numam-dpdk/drivers/bus/dpaa/dpaa_bus.c
Hemant Agrawal 97f4844c3f bus/dpaa: reduce thread ID syscall usage
Reuse DPDK rte_gettid instead of syscall.
It will help to reduce the dpaa portal allocation time.

Signed-off-by: Hemant Agrawal <hemant.agrawal@nxp.com>
2021-07-23 19:42:25 +02:00

780 lines
18 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright 2017-2020 NXP
*
*/
/* System headers */
#include <stdio.h>
#include <inttypes.h>
#include <unistd.h>
#include <limits.h>
#include <sched.h>
#include <signal.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/eventfd.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_alarm.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>
#include <rte_ring.h>
#include <rte_bus.h>
#include <rte_mbuf_pool_ops.h>
#include <rte_mbuf_dyn.h>
#include <dpaa_of.h>
#include <rte_dpaa_bus.h>
#include <rte_dpaa_logs.h>
#include <dpaax_iova_table.h>
#include <fsl_usd.h>
#include <fsl_qman.h>
#include <fsl_bman.h>
#include <netcfg.h>
static struct rte_dpaa_bus rte_dpaa_bus;
struct netcfg_info *dpaa_netcfg;
/* define a variable to hold the portal_key, once created.*/
static pthread_key_t dpaa_portal_key;
unsigned int dpaa_svr_family;
#define FSL_DPAA_BUS_NAME dpaa_bus
RTE_DEFINE_PER_LCORE(struct dpaa_portal *, dpaa_io);
#define DPAA_SEQN_DYNFIELD_NAME "dpaa_seqn_dynfield"
int dpaa_seqn_dynfield_offset = -1;
struct fm_eth_port_cfg *
dpaa_get_eth_port_cfg(int dev_id)
{
return &dpaa_netcfg->port_cfg[dev_id];
}
static int
compare_dpaa_devices(struct rte_dpaa_device *dev1,
struct rte_dpaa_device *dev2)
{
int comp = 0;
/* Segragating ETH from SEC devices */
if (dev1->device_type > dev2->device_type)
comp = 1;
else if (dev1->device_type < dev2->device_type)
comp = -1;
else
comp = 0;
if ((comp != 0) || (dev1->device_type != FSL_DPAA_ETH))
return comp;
if (dev1->id.fman_id > dev2->id.fman_id) {
comp = 1;
} else if (dev1->id.fman_id < dev2->id.fman_id) {
comp = -1;
} else {
/* FMAN ids match, check for mac_id */
if (dev1->id.mac_id > dev2->id.mac_id)
comp = 1;
else if (dev1->id.mac_id < dev2->id.mac_id)
comp = -1;
else
comp = 0;
}
return comp;
}
static inline void
dpaa_add_to_device_list(struct rte_dpaa_device *newdev)
{
int comp, inserted = 0;
struct rte_dpaa_device *dev = NULL;
struct rte_dpaa_device *tdev = NULL;
TAILQ_FOREACH_SAFE(dev, &rte_dpaa_bus.device_list, next, tdev) {
comp = compare_dpaa_devices(newdev, dev);
if (comp < 0) {
TAILQ_INSERT_BEFORE(dev, newdev, next);
inserted = 1;
break;
}
}
if (!inserted)
TAILQ_INSERT_TAIL(&rte_dpaa_bus.device_list, newdev, next);
}
/*
* Reads the SEC device from DTS
* Returns -1 if SEC devices not available, 0 otherwise
*/
static inline int
dpaa_sec_available(void)
{
const struct device_node *caam_node;
for_each_compatible_node(caam_node, NULL, "fsl,sec-v4.0") {
return 0;
}
return -1;
}
static void dpaa_clean_device_list(void);
static struct rte_devargs *
dpaa_devargs_lookup(struct rte_dpaa_device *dev)
{
struct rte_devargs *devargs;
char dev_name[32];
RTE_EAL_DEVARGS_FOREACH("dpaa_bus", devargs) {
devargs->bus->parse(devargs->name, &dev_name);
if (strcmp(dev_name, dev->device.name) == 0) {
DPAA_BUS_INFO("**Devargs matched %s", dev_name);
return devargs;
}
}
return NULL;
}
static int
dpaa_create_device_list(void)
{
int i;
int ret;
struct rte_dpaa_device *dev;
struct fm_eth_port_cfg *cfg;
struct fman_if *fman_intf;
/* Creating Ethernet Devices */
for (i = 0; i < dpaa_netcfg->num_ethports; i++) {
dev = calloc(1, sizeof(struct rte_dpaa_device));
if (!dev) {
DPAA_BUS_LOG(ERR, "Failed to allocate ETH devices");
ret = -ENOMEM;
goto cleanup;
}
dev->device.bus = &rte_dpaa_bus.bus;
cfg = &dpaa_netcfg->port_cfg[i];
fman_intf = cfg->fman_if;
/* Device identifiers */
dev->id.fman_id = fman_intf->fman_idx + 1;
dev->id.mac_id = fman_intf->mac_idx;
dev->device_type = FSL_DPAA_ETH;
dev->id.dev_id = i;
/* Create device name */
memset(dev->name, 0, RTE_ETH_NAME_MAX_LEN);
sprintf(dev->name, "fm%d-mac%d", (fman_intf->fman_idx + 1),
fman_intf->mac_idx);
DPAA_BUS_LOG(INFO, "%s netdev added", dev->name);
dev->device.name = dev->name;
dev->device.devargs = dpaa_devargs_lookup(dev);
dpaa_add_to_device_list(dev);
}
rte_dpaa_bus.device_count = i;
/* Unlike case of ETH, RTE_LIBRTE_DPAA_MAX_CRYPTODEV SEC devices are
* constantly created only if "sec" property is found in the device
* tree. Logically there is no limit for number of devices (QI
* interfaces) that can be created.
*/
if (dpaa_sec_available()) {
DPAA_BUS_LOG(INFO, "DPAA SEC devices are not available");
return 0;
}
/* Creating SEC Devices */
for (i = 0; i < RTE_LIBRTE_DPAA_MAX_CRYPTODEV; i++) {
dev = calloc(1, sizeof(struct rte_dpaa_device));
if (!dev) {
DPAA_BUS_LOG(ERR, "Failed to allocate SEC devices");
ret = -1;
goto cleanup;
}
dev->device_type = FSL_DPAA_CRYPTO;
dev->id.dev_id = rte_dpaa_bus.device_count + i;
/* Even though RTE_CRYPTODEV_NAME_MAX_LEN is valid length of
* crypto PMD, using RTE_ETH_NAME_MAX_LEN as that is the size
* allocated for dev->name/
*/
memset(dev->name, 0, RTE_ETH_NAME_MAX_LEN);
sprintf(dev->name, "dpaa_sec-%d", i+1);
DPAA_BUS_LOG(INFO, "%s cryptodev added", dev->name);
dev->device.name = dev->name;
dev->device.devargs = dpaa_devargs_lookup(dev);
dpaa_add_to_device_list(dev);
}
rte_dpaa_bus.device_count += i;
return 0;
cleanup:
dpaa_clean_device_list();
return ret;
}
static void
dpaa_clean_device_list(void)
{
struct rte_dpaa_device *dev = NULL;
struct rte_dpaa_device *tdev = NULL;
TAILQ_FOREACH_SAFE(dev, &rte_dpaa_bus.device_list, next, tdev) {
TAILQ_REMOVE(&rte_dpaa_bus.device_list, dev, next);
free(dev);
dev = NULL;
}
}
int rte_dpaa_portal_init(void *arg)
{
static const struct rte_mbuf_dynfield dpaa_seqn_dynfield_desc = {
.name = DPAA_SEQN_DYNFIELD_NAME,
.size = sizeof(dpaa_seqn_t),
.align = __alignof__(dpaa_seqn_t),
};
unsigned int cpu, lcore = rte_lcore_id();
int ret;
BUS_INIT_FUNC_TRACE();
if ((size_t)arg == 1 || lcore == LCORE_ID_ANY)
lcore = rte_get_main_lcore();
else
if (lcore >= RTE_MAX_LCORE)
return -1;
cpu = rte_lcore_to_cpu_id(lcore);
dpaa_seqn_dynfield_offset =
rte_mbuf_dynfield_register(&dpaa_seqn_dynfield_desc);
if (dpaa_seqn_dynfield_offset < 0) {
DPAA_BUS_LOG(ERR, "Failed to register mbuf field for dpaa sequence number\n");
return -rte_errno;
}
/* Initialise bman thread portals */
ret = bman_thread_init();
if (ret) {
DPAA_BUS_LOG(ERR, "bman_thread_init failed on core %u"
" (lcore=%u) with ret: %d", cpu, lcore, ret);
return ret;
}
DPAA_BUS_LOG(DEBUG, "BMAN thread initialized - CPU=%d lcore=%d",
cpu, lcore);
/* Initialise qman thread portals */
ret = qman_thread_init();
if (ret) {
DPAA_BUS_LOG(ERR, "qman_thread_init failed on core %u"
" (lcore=%u) with ret: %d", cpu, lcore, ret);
bman_thread_finish();
return ret;
}
DPAA_BUS_LOG(DEBUG, "QMAN thread initialized - CPU=%d lcore=%d",
cpu, lcore);
DPAA_PER_LCORE_PORTAL = rte_malloc(NULL, sizeof(struct dpaa_portal),
RTE_CACHE_LINE_SIZE);
if (!DPAA_PER_LCORE_PORTAL) {
DPAA_BUS_LOG(ERR, "Unable to allocate memory");
bman_thread_finish();
qman_thread_finish();
return -ENOMEM;
}
DPAA_PER_LCORE_PORTAL->qman_idx = qman_get_portal_index();
DPAA_PER_LCORE_PORTAL->bman_idx = bman_get_portal_index();
DPAA_PER_LCORE_PORTAL->tid = rte_gettid();
ret = pthread_setspecific(dpaa_portal_key,
(void *)DPAA_PER_LCORE_PORTAL);
if (ret) {
DPAA_BUS_LOG(ERR, "pthread_setspecific failed on core %u"
" (lcore=%u) with ret: %d", cpu, lcore, ret);
dpaa_portal_finish(NULL);
return ret;
}
DPAA_BUS_LOG(DEBUG, "QMAN thread initialized");
return 0;
}
int
rte_dpaa_portal_fq_init(void *arg, struct qman_fq *fq)
{
/* Affine above created portal with channel*/
u32 sdqcr;
int ret;
if (unlikely(!DPAA_PER_LCORE_PORTAL)) {
ret = rte_dpaa_portal_init(arg);
if (ret < 0) {
DPAA_BUS_LOG(ERR, "portal initialization failure");
return ret;
}
}
/* Initialise qman specific portals */
ret = fsl_qman_fq_portal_init(fq->qp);
if (ret) {
DPAA_BUS_LOG(ERR, "Unable to init fq portal");
return -1;
}
sdqcr = QM_SDQCR_CHANNELS_POOL_CONV(fq->ch_id);
qman_static_dequeue_add(sdqcr, fq->qp);
return 0;
}
int rte_dpaa_portal_fq_close(struct qman_fq *fq)
{
return fsl_qman_fq_portal_destroy(fq->qp);
}
void
dpaa_portal_finish(void *arg)
{
struct dpaa_portal *dpaa_io_portal = (struct dpaa_portal *)arg;
if (!dpaa_io_portal) {
DPAA_BUS_LOG(DEBUG, "Portal already cleaned");
return;
}
bman_thread_finish();
qman_thread_finish();
pthread_setspecific(dpaa_portal_key, NULL);
rte_free(dpaa_io_portal);
dpaa_io_portal = NULL;
DPAA_PER_LCORE_PORTAL = NULL;
}
static int
rte_dpaa_bus_parse(const char *name, void *out)
{
unsigned int i, j;
size_t delta;
/* There are two ways of passing device name, with and without
* separator. "dpaa_bus:fm1-mac3" with separator, and "fm1-mac3"
* without separator. Both need to be handled.
* It is also possible that "name=fm1-mac3" is passed along.
*/
DPAA_BUS_DEBUG("Parse device name (%s)", name);
delta = 0;
if (strncmp(name, "dpaa_bus:", 9) == 0) {
delta = 9;
} else if (strncmp(name, "name=", 5) == 0) {
delta = 5;
}
if (sscanf(&name[delta], "fm%u-mac%u", &i, &j) != 2 ||
i >= 2 || j >= 16) {
return -EINVAL;
}
if (out != NULL) {
char *out_name = out;
const size_t max_name_len = sizeof("fm.-mac..") - 1;
/* Do not check for truncation, either name ends with
* '\0' or the device name is followed by parameters and there
* will be a ',' instead. Not copying past this comma is not an
* error.
*/
strlcpy(out_name, &name[delta], max_name_len + 1);
/* Second digit of mac%u could instead be ','. */
if ((strlen(out_name) == max_name_len) &&
out_name[max_name_len] == ',')
out_name[max_name_len] = '\0';
}
return 0;
}
#define DPAA_DEV_PATH1 "/sys/devices/platform/soc/soc:fsl,dpaa"
#define DPAA_DEV_PATH2 "/sys/devices/platform/fsl,dpaa"
static int
rte_dpaa_bus_scan(void)
{
int ret;
BUS_INIT_FUNC_TRACE();
if ((access(DPAA_DEV_PATH1, F_OK) != 0) &&
(access(DPAA_DEV_PATH2, F_OK) != 0)) {
RTE_LOG(DEBUG, EAL, "DPAA Bus not present. Skipping.\n");
return 0;
}
if (rte_dpaa_bus.detected)
return 0;
rte_dpaa_bus.detected = 1;
/* create the key, supplying a function that'll be invoked
* when a portal affined thread will be deleted.
*/
ret = pthread_key_create(&dpaa_portal_key, dpaa_portal_finish);
if (ret) {
DPAA_BUS_LOG(DEBUG, "Unable to create pthread key. (%d)", ret);
dpaa_clean_device_list();
return ret;
}
return 0;
}
/* register a dpaa bus based dpaa driver */
void
rte_dpaa_driver_register(struct rte_dpaa_driver *driver)
{
RTE_VERIFY(driver);
BUS_INIT_FUNC_TRACE();
TAILQ_INSERT_TAIL(&rte_dpaa_bus.driver_list, driver, next);
/* Update Bus references */
driver->dpaa_bus = &rte_dpaa_bus;
}
/* un-register a dpaa bus based dpaa driver */
void
rte_dpaa_driver_unregister(struct rte_dpaa_driver *driver)
{
struct rte_dpaa_bus *dpaa_bus;
BUS_INIT_FUNC_TRACE();
dpaa_bus = driver->dpaa_bus;
TAILQ_REMOVE(&dpaa_bus->driver_list, driver, next);
/* Update Bus references */
driver->dpaa_bus = NULL;
}
static int
rte_dpaa_device_match(struct rte_dpaa_driver *drv,
struct rte_dpaa_device *dev)
{
if (!drv || !dev) {
DPAA_BUS_DEBUG("Invalid drv or dev received.");
return -1;
}
if (drv->drv_type == dev->device_type)
return 0;
return -1;
}
static int
rte_dpaa_bus_dev_build(void)
{
int ret;
/* Load the device-tree driver */
ret = of_init();
if (ret) {
DPAA_BUS_LOG(ERR, "of_init failed with ret: %d", ret);
return -1;
}
/* Get the interface configurations from device-tree */
dpaa_netcfg = netcfg_acquire();
if (!dpaa_netcfg) {
DPAA_BUS_LOG(ERR,
"netcfg failed: /dev/fsl_usdpaa device not available");
DPAA_BUS_WARN(
"Check if you are using USDPAA based device tree");
return -EINVAL;
}
RTE_LOG(NOTICE, EAL, "DPAA Bus Detected\n");
if (!dpaa_netcfg->num_ethports) {
DPAA_BUS_LOG(INFO, "NO DPDK mapped net interfaces available");
/* This is not an error */
}
#ifdef RTE_LIBRTE_DPAA_DEBUG_DRIVER
dump_netcfg(dpaa_netcfg);
#endif
DPAA_BUS_LOG(DEBUG, "Number of ethernet devices = %d",
dpaa_netcfg->num_ethports);
ret = dpaa_create_device_list();
if (ret) {
DPAA_BUS_LOG(ERR, "Unable to create device list. (%d)", ret);
return ret;
}
return 0;
}
static int rte_dpaa_setup_intr(struct rte_intr_handle *intr_handle)
{
int fd;
fd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
if (fd < 0) {
DPAA_BUS_ERR("Cannot set up eventfd, error %i (%s)",
errno, strerror(errno));
return errno;
}
intr_handle->fd = fd;
intr_handle->type = RTE_INTR_HANDLE_EXT;
return 0;
}
static int
rte_dpaa_bus_probe(void)
{
int ret = -1;
struct rte_dpaa_device *dev;
struct rte_dpaa_driver *drv;
FILE *svr_file = NULL;
unsigned int svr_ver;
int probe_all = rte_dpaa_bus.bus.conf.scan_mode != RTE_BUS_SCAN_ALLOWLIST;
static int process_once;
/* If DPAA bus is not present nothing needs to be done */
if (!rte_dpaa_bus.detected)
return 0;
/* Device list creation is only done once */
if (!process_once) {
rte_dpaa_bus_dev_build();
/* One time load of Qman/Bman drivers */
ret = qman_global_init();
if (ret) {
DPAA_BUS_ERR("QMAN initialization failed: %d",
ret);
return ret;
}
ret = bman_global_init();
if (ret) {
DPAA_BUS_ERR("BMAN initialization failed: %d",
ret);
return ret;
}
}
process_once = 1;
/* If no device present on DPAA bus nothing needs to be done */
if (TAILQ_EMPTY(&rte_dpaa_bus.device_list))
return 0;
svr_file = fopen(DPAA_SOC_ID_FILE, "r");
if (svr_file) {
if (fscanf(svr_file, "svr:%x", &svr_ver) > 0)
dpaa_svr_family = svr_ver & SVR_MASK;
fclose(svr_file);
}
TAILQ_FOREACH(dev, &rte_dpaa_bus.device_list, next) {
if (dev->device_type == FSL_DPAA_ETH) {
ret = rte_dpaa_setup_intr(&dev->intr_handle);
if (ret)
DPAA_BUS_ERR("Error setting up interrupt.\n");
}
}
/* And initialize the PA->VA translation table */
dpaax_iova_table_populate();
/* For each registered driver, and device, call the driver->probe */
TAILQ_FOREACH(dev, &rte_dpaa_bus.device_list, next) {
TAILQ_FOREACH(drv, &rte_dpaa_bus.driver_list, next) {
ret = rte_dpaa_device_match(drv, dev);
if (ret)
continue;
if (rte_dev_is_probed(&dev->device))
continue;
if (!drv->probe ||
(dev->device.devargs &&
dev->device.devargs->policy == RTE_DEV_BLOCKED))
continue;
if (probe_all ||
(dev->device.devargs &&
dev->device.devargs->policy == RTE_DEV_ALLOWED)) {
ret = drv->probe(drv, dev);
if (ret) {
DPAA_BUS_ERR("unable to probe:%s",
dev->name);
} else {
dev->driver = drv;
dev->device.driver = &drv->driver;
}
}
break;
}
}
/* Register DPAA mempool ops only if any DPAA device has
* been detected.
*/
rte_mbuf_set_platform_mempool_ops(DPAA_MEMPOOL_OPS_NAME);
return 0;
}
static struct rte_device *
rte_dpaa_find_device(const struct rte_device *start, rte_dev_cmp_t cmp,
const void *data)
{
struct rte_dpaa_device *dev;
const struct rte_dpaa_device *dstart;
/* find_device is called with 'data' as an opaque object - just call
* cmp with this and each device object on bus.
*/
if (start != NULL) {
dstart = RTE_DEV_TO_DPAA_CONST(start);
dev = TAILQ_NEXT(dstart, next);
} else {
dev = TAILQ_FIRST(&rte_dpaa_bus.device_list);
}
while (dev != NULL) {
if (cmp(&dev->device, data) == 0) {
DPAA_BUS_DEBUG("Found dev=(%s)\n", dev->device.name);
return &dev->device;
}
dev = TAILQ_NEXT(dev, next);
}
DPAA_BUS_DEBUG("Unable to find any device\n");
return NULL;
}
/*
* Get iommu class of DPAA2 devices on the bus.
*/
static enum rte_iova_mode
rte_dpaa_get_iommu_class(void)
{
if ((access(DPAA_DEV_PATH1, F_OK) != 0) &&
(access(DPAA_DEV_PATH2, F_OK) != 0)) {
return RTE_IOVA_DC;
}
return RTE_IOVA_PA;
}
static int
dpaa_bus_plug(struct rte_device *dev __rte_unused)
{
/* No operation is performed while plugging the device */
return 0;
}
static int
dpaa_bus_unplug(struct rte_device *dev __rte_unused)
{
/* No operation is performed while unplugging the device */
return 0;
}
static void *
dpaa_bus_dev_iterate(const void *start, const char *str,
const struct rte_dev_iterator *it __rte_unused)
{
const struct rte_dpaa_device *dstart;
struct rte_dpaa_device *dev;
char *dup, *dev_name = NULL;
if (str == NULL) {
DPAA_BUS_DEBUG("No device string");
return NULL;
}
/* Expectation is that device would be name=device_name */
if (strncmp(str, "name=", 5) != 0) {
DPAA_BUS_DEBUG("Invalid device string (%s)\n", str);
return NULL;
}
/* Now that name=device_name format is available, split */
dup = strdup(str);
dev_name = dup + strlen("name=");
if (start != NULL) {
dstart = RTE_DEV_TO_DPAA_CONST(start);
dev = TAILQ_NEXT(dstart, next);
} else {
dev = TAILQ_FIRST(&rte_dpaa_bus.device_list);
}
while (dev != NULL) {
if (strcmp(dev->device.name, dev_name) == 0) {
free(dup);
return &dev->device;
}
dev = TAILQ_NEXT(dev, next);
}
free(dup);
return NULL;
}
static struct rte_dpaa_bus rte_dpaa_bus = {
.bus = {
.scan = rte_dpaa_bus_scan,
.probe = rte_dpaa_bus_probe,
.parse = rte_dpaa_bus_parse,
.find_device = rte_dpaa_find_device,
.get_iommu_class = rte_dpaa_get_iommu_class,
.plug = dpaa_bus_plug,
.unplug = dpaa_bus_unplug,
.dev_iterate = dpaa_bus_dev_iterate,
},
.device_list = TAILQ_HEAD_INITIALIZER(rte_dpaa_bus.device_list),
.driver_list = TAILQ_HEAD_INITIALIZER(rte_dpaa_bus.driver_list),
.device_count = 0,
};
RTE_REGISTER_BUS(FSL_DPAA_BUS_NAME, rte_dpaa_bus.bus);
RTE_LOG_REGISTER_DEFAULT(dpaa_logtype_bus, NOTICE);