flow);
TAILQ_INSERT_TAIL(&hw->flow_list, flow, next);
return flow;
}
static int
ipn3ke_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow, struct rte_flow_error *error)
{
struct ipn3ke_hw *hw = IPN3KE_DEV_PRIVATE_TO_HW(dev);
int ret = 0;
ret = ipn3ke_flow_hw_update(hw, flow, 0);
if (!ret) {
TAILQ_REMOVE(&hw->flow_list, flow, next);
rte_free(flow);
} else {
rte_flow_error_set(error,
-ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"Failed to destroy flow.");
}
return ret;
}
static int
ipn3ke_flow_flush(struct rte_eth_dev *dev,
__rte_unused struct rte_flow_error *error)
{
struct ipn3ke_hw *hw = IPN3KE_DEV_PRIVATE_TO_HW(dev);
struct rte_flow *flow, *temp;
RTE_TAILQ_FOREACH_SAFE(flow, &hw->flow_list, next, temp) {
TAILQ_REMOVE(&hw->flow_list, flow, next);
rte_free(flow);
}
return ipn3ke_flow_hw_flush(hw);
}
int ipn3ke_flow_init(void *dev)
{
struct ipn3ke_hw *hw = (struct ipn3ke_hw *)dev;
uint32_t data;
/* disable rx classifier bypass */
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_RX_TEST,
0, 0, 0x1);
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_RX_TEST,
0,
0x1);
IPN3KE_AFU_PMD_DEBUG("IPN3KE_CLF_RX_TEST: %x\n", data);
/* configure base mac address */
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_BASE_DST_MAC_ADDR_HI,
0,
0x2457,
0xFFFF);
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_BASE_DST_MAC_ADDR_HI,
0,
0xFFFF);
IPN3KE_AFU_PMD_DEBUG("IPN3KE_CLF_BASE_DST_MAC_ADDR_HI: %x\n", data);
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_BASE_DST_MAC_ADDR_LOW,
0,
0x9bdf1000,
0xFFFFFFFF);
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_BASE_DST_MAC_ADDR_LOW,
0,
0xFFFFFFFF);
IPN3KE_AFU_PMD_DEBUG("IPN3KE_CLF_BASE_DST_MAC_ADDR_LOW: %x\n", data);
/* configure hash lookup rules enable */
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_LKUP_ENABLE,
0,
0xFD,
0xFF);
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_LKUP_ENABLE,
0,
0xFF);
IPN3KE_AFU_PMD_DEBUG("IPN3KE_CLF_LKUP_ENABLE: %x\n", data);
/* configure rx parse config, settings associated with VxLAN */
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_RX_PARSE_CFG,
0,
0x212b5,
0x3FFFF);
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_RX_PARSE_CFG,
0,
0x3FFFF);
IPN3KE_AFU_PMD_DEBUG("IPN3KE_CLF_RX_PARSE_CFG: %x\n", data);
/* configure QinQ S-Tag */
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_QINQ_STAG,
0,
0x88a8,
0xFFFF);
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_QINQ_STAG,
0,
0xFFFF);
IPN3KE_AFU_PMD_DEBUG("IPN3KE_CLF_QINQ_STAG: %x\n", data);
/* configure gen ctrl */
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_GEN_CTRL,
0,
0x3,
0x3);
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_MHL_GEN_CTRL,
0,
0x1F);
IPN3KE_AFU_PMD_DEBUG("IPN3KE_CLF_MHL_GEN_CTRL: %x\n", data);
/* clear monitoring register */
IPN3KE_MASK_WRITE_REG(hw,
IPN3KE_CLF_MHL_MON_0,
0,
0xFFFFFFFF,
0xFFFFFFFF);
data = 0;
data = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_MHL_MON_0,
0,
0xFFFFFFFF);
IPN3KE_AFU_PMD_DEBUG("IPN3KE_CLF_MHL_MON_0: %x\n", data);
ipn3ke_flow_hw_flush(hw);
TAILQ_INIT(&hw->flow_list);
hw->flow_max_entries = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CLF_EM_NUM,
0,
0xFFFFFFFF);
IPN3KE_AFU_PMD_DEBUG("IPN3KE_CLF_EN_NUM: %x\n", hw->flow_max_entries);
hw->flow_num_entries = 0;
return 0;
}
const struct rte_flow_ops ipn3ke_flow_ops = {
.validate = ipn3ke_flow_validate,
.create = ipn3ke_flow_create,
.destroy = ipn3ke_flow_destroy,
.flush = ipn3ke_flow_flush,
};