numam-dpdk/lib/distributor/rte_distributor.c
David Hunt de8606bf73 distributor: fix 128-bit write alignment
When the distributor sample app is built as a 32-bit app,
the data buffer passed to find_match_vec can be unaligned,
causing a segmentation fault due to writing a 128-bit value
using _mm_store_si128().  128-bit align the data being
passed in so this does not happen.

Fixes: 775003ad2f96 ("distributor: add new burst-capable library")
Cc: stable@dpdk.org

Signed-off-by: David Hunt <david.hunt@intel.com>
2021-07-20 14:32:08 +02:00

790 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdio.h>
#include <sys/queue.h>
#include <string.h>
#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_cycles.h>
#include <rte_memzone.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_eal_memconfig.h>
#include <rte_pause.h>
#include <rte_tailq.h>
#include <rte_vect.h>
#include "rte_distributor.h"
#include "rte_distributor_single.h"
#include "distributor_private.h"
TAILQ_HEAD(rte_dist_burst_list, rte_distributor);
static struct rte_tailq_elem rte_dist_burst_tailq = {
.name = "RTE_DIST_BURST",
};
EAL_REGISTER_TAILQ(rte_dist_burst_tailq)
/**** APIs called by workers ****/
/**** Burst Packet APIs called by workers ****/
void
rte_distributor_request_pkt(struct rte_distributor *d,
unsigned int worker_id, struct rte_mbuf **oldpkt,
unsigned int count)
{
struct rte_distributor_buffer *buf = &(d->bufs[worker_id]);
unsigned int i;
volatile int64_t *retptr64;
if (unlikely(d->alg_type == RTE_DIST_ALG_SINGLE)) {
rte_distributor_request_pkt_single(d->d_single,
worker_id, count ? oldpkt[0] : NULL);
return;
}
retptr64 = &(buf->retptr64[0]);
/* Spin while handshake bits are set (scheduler clears it).
* Sync with worker on GET_BUF flag.
*/
while (unlikely(__atomic_load_n(retptr64, __ATOMIC_ACQUIRE)
& (RTE_DISTRIB_GET_BUF | RTE_DISTRIB_RETURN_BUF))) {
rte_pause();
uint64_t t = rte_rdtsc()+100;
while (rte_rdtsc() < t)
rte_pause();
}
/*
* OK, if we've got here, then the scheduler has just cleared the
* handshake bits. Populate the retptrs with returning packets.
*/
for (i = count; i < RTE_DIST_BURST_SIZE; i++)
buf->retptr64[i] = 0;
/* Set VALID_BUF bit for each packet returned */
for (i = count; i-- > 0; )
buf->retptr64[i] =
(((int64_t)(uintptr_t)(oldpkt[i])) <<
RTE_DISTRIB_FLAG_BITS) | RTE_DISTRIB_VALID_BUF;
/*
* Finally, set the GET_BUF to signal to distributor that cache
* line is ready for processing
* Sync with distributor to release retptrs
*/
__atomic_store_n(retptr64, *retptr64 | RTE_DISTRIB_GET_BUF,
__ATOMIC_RELEASE);
}
int
rte_distributor_poll_pkt(struct rte_distributor *d,
unsigned int worker_id, struct rte_mbuf **pkts)
{
struct rte_distributor_buffer *buf = &d->bufs[worker_id];
uint64_t ret;
int count = 0;
unsigned int i;
if (unlikely(d->alg_type == RTE_DIST_ALG_SINGLE)) {
pkts[0] = rte_distributor_poll_pkt_single(d->d_single,
worker_id);
return (pkts[0]) ? 1 : 0;
}
/* If any of below bits is set, return.
* GET_BUF is set when distributor hasn't sent any packets yet
* RETURN_BUF is set when distributor must retrieve in-flight packets
* Sync with distributor to acquire bufptrs
*/
if (__atomic_load_n(&(buf->bufptr64[0]), __ATOMIC_ACQUIRE)
& (RTE_DISTRIB_GET_BUF | RTE_DISTRIB_RETURN_BUF))
return -1;
/* since bufptr64 is signed, this should be an arithmetic shift */
for (i = 0; i < RTE_DIST_BURST_SIZE; i++) {
if (likely(buf->bufptr64[i] & RTE_DISTRIB_VALID_BUF)) {
ret = buf->bufptr64[i] >> RTE_DISTRIB_FLAG_BITS;
pkts[count++] = (struct rte_mbuf *)((uintptr_t)(ret));
}
}
/*
* so now we've got the contents of the cacheline into an array of
* mbuf pointers, so toggle the bit so scheduler can start working
* on the next cacheline while we're working.
* Sync with distributor on GET_BUF flag. Release bufptrs.
*/
__atomic_store_n(&(buf->bufptr64[0]),
buf->bufptr64[0] | RTE_DISTRIB_GET_BUF, __ATOMIC_RELEASE);
return count;
}
int
rte_distributor_get_pkt(struct rte_distributor *d,
unsigned int worker_id, struct rte_mbuf **pkts,
struct rte_mbuf **oldpkt, unsigned int return_count)
{
int count;
if (unlikely(d->alg_type == RTE_DIST_ALG_SINGLE)) {
if (return_count <= 1) {
pkts[0] = rte_distributor_get_pkt_single(d->d_single,
worker_id, return_count ? oldpkt[0] : NULL);
return (pkts[0]) ? 1 : 0;
} else
return -EINVAL;
}
rte_distributor_request_pkt(d, worker_id, oldpkt, return_count);
count = rte_distributor_poll_pkt(d, worker_id, pkts);
while (count == -1) {
uint64_t t = rte_rdtsc() + 100;
while (rte_rdtsc() < t)
rte_pause();
count = rte_distributor_poll_pkt(d, worker_id, pkts);
}
return count;
}
int
rte_distributor_return_pkt(struct rte_distributor *d,
unsigned int worker_id, struct rte_mbuf **oldpkt, int num)
{
struct rte_distributor_buffer *buf = &d->bufs[worker_id];
unsigned int i;
if (unlikely(d->alg_type == RTE_DIST_ALG_SINGLE)) {
if (num == 1)
return rte_distributor_return_pkt_single(d->d_single,
worker_id, oldpkt[0]);
else if (num == 0)
return rte_distributor_return_pkt_single(d->d_single,
worker_id, NULL);
else
return -EINVAL;
}
/* Spin while handshake bits are set (scheduler clears it).
* Sync with worker on GET_BUF flag.
*/
while (unlikely(__atomic_load_n(&(buf->retptr64[0]), __ATOMIC_RELAXED)
& (RTE_DISTRIB_GET_BUF | RTE_DISTRIB_RETURN_BUF))) {
rte_pause();
uint64_t t = rte_rdtsc()+100;
while (rte_rdtsc() < t)
rte_pause();
}
/* Sync with distributor to acquire retptrs */
__atomic_thread_fence(__ATOMIC_ACQUIRE);
for (i = 0; i < RTE_DIST_BURST_SIZE; i++)
/* Switch off the return bit first */
buf->retptr64[i] = 0;
for (i = num; i-- > 0; )
buf->retptr64[i] = (((int64_t)(uintptr_t)oldpkt[i]) <<
RTE_DISTRIB_FLAG_BITS) | RTE_DISTRIB_VALID_BUF;
/* Use RETURN_BUF on bufptr64 to notify distributor that
* we won't read any mbufs from there even if GET_BUF is set.
* This allows distributor to retrieve in-flight already sent packets.
*/
__atomic_or_fetch(&(buf->bufptr64[0]), RTE_DISTRIB_RETURN_BUF,
__ATOMIC_ACQ_REL);
/* set the RETURN_BUF on retptr64 even if we got no returns.
* Sync with distributor on RETURN_BUF flag. Release retptrs.
* Notify distributor that we don't request more packets any more.
*/
__atomic_store_n(&(buf->retptr64[0]),
buf->retptr64[0] | RTE_DISTRIB_RETURN_BUF, __ATOMIC_RELEASE);
return 0;
}
/**** APIs called on distributor core ***/
/* stores a packet returned from a worker inside the returns array */
static inline void
store_return(uintptr_t oldbuf, struct rte_distributor *d,
unsigned int *ret_start, unsigned int *ret_count)
{
if (!oldbuf)
return;
/* store returns in a circular buffer */
d->returns.mbufs[(*ret_start + *ret_count) & RTE_DISTRIB_RETURNS_MASK]
= (void *)oldbuf;
*ret_start += (*ret_count == RTE_DISTRIB_RETURNS_MASK);
*ret_count += (*ret_count != RTE_DISTRIB_RETURNS_MASK);
}
/*
* Match then flow_ids (tags) of the incoming packets to the flow_ids
* of the inflight packets (both inflight on the workers and in each worker
* backlog). This will then allow us to pin those packets to the relevant
* workers to give us our atomic flow pinning.
*/
void
find_match_scalar(struct rte_distributor *d,
uint16_t *data_ptr,
uint16_t *output_ptr)
{
struct rte_distributor_backlog *bl;
uint16_t i, j, w;
/*
* Function overview:
* 1. Loop through all worker ID's
* 2. Compare the current inflights to the incoming tags
* 3. Compare the current backlog to the incoming tags
* 4. Add any matches to the output
*/
for (j = 0 ; j < RTE_DIST_BURST_SIZE; j++)
output_ptr[j] = 0;
for (i = 0; i < d->num_workers; i++) {
bl = &d->backlog[i];
for (j = 0; j < RTE_DIST_BURST_SIZE ; j++)
for (w = 0; w < RTE_DIST_BURST_SIZE; w++)
if (d->in_flight_tags[i][w] == data_ptr[j]) {
output_ptr[j] = i+1;
break;
}
for (j = 0; j < RTE_DIST_BURST_SIZE; j++)
for (w = 0; w < RTE_DIST_BURST_SIZE; w++)
if (bl->tags[w] == data_ptr[j]) {
output_ptr[j] = i+1;
break;
}
}
/*
* At this stage, the output contains 8 16-bit values, with
* each non-zero value containing the worker ID on which the
* corresponding flow is pinned to.
*/
}
/*
* When worker called rte_distributor_return_pkt()
* and passed RTE_DISTRIB_RETURN_BUF handshake through retptr64,
* distributor must retrieve both inflight and backlog packets assigned
* to the worker and reprocess them to another worker.
*/
static void
handle_worker_shutdown(struct rte_distributor *d, unsigned int wkr)
{
struct rte_distributor_buffer *buf = &(d->bufs[wkr]);
/* double BURST size for storing both inflights and backlog */
struct rte_mbuf *pkts[RTE_DIST_BURST_SIZE * 2];
unsigned int pkts_count = 0;
unsigned int i;
/* If GET_BUF is cleared there are in-flight packets sent
* to worker which does not require new packets.
* They must be retrieved and assigned to another worker.
*/
if (!(__atomic_load_n(&(buf->bufptr64[0]), __ATOMIC_ACQUIRE)
& RTE_DISTRIB_GET_BUF))
for (i = 0; i < RTE_DIST_BURST_SIZE; i++)
if (buf->bufptr64[i] & RTE_DISTRIB_VALID_BUF)
pkts[pkts_count++] = (void *)((uintptr_t)
(buf->bufptr64[i]
>> RTE_DISTRIB_FLAG_BITS));
/* Make following operations on handshake flags on bufptr64:
* - set GET_BUF to indicate that distributor can overwrite buffer
* with new packets if worker will make a new request.
* - clear RETURN_BUF to unlock reads on worker side.
*/
__atomic_store_n(&(buf->bufptr64[0]), RTE_DISTRIB_GET_BUF,
__ATOMIC_RELEASE);
/* Collect backlog packets from worker */
for (i = 0; i < d->backlog[wkr].count; i++)
pkts[pkts_count++] = (void *)((uintptr_t)
(d->backlog[wkr].pkts[i] >> RTE_DISTRIB_FLAG_BITS));
d->backlog[wkr].count = 0;
/* Clear both inflight and backlog tags */
for (i = 0; i < RTE_DIST_BURST_SIZE; i++) {
d->in_flight_tags[wkr][i] = 0;
d->backlog[wkr].tags[i] = 0;
}
/* Recursive call */
if (pkts_count > 0)
rte_distributor_process(d, pkts, pkts_count);
}
/*
* When the handshake bits indicate that there are packets coming
* back from the worker, this function is called to copy and store
* the valid returned pointers (store_return).
*/
static unsigned int
handle_returns(struct rte_distributor *d, unsigned int wkr)
{
struct rte_distributor_buffer *buf = &(d->bufs[wkr]);
uintptr_t oldbuf;
unsigned int ret_start = d->returns.start,
ret_count = d->returns.count;
unsigned int count = 0;
unsigned int i;
/* Sync on GET_BUF flag. Acquire retptrs. */
if (__atomic_load_n(&(buf->retptr64[0]), __ATOMIC_ACQUIRE)
& (RTE_DISTRIB_GET_BUF | RTE_DISTRIB_RETURN_BUF)) {
for (i = 0; i < RTE_DIST_BURST_SIZE; i++) {
if (buf->retptr64[i] & RTE_DISTRIB_VALID_BUF) {
oldbuf = ((uintptr_t)(buf->retptr64[i] >>
RTE_DISTRIB_FLAG_BITS));
/* store returns in a circular buffer */
store_return(oldbuf, d, &ret_start, &ret_count);
count++;
buf->retptr64[i] &= ~RTE_DISTRIB_VALID_BUF;
}
}
d->returns.start = ret_start;
d->returns.count = ret_count;
/* If worker requested packets with GET_BUF, set it to active
* otherwise (RETURN_BUF), set it to not active.
*/
d->activesum -= d->active[wkr];
d->active[wkr] = !!(buf->retptr64[0] & RTE_DISTRIB_GET_BUF);
d->activesum += d->active[wkr];
/* If worker returned packets without requesting new ones,
* handle all in-flights and backlog packets assigned to it.
*/
if (unlikely(buf->retptr64[0] & RTE_DISTRIB_RETURN_BUF))
handle_worker_shutdown(d, wkr);
/* Clear for the worker to populate with more returns.
* Sync with distributor on GET_BUF flag. Release retptrs.
*/
__atomic_store_n(&(buf->retptr64[0]), 0, __ATOMIC_RELEASE);
}
return count;
}
/*
* This function releases a burst (cache line) to a worker.
* It is called from the process function when a cacheline is
* full to make room for more packets for that worker, or when
* all packets have been assigned to bursts and need to be flushed
* to the workers.
* It also needs to wait for any outstanding packets from the worker
* before sending out new packets.
*/
static unsigned int
release(struct rte_distributor *d, unsigned int wkr)
{
struct rte_distributor_buffer *buf = &(d->bufs[wkr]);
unsigned int i;
handle_returns(d, wkr);
if (unlikely(!d->active[wkr]))
return 0;
/* Sync with worker on GET_BUF flag */
while (!(__atomic_load_n(&(d->bufs[wkr].bufptr64[0]), __ATOMIC_ACQUIRE)
& RTE_DISTRIB_GET_BUF)) {
handle_returns(d, wkr);
if (unlikely(!d->active[wkr]))
return 0;
rte_pause();
}
buf->count = 0;
for (i = 0; i < d->backlog[wkr].count; i++) {
d->bufs[wkr].bufptr64[i] = d->backlog[wkr].pkts[i] |
RTE_DISTRIB_GET_BUF | RTE_DISTRIB_VALID_BUF;
d->in_flight_tags[wkr][i] = d->backlog[wkr].tags[i];
}
buf->count = i;
for ( ; i < RTE_DIST_BURST_SIZE ; i++) {
buf->bufptr64[i] = RTE_DISTRIB_GET_BUF;
d->in_flight_tags[wkr][i] = 0;
}
d->backlog[wkr].count = 0;
/* Clear the GET bit.
* Sync with worker on GET_BUF flag. Release bufptrs.
*/
__atomic_store_n(&(buf->bufptr64[0]),
buf->bufptr64[0] & ~RTE_DISTRIB_GET_BUF, __ATOMIC_RELEASE);
return buf->count;
}
/* process a set of packets to distribute them to workers */
int
rte_distributor_process(struct rte_distributor *d,
struct rte_mbuf **mbufs, unsigned int num_mbufs)
{
unsigned int next_idx = 0;
static unsigned int wkr;
struct rte_mbuf *next_mb = NULL;
int64_t next_value = 0;
uint16_t new_tag = 0;
uint16_t flows[RTE_DIST_BURST_SIZE] __rte_cache_aligned;
unsigned int i, j, w, wid, matching_required;
if (d->alg_type == RTE_DIST_ALG_SINGLE) {
/* Call the old API */
return rte_distributor_process_single(d->d_single,
mbufs, num_mbufs);
}
for (wid = 0 ; wid < d->num_workers; wid++)
handle_returns(d, wid);
if (unlikely(num_mbufs == 0)) {
/* Flush out all non-full cache-lines to workers. */
for (wid = 0 ; wid < d->num_workers; wid++) {
/* Sync with worker on GET_BUF flag. */
if (__atomic_load_n(&(d->bufs[wid].bufptr64[0]),
__ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF) {
d->bufs[wid].count = 0;
release(d, wid);
handle_returns(d, wid);
}
}
return 0;
}
if (unlikely(!d->activesum))
return 0;
while (next_idx < num_mbufs) {
uint16_t matches[RTE_DIST_BURST_SIZE] __rte_aligned(128);
unsigned int pkts;
if ((num_mbufs - next_idx) < RTE_DIST_BURST_SIZE)
pkts = num_mbufs - next_idx;
else
pkts = RTE_DIST_BURST_SIZE;
for (i = 0; i < pkts; i++) {
if (mbufs[next_idx + i]) {
/* flows have to be non-zero */
flows[i] = mbufs[next_idx + i]->hash.usr | 1;
} else
flows[i] = 0;
}
for (; i < RTE_DIST_BURST_SIZE; i++)
flows[i] = 0;
matching_required = 1;
for (j = 0; j < pkts; j++) {
if (unlikely(!d->activesum))
return next_idx;
if (unlikely(matching_required)) {
switch (d->dist_match_fn) {
case RTE_DIST_MATCH_VECTOR:
find_match_vec(d, &flows[0],
&matches[0]);
break;
default:
find_match_scalar(d, &flows[0],
&matches[0]);
}
matching_required = 0;
}
/*
* Matches array now contain the intended worker ID (+1) of
* the incoming packets. Any zeroes need to be assigned
* workers.
*/
next_mb = mbufs[next_idx++];
next_value = (((int64_t)(uintptr_t)next_mb) <<
RTE_DISTRIB_FLAG_BITS);
/*
* User is advocated to set tag value for each
* mbuf before calling rte_distributor_process.
* User defined tags are used to identify flows,
* or sessions.
*/
/* flows MUST be non-zero */
new_tag = (uint16_t)(next_mb->hash.usr) | 1;
/*
* Uncommenting the next line will cause the find_match
* function to be optimized out, making this function
* do parallel (non-atomic) distribution
*/
/* matches[j] = 0; */
if (matches[j] && d->active[matches[j]-1]) {
struct rte_distributor_backlog *bl =
&d->backlog[matches[j]-1];
if (unlikely(bl->count ==
RTE_DIST_BURST_SIZE)) {
release(d, matches[j]-1);
if (!d->active[matches[j]-1]) {
j--;
next_idx--;
matching_required = 1;
continue;
}
}
/* Add to worker that already has flow */
unsigned int idx = bl->count++;
bl->tags[idx] = new_tag;
bl->pkts[idx] = next_value;
} else {
struct rte_distributor_backlog *bl;
while (unlikely(!d->active[wkr]))
wkr = (wkr + 1) % d->num_workers;
bl = &d->backlog[wkr];
if (unlikely(bl->count ==
RTE_DIST_BURST_SIZE)) {
release(d, wkr);
if (!d->active[wkr]) {
j--;
next_idx--;
matching_required = 1;
continue;
}
}
/* Add to current worker worker */
unsigned int idx = bl->count++;
bl->tags[idx] = new_tag;
bl->pkts[idx] = next_value;
/*
* Now that we've just added an unpinned flow
* to a worker, we need to ensure that all
* other packets with that same flow will go
* to the same worker in this burst.
*/
for (w = j; w < pkts; w++)
if (flows[w] == new_tag)
matches[w] = wkr+1;
}
}
wkr = (wkr + 1) % d->num_workers;
}
/* Flush out all non-full cache-lines to workers. */
for (wid = 0 ; wid < d->num_workers; wid++)
/* Sync with worker on GET_BUF flag. */
if ((__atomic_load_n(&(d->bufs[wid].bufptr64[0]),
__ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF)) {
d->bufs[wid].count = 0;
release(d, wid);
}
return num_mbufs;
}
/* return to the caller, packets returned from workers */
int
rte_distributor_returned_pkts(struct rte_distributor *d,
struct rte_mbuf **mbufs, unsigned int max_mbufs)
{
struct rte_distributor_returned_pkts *returns = &d->returns;
unsigned int retval = (max_mbufs < returns->count) ?
max_mbufs : returns->count;
unsigned int i;
if (d->alg_type == RTE_DIST_ALG_SINGLE) {
/* Call the old API */
return rte_distributor_returned_pkts_single(d->d_single,
mbufs, max_mbufs);
}
for (i = 0; i < retval; i++) {
unsigned int idx = (returns->start + i) &
RTE_DISTRIB_RETURNS_MASK;
mbufs[i] = returns->mbufs[idx];
}
returns->start += i;
returns->count -= i;
return retval;
}
/*
* Return the number of packets in-flight in a distributor, i.e. packets
* being worked on or queued up in a backlog.
*/
static inline unsigned int
total_outstanding(const struct rte_distributor *d)
{
unsigned int wkr, total_outstanding = 0;
for (wkr = 0; wkr < d->num_workers; wkr++)
total_outstanding += d->backlog[wkr].count + d->bufs[wkr].count;
return total_outstanding;
}
/*
* Flush the distributor, so that there are no outstanding packets in flight or
* queued up.
*/
int
rte_distributor_flush(struct rte_distributor *d)
{
unsigned int flushed;
unsigned int wkr;
if (d->alg_type == RTE_DIST_ALG_SINGLE) {
/* Call the old API */
return rte_distributor_flush_single(d->d_single);
}
flushed = total_outstanding(d);
while (total_outstanding(d) > 0)
rte_distributor_process(d, NULL, 0);
/* wait 10ms to allow all worker drain the pkts */
rte_delay_us(10000);
/*
* Send empty burst to all workers to allow them to exit
* gracefully, should they need to.
*/
rte_distributor_process(d, NULL, 0);
for (wkr = 0; wkr < d->num_workers; wkr++)
handle_returns(d, wkr);
return flushed;
}
/* clears the internal returns array in the distributor */
void
rte_distributor_clear_returns(struct rte_distributor *d)
{
unsigned int wkr;
if (d->alg_type == RTE_DIST_ALG_SINGLE) {
/* Call the old API */
rte_distributor_clear_returns_single(d->d_single);
return;
}
/* throw away returns, so workers can exit */
for (wkr = 0; wkr < d->num_workers; wkr++)
/* Sync with worker. Release retptrs. */
__atomic_store_n(&(d->bufs[wkr].retptr64[0]), 0,
__ATOMIC_RELEASE);
d->returns.start = d->returns.count = 0;
}
/* creates a distributor instance */
struct rte_distributor *
rte_distributor_create(const char *name,
unsigned int socket_id,
unsigned int num_workers,
unsigned int alg_type)
{
struct rte_distributor *d;
struct rte_dist_burst_list *dist_burst_list;
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
unsigned int i;
/* TODO Reorganise function properly around RTE_DIST_ALG_SINGLE/BURST */
/* compilation-time checks */
RTE_BUILD_BUG_ON((sizeof(*d) & RTE_CACHE_LINE_MASK) != 0);
RTE_BUILD_BUG_ON((RTE_DISTRIB_MAX_WORKERS & 7) != 0);
if (name == NULL || num_workers >=
(unsigned int)RTE_MIN(RTE_DISTRIB_MAX_WORKERS, RTE_MAX_LCORE)) {
rte_errno = EINVAL;
return NULL;
}
if (alg_type == RTE_DIST_ALG_SINGLE) {
d = malloc(sizeof(struct rte_distributor));
if (d == NULL) {
rte_errno = ENOMEM;
return NULL;
}
d->d_single = rte_distributor_create_single(name,
socket_id, num_workers);
if (d->d_single == NULL) {
free(d);
/* rte_errno will have been set */
return NULL;
}
d->alg_type = alg_type;
return d;
}
snprintf(mz_name, sizeof(mz_name), RTE_DISTRIB_PREFIX"%s", name);
mz = rte_memzone_reserve(mz_name, sizeof(*d), socket_id, NO_FLAGS);
if (mz == NULL) {
rte_errno = ENOMEM;
return NULL;
}
d = mz->addr;
strlcpy(d->name, name, sizeof(d->name));
d->num_workers = num_workers;
d->alg_type = alg_type;
d->dist_match_fn = RTE_DIST_MATCH_SCALAR;
#if defined(RTE_ARCH_X86)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
d->dist_match_fn = RTE_DIST_MATCH_VECTOR;
#endif
/*
* Set up the backlog tags so they're pointing at the second cache
* line for performance during flow matching
*/
for (i = 0 ; i < num_workers ; i++)
d->backlog[i].tags = &d->in_flight_tags[i][RTE_DIST_BURST_SIZE];
memset(d->active, 0, sizeof(d->active));
d->activesum = 0;
dist_burst_list = RTE_TAILQ_CAST(rte_dist_burst_tailq.head,
rte_dist_burst_list);
rte_mcfg_tailq_write_lock();
TAILQ_INSERT_TAIL(dist_burst_list, d, next);
rte_mcfg_tailq_write_unlock();
return d;
}