numam-dpdk/drivers/baseband/acc/rte_acc200_pmd.c
Nicolas Chautru 437e396414 baseband/acc200: support FFT
Added functions and capability for FFT processing

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
2022-10-29 13:01:38 +02:00

3062 lines
92 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2022 Intel Corporation
*/
#include <unistd.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_branch_prediction.h>
#include <rte_hexdump.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#ifdef RTE_BBDEV_OFFLOAD_COST
#include <rte_cycles.h>
#endif
#include <rte_bbdev.h>
#include <rte_bbdev_pmd.h>
#include "acc200_pmd.h"
#ifdef RTE_LIBRTE_BBDEV_DEBUG
RTE_LOG_REGISTER_DEFAULT(acc200_logtype, DEBUG);
#else
RTE_LOG_REGISTER_DEFAULT(acc200_logtype, NOTICE);
#endif
/* Calculate the offset of the enqueue register. */
static inline uint32_t
queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
{
if (pf_device)
return ((vf_id << 12) + (qgrp_id << 7) + (aq_id << 3) +
HWPfQmgrIngressAq);
else
return ((qgrp_id << 7) + (aq_id << 3) +
HWVfQmgrIngressAq);
}
enum {UL_4G = 0, UL_5G, DL_4G, DL_5G, FFT, NUM_ACC};
/* Return the queue topology for a Queue Group Index. */
static inline void
qtopFromAcc(struct rte_acc_queue_topology **qtop, int acc_enum, struct rte_acc_conf *acc_conf)
{
struct rte_acc_queue_topology *p_qtop;
p_qtop = NULL;
switch (acc_enum) {
case UL_4G:
p_qtop = &(acc_conf->q_ul_4g);
break;
case UL_5G:
p_qtop = &(acc_conf->q_ul_5g);
break;
case DL_4G:
p_qtop = &(acc_conf->q_dl_4g);
break;
case DL_5G:
p_qtop = &(acc_conf->q_dl_5g);
break;
case FFT:
p_qtop = &(acc_conf->q_fft);
break;
default:
/* NOTREACHED. */
rte_bbdev_log(ERR, "Unexpected error evaluating %s using %d", __func__, acc_enum);
break;
}
*qtop = p_qtop;
}
static void
initQTop(struct rte_acc_conf *acc_conf)
{
acc_conf->q_ul_4g.num_aqs_per_groups = 0;
acc_conf->q_ul_4g.num_qgroups = 0;
acc_conf->q_ul_4g.first_qgroup_index = -1;
acc_conf->q_ul_5g.num_aqs_per_groups = 0;
acc_conf->q_ul_5g.num_qgroups = 0;
acc_conf->q_ul_5g.first_qgroup_index = -1;
acc_conf->q_dl_4g.num_aqs_per_groups = 0;
acc_conf->q_dl_4g.num_qgroups = 0;
acc_conf->q_dl_4g.first_qgroup_index = -1;
acc_conf->q_dl_5g.num_aqs_per_groups = 0;
acc_conf->q_dl_5g.num_qgroups = 0;
acc_conf->q_dl_5g.first_qgroup_index = -1;
acc_conf->q_fft.num_aqs_per_groups = 0;
acc_conf->q_fft.num_qgroups = 0;
acc_conf->q_fft.first_qgroup_index = -1;
}
static inline void
updateQtop(uint8_t acc, uint8_t qg, struct rte_acc_conf *acc_conf, struct acc_device *d) {
uint32_t reg;
struct rte_acc_queue_topology *q_top = NULL;
uint16_t aq;
qtopFromAcc(&q_top, acc, acc_conf);
if (unlikely(q_top == NULL))
return;
q_top->num_qgroups++;
if (q_top->first_qgroup_index == -1) {
q_top->first_qgroup_index = qg;
/* Can be optimized to assume all are enabled by default. */
reg = acc_reg_read(d, queue_offset(d->pf_device, 0, qg, ACC200_NUM_AQS - 1));
if (reg & ACC_QUEUE_ENABLE) {
q_top->num_aqs_per_groups = ACC200_NUM_AQS;
return;
}
q_top->num_aqs_per_groups = 0;
for (aq = 0; aq < ACC200_NUM_AQS; aq++) {
reg = acc_reg_read(d, queue_offset(d->pf_device, 0, qg, aq));
if (reg & ACC_QUEUE_ENABLE)
q_top->num_aqs_per_groups++;
}
}
}
/* Fetch configuration enabled for the PF/VF using MMIO Read (slow). */
static inline void
fetch_acc200_config(struct rte_bbdev *dev)
{
struct acc_device *d = dev->data->dev_private;
struct rte_acc_conf *acc_conf = &d->acc_conf;
const struct acc200_registry_addr *reg_addr;
uint8_t acc, qg;
uint32_t reg_aq, reg_len0, reg_len1, reg0, reg1;
uint32_t reg_mode, idx;
struct rte_acc_queue_topology *q_top = NULL;
int qman_func_id[ACC200_NUM_ACCS] = {ACC_ACCMAP_0, ACC_ACCMAP_1,
ACC_ACCMAP_2, ACC_ACCMAP_3, ACC_ACCMAP_4};
/* No need to retrieve the configuration is already done. */
if (d->configured)
return;
/* Choose correct registry addresses for the device type. */
if (d->pf_device)
reg_addr = &pf_reg_addr;
else
reg_addr = &vf_reg_addr;
d->ddr_size = 0;
/* Single VF Bundle by VF. */
acc_conf->num_vf_bundles = 1;
initQTop(acc_conf);
reg0 = acc_reg_read(d, reg_addr->qman_group_func);
reg1 = acc_reg_read(d, reg_addr->qman_group_func + 4);
for (qg = 0; qg < ACC200_NUM_QGRPS; qg++) {
reg_aq = acc_reg_read(d, queue_offset(d->pf_device, 0, qg, 0));
if (reg_aq & ACC_QUEUE_ENABLE) {
if (qg < ACC_NUM_QGRPS_PER_WORD)
idx = (reg0 >> (qg * 4)) & 0x7;
else
idx = (reg1 >> ((qg -
ACC_NUM_QGRPS_PER_WORD) * 4)) & 0x7;
if (idx < ACC200_NUM_ACCS) {
acc = qman_func_id[idx];
updateQtop(acc, qg, acc_conf, d);
}
}
}
/* Check the depth of the AQs. */
reg_len0 = acc_reg_read(d, reg_addr->depth_log0_offset);
reg_len1 = acc_reg_read(d, reg_addr->depth_log1_offset);
for (acc = 0; acc < NUM_ACC; acc++) {
qtopFromAcc(&q_top, acc, acc_conf);
if (q_top->first_qgroup_index < ACC_NUM_QGRPS_PER_WORD)
q_top->aq_depth_log2 = (reg_len0 >> (q_top->first_qgroup_index * 4)) & 0xF;
else
q_top->aq_depth_log2 = (reg_len1 >> ((q_top->first_qgroup_index -
ACC_NUM_QGRPS_PER_WORD) * 4)) & 0xF;
}
/* Read PF mode. */
if (d->pf_device) {
reg_mode = acc_reg_read(d, HWPfHiPfMode);
acc_conf->pf_mode_en = (reg_mode == ACC_PF_VAL) ? 1 : 0;
} else {
reg_mode = acc_reg_read(d, reg_addr->hi_mode);
acc_conf->pf_mode_en = reg_mode & 1;
}
rte_bbdev_log_debug(
"%s Config LLR SIGN IN/OUT %s %s QG %u %u %u %u %u AQ %u %u %u %u %u Len %u %u %u %u %u\n",
(d->pf_device) ? "PF" : "VF",
(acc_conf->input_pos_llr_1_bit) ? "POS" : "NEG",
(acc_conf->output_pos_llr_1_bit) ? "POS" : "NEG",
acc_conf->q_ul_4g.num_qgroups,
acc_conf->q_dl_4g.num_qgroups,
acc_conf->q_ul_5g.num_qgroups,
acc_conf->q_dl_5g.num_qgroups,
acc_conf->q_fft.num_qgroups,
acc_conf->q_ul_4g.num_aqs_per_groups,
acc_conf->q_dl_4g.num_aqs_per_groups,
acc_conf->q_ul_5g.num_aqs_per_groups,
acc_conf->q_dl_5g.num_aqs_per_groups,
acc_conf->q_fft.num_aqs_per_groups,
acc_conf->q_ul_4g.aq_depth_log2,
acc_conf->q_dl_4g.aq_depth_log2,
acc_conf->q_ul_5g.aq_depth_log2,
acc_conf->q_dl_5g.aq_depth_log2,
acc_conf->q_fft.aq_depth_log2);
}
/* Allocate 64MB memory used for all software rings. */
static int
acc200_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
{
uint32_t phys_low, phys_high, value;
struct acc_device *d = dev->data->dev_private;
const struct acc200_registry_addr *reg_addr;
int ret;
if (d->pf_device && !d->acc_conf.pf_mode_en) {
rte_bbdev_log(NOTICE,
"%s has PF mode disabled. This PF can't be used.",
dev->data->name);
return -ENODEV;
}
if (!d->pf_device && d->acc_conf.pf_mode_en) {
rte_bbdev_log(NOTICE,
"%s has PF mode enabled. This VF can't be used.",
dev->data->name);
return -ENODEV;
}
alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
/* If minimal memory space approach failed, then allocate
* the 2 * 64MB block for the sw rings.
*/
if (d->sw_rings == NULL)
alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
if (d->sw_rings == NULL) {
rte_bbdev_log(NOTICE,
"Failure allocating sw_rings memory");
return -ENOMEM;
}
/* Configure ACC200 with the base address for DMA descriptor rings.
* Same descriptor rings used for UL and DL DMA Engines.
* Note : Assuming only VF0 bundle is used for PF mode.
*/
phys_high = (uint32_t)(d->sw_rings_iova >> 32);
phys_low = (uint32_t)(d->sw_rings_iova & ~(ACC_SIZE_64MBYTE-1));
/* Choose correct registry addresses for the device type. */
if (d->pf_device)
reg_addr = &pf_reg_addr;
else
reg_addr = &vf_reg_addr;
/* Read the populated cfg from ACC200 registers. */
fetch_acc200_config(dev);
/* Start Pmon */
for (value = 0; value <= 2; value++) {
acc_reg_write(d, reg_addr->pmon_ctrl_a, value);
acc_reg_write(d, reg_addr->pmon_ctrl_b, value);
acc_reg_write(d, reg_addr->pmon_ctrl_c, value);
}
/* Release AXI from PF. */
if (d->pf_device)
acc_reg_write(d, HWPfDmaAxiControl, 1);
acc_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
acc_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
acc_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
acc_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
acc_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
acc_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
acc_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
acc_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
acc_reg_write(d, reg_addr->dma_ring_fft_hi, phys_high);
acc_reg_write(d, reg_addr->dma_ring_fft_lo, phys_low);
/*
* Configure Ring Size to the max queue ring size
* (used for wrapping purpose).
*/
value = log2_basic(d->sw_ring_size / ACC_RING_SIZE_GRANULARITY);
acc_reg_write(d, reg_addr->ring_size, value);
/* Configure tail pointer for use when SDONE enabled. */
if (d->tail_ptrs == NULL)
d->tail_ptrs = rte_zmalloc_socket(
dev->device->driver->name,
ACC200_NUM_QGRPS * ACC200_NUM_AQS * sizeof(uint32_t),
RTE_CACHE_LINE_SIZE, socket_id);
if (d->tail_ptrs == NULL) {
rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
ret = -ENOMEM;
goto free_sw_rings;
}
d->tail_ptr_iova = rte_malloc_virt2iova(d->tail_ptrs);
phys_high = (uint32_t)(d->tail_ptr_iova >> 32);
phys_low = (uint32_t)(d->tail_ptr_iova);
acc_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
acc_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
acc_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
acc_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
acc_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
acc_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
acc_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
acc_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
acc_reg_write(d, reg_addr->tail_ptrs_fft_hi, phys_high);
acc_reg_write(d, reg_addr->tail_ptrs_fft_lo, phys_low);
if (d->harq_layout == NULL)
d->harq_layout = rte_zmalloc_socket("HARQ Layout",
ACC_HARQ_LAYOUT * sizeof(*d->harq_layout),
RTE_CACHE_LINE_SIZE, dev->data->socket_id);
if (d->harq_layout == NULL) {
rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
ret = -ENOMEM;
goto free_tail_ptrs;
}
/* Mark as configured properly */
d->configured = true;
rte_bbdev_log_debug(
"ACC200 (%s) configured sw_rings = %p, sw_rings_iova = %#"
PRIx64, dev->data->name, d->sw_rings, d->sw_rings_iova);
return 0;
free_tail_ptrs:
rte_free(d->tail_ptrs);
d->tail_ptrs = NULL;
free_sw_rings:
rte_free(d->sw_rings_base);
d->sw_rings = NULL;
return ret;
}
/* Free memory used for software rings. */
static int
acc200_dev_close(struct rte_bbdev *dev)
{
struct acc_device *d = dev->data->dev_private;
if (d->sw_rings_base != NULL) {
rte_free(d->tail_ptrs);
rte_free(d->sw_rings_base);
rte_free(d->harq_layout);
d->sw_rings_base = NULL;
d->tail_ptrs = NULL;
d->harq_layout = NULL;
}
/* Ensure all in flight HW transactions are completed. */
usleep(ACC_LONG_WAIT);
return 0;
}
/**
* Report a ACC200 queue index which is free.
* Return 0 to 16k for a valid queue_idx or -1 when no queue is available.
* Note : Only supporting VF0 Bundle for PF mode.
*/
static int
acc200_find_free_queue_idx(struct rte_bbdev *dev,
const struct rte_bbdev_queue_conf *conf)
{
struct acc_device *d = dev->data->dev_private;
int op_2_acc[6] = {0, UL_4G, DL_4G, UL_5G, DL_5G, FFT};
int acc = op_2_acc[conf->op_type];
struct rte_acc_queue_topology *qtop = NULL;
uint16_t group_idx;
uint64_t aq_idx;
qtopFromAcc(&qtop, acc, &(d->acc_conf));
if (qtop == NULL)
return -1;
/* Identify matching QGroup Index which are sorted in priority order. */
group_idx = qtop->first_qgroup_index + conf->priority;
if (group_idx >= ACC200_NUM_QGRPS ||
conf->priority >= qtop->num_qgroups) {
rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
dev->data->name, conf->priority);
return -1;
}
/* Find a free AQ_idx. */
for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
/* Mark the Queue as assigned. */
d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
/* Report the AQ Index. */
return (group_idx << ACC200_GRP_ID_SHIFT) + aq_idx;
}
}
rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
dev->data->name, conf->priority);
return -1;
}
/* Setup ACC200 queue. */
static int
acc200_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
const struct rte_bbdev_queue_conf *conf)
{
struct acc_device *d = dev->data->dev_private;
struct acc_queue *q;
int16_t q_idx;
int ret;
if (d == NULL) {
rte_bbdev_log(ERR, "Undefined device");
return -ENODEV;
}
/* Allocate the queue data structure. */
q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
RTE_CACHE_LINE_SIZE, conf->socket);
if (q == NULL) {
rte_bbdev_log(ERR, "Failed to allocate queue memory");
return -ENOMEM;
}
q->d = d;
q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
q->ring_addr_iova = d->sw_rings_iova + (d->sw_ring_size * queue_id);
/* Prepare the Ring with default descriptor format. */
union acc_dma_desc *desc = NULL;
unsigned int desc_idx, b_idx;
int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
ACC_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
ACC_FCW_TD_BLEN : (conf->op_type == RTE_BBDEV_OP_LDPC_DEC ?
ACC_FCW_LD_BLEN : ACC_FCW_FFT_BLEN)));
for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
desc = q->ring_addr + desc_idx;
desc->req.word0 = ACC_DMA_DESC_TYPE;
desc->req.word1 = 0; /**< Timestamp. */
desc->req.word2 = 0;
desc->req.word3 = 0;
uint64_t fcw_offset = (desc_idx << 8) + ACC_DESC_FCW_OFFSET;
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = fcw_len;
desc->req.data_ptrs[0].blkid = ACC_DMA_BLKID_FCW;
desc->req.data_ptrs[0].last = 0;
desc->req.data_ptrs[0].dma_ext = 0;
for (b_idx = 1; b_idx < ACC_DMA_MAX_NUM_POINTERS - 1;
b_idx++) {
desc->req.data_ptrs[b_idx].blkid = ACC_DMA_BLKID_IN;
desc->req.data_ptrs[b_idx].last = 1;
desc->req.data_ptrs[b_idx].dma_ext = 0;
b_idx++;
desc->req.data_ptrs[b_idx].blkid =
ACC_DMA_BLKID_OUT_ENC;
desc->req.data_ptrs[b_idx].last = 1;
desc->req.data_ptrs[b_idx].dma_ext = 0;
}
/* Preset some fields of LDPC FCW. */
desc->req.fcw_ld.FCWversion = ACC_FCW_VER;
desc->req.fcw_ld.gain_i = 1;
desc->req.fcw_ld.gain_h = 1;
}
q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
RTE_CACHE_LINE_SIZE,
RTE_CACHE_LINE_SIZE, conf->socket);
if (q->lb_in == NULL) {
rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
ret = -ENOMEM;
goto free_q;
}
q->lb_in_addr_iova = rte_malloc_virt2iova(q->lb_in);
q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
RTE_CACHE_LINE_SIZE,
RTE_CACHE_LINE_SIZE, conf->socket);
if (q->lb_out == NULL) {
rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
ret = -ENOMEM;
goto free_lb_in;
}
q->lb_out_addr_iova = rte_malloc_virt2iova(q->lb_out);
q->companion_ring_addr = rte_zmalloc_socket(dev->device->driver->name,
d->sw_ring_max_depth * sizeof(*q->companion_ring_addr),
RTE_CACHE_LINE_SIZE, conf->socket);
if (q->companion_ring_addr == NULL) {
rte_bbdev_log(ERR, "Failed to allocate companion_ring memory");
ret = -ENOMEM;
goto free_lb_out;
}
/*
* Software queue ring wraps synchronously with the HW when it reaches
* the boundary of the maximum allocated queue size, no matter what the
* sw queue size is. This wrapping is guarded by setting the wrap_mask
* to represent the maximum queue size as allocated at the time when
* the device has been setup (in configure()).
*
* The queue depth is set to the queue size value (conf->queue_size).
* This limits the occupancy of the queue at any point of time, so that
* the queue does not get swamped with enqueue requests.
*/
q->sw_ring_depth = conf->queue_size;
q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
q->op_type = conf->op_type;
q_idx = acc200_find_free_queue_idx(dev, conf);
if (q_idx == -1) {
ret = -EINVAL;
goto free_companion_ring_addr;
}
q->qgrp_id = (q_idx >> ACC200_GRP_ID_SHIFT) & 0xF;
q->vf_id = (q_idx >> ACC200_VF_ID_SHIFT) & 0x3F;
q->aq_id = q_idx & 0xF;
q->aq_depth = 0;
if (conf->op_type == RTE_BBDEV_OP_TURBO_DEC)
q->aq_depth = (1 << d->acc_conf.q_ul_4g.aq_depth_log2);
else if (conf->op_type == RTE_BBDEV_OP_TURBO_ENC)
q->aq_depth = (1 << d->acc_conf.q_dl_4g.aq_depth_log2);
else if (conf->op_type == RTE_BBDEV_OP_LDPC_DEC)
q->aq_depth = (1 << d->acc_conf.q_ul_5g.aq_depth_log2);
else if (conf->op_type == RTE_BBDEV_OP_LDPC_ENC)
q->aq_depth = (1 << d->acc_conf.q_dl_5g.aq_depth_log2);
else if (conf->op_type == RTE_BBDEV_OP_FFT)
q->aq_depth = (1 << d->acc_conf.q_fft.aq_depth_log2);
q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
queue_offset(d->pf_device,
q->vf_id, q->qgrp_id, q->aq_id));
rte_bbdev_log_debug(
"Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p base %p\n",
dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
q->aq_id, q->aq_depth, q->mmio_reg_enqueue,
d->mmio_base);
dev->data->queues[queue_id].queue_private = q;
return 0;
free_companion_ring_addr:
rte_free(q->companion_ring_addr);
q->companion_ring_addr = NULL;
free_lb_out:
rte_free(q->lb_out);
q->lb_out = NULL;
free_lb_in:
rte_free(q->lb_in);
q->lb_in = NULL;
free_q:
rte_free(q);
q = NULL;
return ret;
}
static inline void
acc200_print_op(struct rte_bbdev_dec_op *op, enum rte_bbdev_op_type op_type,
uint16_t index)
{
if (op == NULL)
return;
if (op_type == RTE_BBDEV_OP_LDPC_DEC)
rte_bbdev_log(INFO,
" Op 5GUL %d %d %d %d %d %d %d %d %d %d %d %d",
index,
op->ldpc_dec.basegraph, op->ldpc_dec.z_c,
op->ldpc_dec.n_cb, op->ldpc_dec.q_m,
op->ldpc_dec.n_filler, op->ldpc_dec.cb_params.e,
op->ldpc_dec.op_flags, op->ldpc_dec.rv_index,
op->ldpc_dec.iter_max, op->ldpc_dec.iter_count,
op->ldpc_dec.harq_combined_input.length
);
else if (op_type == RTE_BBDEV_OP_LDPC_ENC) {
struct rte_bbdev_enc_op *op_dl = (struct rte_bbdev_enc_op *) op;
rte_bbdev_log(INFO,
" Op 5GDL %d %d %d %d %d %d %d %d %d",
index,
op_dl->ldpc_enc.basegraph, op_dl->ldpc_enc.z_c,
op_dl->ldpc_enc.n_cb, op_dl->ldpc_enc.q_m,
op_dl->ldpc_enc.n_filler, op_dl->ldpc_enc.cb_params.e,
op_dl->ldpc_enc.op_flags, op_dl->ldpc_enc.rv_index
);
}
}
/* Stop ACC200 queue and clear counters. */
static int
acc200_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
{
struct acc_queue *q;
struct rte_bbdev_dec_op *op;
uint16_t i;
q = dev->data->queues[queue_id].queue_private;
rte_bbdev_log(INFO, "Queue Stop %d H/T/D %d %d %x OpType %d",
queue_id, q->sw_ring_head, q->sw_ring_tail,
q->sw_ring_depth, q->op_type);
for (i = 0; i < q->sw_ring_depth; ++i) {
op = (q->ring_addr + i)->req.op_addr;
acc200_print_op(op, q->op_type, i);
}
/* ignore all operations in flight and clear counters */
q->sw_ring_tail = q->sw_ring_head;
q->aq_enqueued = 0;
q->aq_dequeued = 0;
dev->data->queues[queue_id].queue_stats.enqueued_count = 0;
dev->data->queues[queue_id].queue_stats.dequeued_count = 0;
dev->data->queues[queue_id].queue_stats.enqueue_err_count = 0;
dev->data->queues[queue_id].queue_stats.dequeue_err_count = 0;
dev->data->queues[queue_id].queue_stats.enqueue_warn_count = 0;
dev->data->queues[queue_id].queue_stats.dequeue_warn_count = 0;
return 0;
}
/* Release ACC200 queue. */
static int
acc200_queue_release(struct rte_bbdev *dev, uint16_t q_id)
{
struct acc_device *d = dev->data->dev_private;
struct acc_queue *q = dev->data->queues[q_id].queue_private;
if (q != NULL) {
/* Mark the Queue as un-assigned. */
d->q_assigned_bit_map[q->qgrp_id] &= (~0ULL - (uint64_t) (1 << q->aq_id));
rte_free(q->companion_ring_addr);
rte_free(q->lb_in);
rte_free(q->lb_out);
rte_free(q);
dev->data->queues[q_id].queue_private = NULL;
}
return 0;
}
/* Get ACC200 device info. */
static void
acc200_dev_info_get(struct rte_bbdev *dev,
struct rte_bbdev_driver_info *dev_info)
{
struct acc_device *d = dev->data->dev_private;
int i;
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
{
.type = RTE_BBDEV_OP_TURBO_DEC,
.cap.turbo_dec = {
.capability_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
RTE_BBDEV_TURBO_CRC_TYPE_24B |
RTE_BBDEV_TURBO_EQUALIZER |
RTE_BBDEV_TURBO_SOFT_OUT_SATURATE |
RTE_BBDEV_TURBO_HALF_ITERATION_EVEN |
RTE_BBDEV_TURBO_CONTINUE_CRC_MATCH |
RTE_BBDEV_TURBO_SOFT_OUTPUT |
RTE_BBDEV_TURBO_EARLY_TERMINATION |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT |
RTE_BBDEV_TURBO_MAP_DEC |
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,
.max_llr_modulus = INT8_MAX,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_hard_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_soft_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_TURBO_ENC,
.cap.turbo_enc = {
.capability_flags =
RTE_BBDEV_TURBO_CRC_24B_ATTACH |
RTE_BBDEV_TURBO_RV_INDEX_BYPASS |
RTE_BBDEV_TURBO_RATE_MATCH |
RTE_BBDEV_TURBO_ENC_SCATTER_GATHER,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_dst =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_LDPC_ENC,
.cap.ldpc_enc = {
.capability_flags =
RTE_BBDEV_LDPC_RATE_MATCH |
RTE_BBDEV_LDPC_CRC_24B_ATTACH |
RTE_BBDEV_LDPC_INTERLEAVER_BYPASS,
.num_buffers_src =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
.num_buffers_dst =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_LDPC_DEC,
.cap.ldpc_dec = {
.capability_flags =
RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK |
RTE_BBDEV_LDPC_CRC_TYPE_16_CHECK |
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS |
RTE_BBDEV_LDPC_DEC_SCATTER_GATHER |
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION |
RTE_BBDEV_LDPC_LLR_COMPRESSION,
.llr_size = 8,
.llr_decimals = 1,
.num_buffers_src =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
.num_buffers_hard_out =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
.num_buffers_soft_out = 0,
}
},
{
.type = RTE_BBDEV_OP_FFT,
.cap.fft = {
.capability_flags =
RTE_BBDEV_FFT_WINDOWING |
RTE_BBDEV_FFT_CS_ADJUSTMENT |
RTE_BBDEV_FFT_DFT_BYPASS |
RTE_BBDEV_FFT_IDFT_BYPASS |
RTE_BBDEV_FFT_WINDOWING_BYPASS,
.num_buffers_src =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
.num_buffers_dst =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
}
},
RTE_BBDEV_END_OF_CAPABILITIES_LIST()
};
static struct rte_bbdev_queue_conf default_queue_conf;
default_queue_conf.socket = dev->data->socket_id;
default_queue_conf.queue_size = ACC_MAX_QUEUE_DEPTH;
dev_info->driver_name = dev->device->driver->name;
/* Read and save the populated config from ACC200 registers. */
fetch_acc200_config(dev);
/* Exposed number of queues. */
dev_info->num_queues[RTE_BBDEV_OP_NONE] = 0;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_DEC] = d->acc_conf.q_ul_4g.num_aqs_per_groups *
d->acc_conf.q_ul_4g.num_qgroups;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_ENC] = d->acc_conf.q_dl_4g.num_aqs_per_groups *
d->acc_conf.q_dl_4g.num_qgroups;
dev_info->num_queues[RTE_BBDEV_OP_LDPC_DEC] = d->acc_conf.q_ul_5g.num_aqs_per_groups *
d->acc_conf.q_ul_5g.num_qgroups;
dev_info->num_queues[RTE_BBDEV_OP_LDPC_ENC] = d->acc_conf.q_dl_5g.num_aqs_per_groups *
d->acc_conf.q_dl_5g.num_qgroups;
dev_info->num_queues[RTE_BBDEV_OP_FFT] = d->acc_conf.q_fft.num_aqs_per_groups *
d->acc_conf.q_fft.num_qgroups;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_DEC] = d->acc_conf.q_ul_4g.num_qgroups;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_ENC] = d->acc_conf.q_dl_4g.num_qgroups;
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_DEC] = d->acc_conf.q_ul_5g.num_qgroups;
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_ENC] = d->acc_conf.q_dl_5g.num_qgroups;
dev_info->queue_priority[RTE_BBDEV_OP_FFT] = d->acc_conf.q_fft.num_qgroups;
dev_info->max_num_queues = 0;
for (i = RTE_BBDEV_OP_NONE; i <= RTE_BBDEV_OP_FFT; i++)
dev_info->max_num_queues += dev_info->num_queues[i];
dev_info->queue_size_lim = ACC_MAX_QUEUE_DEPTH;
dev_info->hardware_accelerated = true;
dev_info->max_dl_queue_priority =
d->acc_conf.q_dl_4g.num_qgroups - 1;
dev_info->max_ul_queue_priority =
d->acc_conf.q_ul_4g.num_qgroups - 1;
dev_info->default_queue_conf = default_queue_conf;
dev_info->cpu_flag_reqs = NULL;
dev_info->min_alignment = 1;
dev_info->capabilities = bbdev_capabilities;
dev_info->harq_buffer_size = 0;
}
static const struct rte_bbdev_ops acc200_bbdev_ops = {
.setup_queues = acc200_setup_queues,
.close = acc200_dev_close,
.info_get = acc200_dev_info_get,
.queue_setup = acc200_queue_setup,
.queue_release = acc200_queue_release,
.queue_stop = acc200_queue_stop,
};
/* ACC200 PCI PF address map. */
static struct rte_pci_id pci_id_acc200_pf_map[] = {
{
RTE_PCI_DEVICE(RTE_ACC200_VENDOR_ID, RTE_ACC200_PF_DEVICE_ID)
},
{.device_id = 0},
};
/* ACC200 PCI VF address map. */
static struct rte_pci_id pci_id_acc200_vf_map[] = {
{
RTE_PCI_DEVICE(RTE_ACC200_VENDOR_ID, RTE_ACC200_VF_DEVICE_ID)
},
{.device_id = 0},
};
/* Fill in a frame control word for turbo decoding. */
static inline void
acc200_fcw_td_fill(const struct rte_bbdev_dec_op *op, struct acc_fcw_td *fcw)
{
fcw->fcw_ver = 1;
fcw->num_maps = ACC_FCW_TD_AUTOMAP;
fcw->bypass_sb_deint = !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE);
if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
/* FIXME for TB block */
fcw->k_pos = op->turbo_dec.tb_params.k_pos;
fcw->k_neg = op->turbo_dec.tb_params.k_neg;
} else {
fcw->k_pos = op->turbo_dec.cb_params.k;
fcw->k_neg = op->turbo_dec.cb_params.k;
}
fcw->c = 1;
fcw->c_neg = 1;
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
fcw->soft_output_en = 1;
fcw->sw_soft_out_dis = 0;
fcw->sw_et_cont = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_CONTINUE_CRC_MATCH);
fcw->sw_soft_out_saturation = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUT_SATURATE);
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_EQUALIZER)) {
fcw->bypass_teq = 0;
fcw->ea = op->turbo_dec.cb_params.e;
fcw->eb = op->turbo_dec.cb_params.e;
if (op->turbo_dec.rv_index == 0)
fcw->k0_start_col = ACC_FCW_TD_RVIDX_0;
else if (op->turbo_dec.rv_index == 1)
fcw->k0_start_col = ACC_FCW_TD_RVIDX_1;
else if (op->turbo_dec.rv_index == 2)
fcw->k0_start_col = ACC_FCW_TD_RVIDX_2;
else
fcw->k0_start_col = ACC_FCW_TD_RVIDX_3;
} else {
fcw->bypass_teq = 1;
fcw->eb = 64; /* avoid undefined value */
}
} else {
fcw->soft_output_en = 0;
fcw->sw_soft_out_dis = 1;
fcw->bypass_teq = 0;
}
fcw->code_block_mode = 1; /* FIXME */
fcw->turbo_crc_type = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_CRC_TYPE_24B);
fcw->ext_td_cold_reg_en = 1;
fcw->raw_decoder_input_on = 0;
fcw->max_iter = RTE_MAX((uint8_t) op->turbo_dec.iter_max, 2);
fcw->min_iter = 2;
fcw->half_iter_on = !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_HALF_ITERATION_EVEN);
fcw->early_stop_en = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_EARLY_TERMINATION) & !fcw->soft_output_en;
fcw->ext_scale = 0xF;
}
/* Fill in a frame control word for LDPC decoding. */
static inline void
acc200_fcw_ld_fill(struct rte_bbdev_dec_op *op, struct acc_fcw_ld *fcw,
union acc_harq_layout_data *harq_layout)
{
uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset;
uint32_t harq_index;
uint32_t l;
fcw->qm = op->ldpc_dec.q_m;
fcw->nfiller = op->ldpc_dec.n_filler;
fcw->BG = (op->ldpc_dec.basegraph - 1);
fcw->Zc = op->ldpc_dec.z_c;
fcw->ncb = op->ldpc_dec.n_cb;
fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_dec.basegraph,
op->ldpc_dec.rv_index);
if (op->ldpc_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
fcw->rm_e = op->ldpc_dec.cb_params.e;
else
fcw->rm_e = (op->ldpc_dec.tb_params.r <
op->ldpc_dec.tb_params.cab) ?
op->ldpc_dec.tb_params.ea :
op->ldpc_dec.tb_params.eb;
if (unlikely(check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE) &&
(op->ldpc_dec.harq_combined_input.length == 0))) {
rte_bbdev_log(WARNING, "Null HARQ input size provided");
/* Disable HARQ input in that case to carry forward. */
op->ldpc_dec.op_flags ^= RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE;
}
if (unlikely(fcw->rm_e == 0)) {
rte_bbdev_log(WARNING, "Null E input provided");
fcw->rm_e = 2;
}
fcw->hcin_en = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
fcw->hcout_en = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
fcw->crc_select = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
fcw->bypass_dec = 0;
fcw->bypass_intlv = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS);
if (op->ldpc_dec.q_m == 1) {
fcw->bypass_intlv = 1;
fcw->qm = 2;
}
fcw->hcin_decomp_mode = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
fcw->hcout_comp_mode = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
fcw->llr_pack_mode = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_LLR_COMPRESSION);
harq_index = hq_index(op->ldpc_dec.harq_combined_output.offset);
if (fcw->hcin_en > 0) {
harq_in_length = op->ldpc_dec.harq_combined_input.length;
if (fcw->hcin_decomp_mode > 0)
harq_in_length = harq_in_length * 8 / 6;
harq_in_length = RTE_MIN(harq_in_length, op->ldpc_dec.n_cb
- op->ldpc_dec.n_filler);
harq_in_length = RTE_ALIGN_CEIL(harq_in_length, 64);
fcw->hcin_size0 = harq_in_length;
fcw->hcin_offset = 0;
fcw->hcin_size1 = 0;
} else {
fcw->hcin_size0 = 0;
fcw->hcin_offset = 0;
fcw->hcin_size1 = 0;
}
fcw->itmax = op->ldpc_dec.iter_max;
fcw->itstop = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
fcw->cnu_algo = ACC_ALGO_MSA;
fcw->synd_precoder = fcw->itstop;
/*
* These are all implicitly set:
* fcw->synd_post = 0;
* fcw->so_en = 0;
* fcw->so_bypass_rm = 0;
* fcw->so_bypass_intlv = 0;
* fcw->dec_convllr = 0;
* fcw->hcout_convllr = 0;
* fcw->hcout_size1 = 0;
* fcw->so_it = 0;
* fcw->hcout_offset = 0;
* fcw->negstop_th = 0;
* fcw->negstop_it = 0;
* fcw->negstop_en = 0;
* fcw->gain_i = 1;
* fcw->gain_h = 1;
*/
if (fcw->hcout_en > 0) {
parity_offset = (op->ldpc_dec.basegraph == 1 ? 20 : 8)
* op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
k0_p = (fcw->k0 > parity_offset) ? fcw->k0 - op->ldpc_dec.n_filler : fcw->k0;
ncb_p = fcw->ncb - op->ldpc_dec.n_filler;
l = k0_p + fcw->rm_e;
harq_out_length = (uint16_t) fcw->hcin_size0;
harq_out_length = RTE_MIN(RTE_MAX(harq_out_length, l), ncb_p);
harq_out_length = RTE_ALIGN_CEIL(harq_out_length, 64);
fcw->hcout_size0 = harq_out_length;
fcw->hcout_size1 = 0;
fcw->hcout_offset = 0;
harq_layout[harq_index].offset = fcw->hcout_offset;
harq_layout[harq_index].size0 = fcw->hcout_size0;
} else {
fcw->hcout_size0 = 0;
fcw->hcout_size1 = 0;
fcw->hcout_offset = 0;
}
fcw->tb_crc_select = 0;
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK))
fcw->tb_crc_select = 2;
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_CRC_TYPE_16_CHECK))
fcw->tb_crc_select = 1;
}
static inline int
acc200_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
struct acc_dma_req_desc *desc, struct rte_mbuf **input,
struct rte_mbuf *h_output, struct rte_mbuf *s_output,
uint32_t *in_offset, uint32_t *h_out_offset,
uint32_t *s_out_offset, uint32_t *h_out_length,
uint32_t *s_out_length, uint32_t *mbuf_total_left,
uint32_t *seg_total_left, uint8_t r)
{
int next_triplet = 1; /* FCW already done. */
uint16_t k;
uint16_t crc24_overlap = 0;
uint32_t e, kw;
desc->word0 = ACC_DMA_DESC_TYPE;
desc->word1 = 0; /**< Timestamp could be disabled. */
desc->word2 = 0;
desc->word3 = 0;
desc->numCBs = 1;
if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
k = (r < op->turbo_dec.tb_params.c_neg)
? op->turbo_dec.tb_params.k_neg
: op->turbo_dec.tb_params.k_pos;
e = (r < op->turbo_dec.tb_params.cab)
? op->turbo_dec.tb_params.ea
: op->turbo_dec.tb_params.eb;
} else {
k = op->turbo_dec.cb_params.k;
e = op->turbo_dec.cb_params.e;
}
if ((op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
&& !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
crc24_overlap = 24;
/* Calculates circular buffer size.
* According to 3gpp 36.212 section 5.1.4.2
* Kw = 3 * Kpi,
* where:
* Kpi = nCol * nRow
* where nCol is 32 and nRow can be calculated from:
* D =< nCol * nRow
* where D is the size of each output from turbo encoder block (k + 4).
*/
kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < kw))) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
*mbuf_total_left, kw);
return -1;
}
next_triplet = acc_dma_fill_blk_type_in(desc, input, in_offset, kw,
seg_total_left, next_triplet,
check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_DEC_SCATTER_GATHER));
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->m2dlen = next_triplet;
*mbuf_total_left -= kw;
*h_out_length = ((k - crc24_overlap) >> 3);
next_triplet = acc_dma_fill_blk_type(
desc, h_output, *h_out_offset,
*h_out_length, next_triplet, ACC_DMA_BLKID_OUT_HARD);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
op->turbo_dec.hard_output.length += *h_out_length;
*h_out_offset += *h_out_length;
/* Soft output. */
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
if (op->turbo_dec.soft_output.data == 0) {
rte_bbdev_log(ERR, "Soft output is not defined");
return -1;
}
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_EQUALIZER))
*s_out_length = e;
else
*s_out_length = (k * 3) + 12;
next_triplet = acc_dma_fill_blk_type(desc, s_output,
*s_out_offset, *s_out_length, next_triplet,
ACC_DMA_BLKID_OUT_SOFT);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
op->turbo_dec.soft_output.length += *s_out_length;
*s_out_offset += *s_out_length;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->d2mlen = next_triplet - desc->m2dlen;
desc->op_addr = op;
return 0;
}
static inline int
acc200_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
struct acc_dma_req_desc *desc,
struct rte_mbuf **input, struct rte_mbuf *h_output,
uint32_t *in_offset, uint32_t *h_out_offset,
uint32_t *h_out_length, uint32_t *mbuf_total_left,
uint32_t *seg_total_left, struct acc_fcw_ld *fcw)
{
struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
int next_triplet = 1; /* FCW already done. */
uint32_t input_length;
uint16_t output_length, crc24_overlap = 0;
uint16_t sys_cols, K, h_p_size, h_np_size;
bool h_comp = check_bit(dec->op_flags, RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
acc_header_init(desc);
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
crc24_overlap = 24;
/* Compute some LDPC BG lengths. */
input_length = fcw->rm_e;
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_LLR_COMPRESSION))
input_length = (input_length * 3 + 3) / 4;
sys_cols = (dec->basegraph == 1) ? 22 : 10;
K = sys_cols * dec->z_c;
output_length = K - dec->n_filler - crc24_overlap;
if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < input_length))) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
*mbuf_total_left, input_length);
return -1;
}
next_triplet = acc_dma_fill_blk_type_in(desc, input,
in_offset, input_length,
seg_total_left, next_triplet,
check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_DEC_SCATTER_GATHER));
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
if (op->ldpc_dec.harq_combined_input.data == 0) {
rte_bbdev_log(ERR, "HARQ input is not defined");
return -1;
}
h_p_size = fcw->hcin_size0 + fcw->hcin_size1;
if (h_comp)
h_p_size = (h_p_size * 3 + 3) / 4;
if (op->ldpc_dec.harq_combined_input.data == 0) {
rte_bbdev_log(ERR, "HARQ input is not defined");
return -1;
}
acc_dma_fill_blk_type(
desc,
op->ldpc_dec.harq_combined_input.data,
op->ldpc_dec.harq_combined_input.offset,
h_p_size,
next_triplet,
ACC_DMA_BLKID_IN_HARQ);
next_triplet++;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->m2dlen = next_triplet;
*mbuf_total_left -= input_length;
next_triplet = acc_dma_fill_blk_type(desc, h_output,
*h_out_offset, output_length >> 3, next_triplet,
ACC_DMA_BLKID_OUT_HARD);
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
if (op->ldpc_dec.harq_combined_output.data == 0) {
rte_bbdev_log(ERR, "HARQ output is not defined");
return -1;
}
/* Pruned size of the HARQ. */
h_p_size = fcw->hcout_size0 + fcw->hcout_size1;
/* Non-Pruned size of the HARQ. */
h_np_size = fcw->hcout_offset > 0 ?
fcw->hcout_offset + fcw->hcout_size1 :
h_p_size;
if (h_comp) {
h_np_size = (h_np_size * 3 + 3) / 4;
h_p_size = (h_p_size * 3 + 3) / 4;
}
dec->harq_combined_output.length = h_np_size;
acc_dma_fill_blk_type(
desc,
dec->harq_combined_output.data,
dec->harq_combined_output.offset,
h_p_size,
next_triplet,
ACC_DMA_BLKID_OUT_HARQ);
next_triplet++;
}
*h_out_length = output_length >> 3;
dec->hard_output.length += *h_out_length;
*h_out_offset += *h_out_length;
desc->data_ptrs[next_triplet - 1].last = 1;
desc->d2mlen = next_triplet - desc->m2dlen;
desc->op_addr = op;
return 0;
}
static inline void
acc200_dma_desc_ld_update(struct rte_bbdev_dec_op *op,
struct acc_dma_req_desc *desc,
struct rte_mbuf *input, struct rte_mbuf *h_output,
uint32_t *in_offset, uint32_t *h_out_offset,
uint32_t *h_out_length,
union acc_harq_layout_data *harq_layout)
{
int next_triplet = 1; /* FCW already done. */
desc->data_ptrs[next_triplet].address = rte_pktmbuf_iova_offset(input, *in_offset);
next_triplet++;
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
struct rte_bbdev_op_data hi = op->ldpc_dec.harq_combined_input;
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(hi.data, hi.offset);
next_triplet++;
}
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(h_output, *h_out_offset);
*h_out_length = desc->data_ptrs[next_triplet].blen;
next_triplet++;
if (check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
/* Adjust based on previous operation. */
struct rte_bbdev_dec_op *prev_op = desc->op_addr;
op->ldpc_dec.harq_combined_output.length =
prev_op->ldpc_dec.harq_combined_output.length;
uint32_t harq_idx = hq_index(op->ldpc_dec.harq_combined_output.offset);
uint32_t prev_harq_idx = hq_index(prev_op->ldpc_dec.harq_combined_output.offset);
harq_layout[harq_idx].val = harq_layout[prev_harq_idx].val;
struct rte_bbdev_op_data ho = op->ldpc_dec.harq_combined_output;
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(ho.data, ho.offset);
next_triplet++;
}
op->ldpc_dec.hard_output.length += *h_out_length;
desc->op_addr = op;
}
/* Enqueue one encode operations for ACC200 device in CB mode */
static inline int
enqueue_enc_one_op_cb(struct acc_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_cbs)
{
union acc_dma_desc *desc = NULL;
int ret;
uint32_t in_offset, out_offset, out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *output_head, *output;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc_fcw_te_fill(op, &desc->req.fcw_te);
input = op->turbo_enc.input.data;
output_head = output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
out_length = 0;
mbuf_total_left = op->turbo_enc.input.length;
seg_total_left = rte_pktmbuf_data_len(op->turbo_enc.input.data) - in_offset;
ret = acc_dma_desc_te_fill(op, &desc->req, &input, output,
&in_offset, &out_offset, &out_length, &mbuf_total_left,
&seg_total_left, 0);
if (unlikely(ret < 0))
return ret;
mbuf_append(output_head, output, out_length);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_te,
sizeof(desc->req.fcw_te) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
/* Enqueue one encode operations for ACC200 device in CB mode
* multiplexed on the same descriptor.
*/
static inline int
enqueue_ldpc_enc_n_op_cb(struct acc_queue *q, struct rte_bbdev_enc_op **ops,
uint16_t total_enqueued_descs, int16_t num)
{
union acc_dma_desc *desc = NULL;
uint32_t out_length;
struct rte_mbuf *output_head, *output;
int i, next_triplet;
uint16_t in_length_in_bytes;
struct rte_bbdev_op_ldpc_enc *enc = &ops[0]->ldpc_enc;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_descs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc_fcw_le_fill(ops[0], &desc->req.fcw_le, num, 0);
/** This could be done at polling. */
acc_header_init(&desc->req);
desc->req.numCBs = num;
in_length_in_bytes = ops[0]->ldpc_enc.input.data->data_len;
out_length = (enc->cb_params.e + 7) >> 3;
desc->req.m2dlen = 1 + num;
desc->req.d2mlen = num;
next_triplet = 1;
for (i = 0; i < num; i++) {
desc->req.data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(ops[i]->ldpc_enc.input.data, 0);
desc->req.data_ptrs[next_triplet].blen = in_length_in_bytes;
next_triplet++;
desc->req.data_ptrs[next_triplet].address = rte_pktmbuf_iova_offset(
ops[i]->ldpc_enc.output.data, 0);
desc->req.data_ptrs[next_triplet].blen = out_length;
next_triplet++;
ops[i]->ldpc_enc.output.length = out_length;
output_head = output = ops[i]->ldpc_enc.output.data;
mbuf_append(output_head, output, out_length);
output->data_len = out_length;
}
desc->req.op_addr = ops[0];
/* Keep track of pointers even when multiplexed in single descriptor. */
struct acc_ptrs *context_ptrs = q->companion_ring_addr + desc_idx;
for (i = 0; i < num; i++)
context_ptrs->ptr[i].op_addr = ops[i];
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_le,
sizeof(desc->req.fcw_le) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
/* Number of compatible CBs/ops successfully prepared to enqueue. */
return num;
}
/* Enqueue one encode operations for ACC200 device for a partial TB
* all codes blocks have same configuration multiplexed on the same descriptor.
*/
static inline void
enqueue_ldpc_enc_part_tb(struct acc_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_descs, int16_t num_cbs, uint32_t e,
uint16_t in_len_B, uint32_t out_len_B, uint32_t *in_offset,
uint32_t *out_offset)
{
union acc_dma_desc *desc = NULL;
struct rte_mbuf *output_head, *output;
int i, next_triplet;
struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_descs) & q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc_fcw_le_fill(op, &desc->req.fcw_le, num_cbs, e);
/** This could be done at polling. */
acc_header_init(&desc->req);
desc->req.numCBs = num_cbs;
desc->req.m2dlen = 1 + num_cbs;
desc->req.d2mlen = num_cbs;
next_triplet = 1;
for (i = 0; i < num_cbs; i++) {
desc->req.data_ptrs[next_triplet].address = rte_pktmbuf_iova_offset(
enc->input.data, *in_offset);
*in_offset += in_len_B;
desc->req.data_ptrs[next_triplet].blen = in_len_B;
next_triplet++;
desc->req.data_ptrs[next_triplet].address = rte_pktmbuf_iova_offset(
enc->output.data, *out_offset);
*out_offset += out_len_B;
desc->req.data_ptrs[next_triplet].blen = out_len_B;
next_triplet++;
enc->output.length += out_len_B;
output_head = output = enc->output.data;
mbuf_append(output_head, output, out_len_B);
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_le,
sizeof(desc->req.fcw_le) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
}
/* Enqueue one encode operations for ACC200 device in TB mode. */
static inline int
enqueue_enc_one_op_tb(struct acc_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc_dma_desc *desc = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, out_offset, out_length, mbuf_total_left,
seg_total_left;
struct rte_mbuf *input, *output_head, *output;
uint16_t current_enqueued_cbs = 0;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC_DESC_FCW_OFFSET;
acc_fcw_te_fill(op, &desc->req.fcw_te);
input = op->turbo_enc.input.data;
output_head = output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
out_length = 0;
mbuf_total_left = op->turbo_enc.input.length;
c = op->turbo_enc.tb_params.c;
r = op->turbo_enc.tb_params.r;
while (mbuf_total_left > 0 && r < c) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC_FCW_TE_BLEN;
ret = acc_dma_desc_te_fill(op, &desc->req, &input, output,
&in_offset, &out_offset, &out_length,
&mbuf_total_left, &seg_total_left, r);
if (unlikely(ret < 0))
return ret;
mbuf_append(output_head, output, out_length);
/* Set total number of CBs in TB */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_te,
sizeof(desc->req.fcw_te) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (seg_total_left == 0) {
/* Go to the next mbuf */
input = input->next;
in_offset = 0;
output = output->next;
out_offset = 0;
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
/* Set SDone on last CB descriptor for TB mode. */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
/* Enqueue one encode operations for ACC200 device in TB mode.
* returns the number of descs used.
*/
static inline int
enqueue_ldpc_enc_one_op_tb(struct acc_queue *q, struct rte_bbdev_enc_op *op,
uint16_t enq_descs, uint8_t cbs_in_tb)
{
uint8_t num_a, num_b;
uint16_t desc_idx, input_len_B, return_descs;
uint8_t r = op->ldpc_enc.tb_params.r;
uint8_t cab = op->ldpc_enc.tb_params.cab;
union acc_dma_desc *desc;
uint16_t init_enq_descs = enq_descs;
uint32_t in_offset = 0, out_offset = 0;
input_len_B = ((op->ldpc_enc.basegraph == 1 ? 22 : 10) * op->ldpc_enc.z_c) >> 3;
if (check_bit(op->ldpc_enc.op_flags, RTE_BBDEV_LDPC_CRC_24B_ATTACH))
input_len_B -= 3;
if (r < cab) {
num_a = cab - r;
num_b = cbs_in_tb - cab;
} else {
num_a = 0;
num_b = cbs_in_tb - r;
}
while (num_a > 0) {
uint32_t e = op->ldpc_enc.tb_params.ea;
uint32_t out_len_B = (e + 7) >> 3;
uint8_t enq = RTE_MIN(num_a, ACC_MUX_5GDL_DESC);
num_a -= enq;
enqueue_ldpc_enc_part_tb(q, op, enq_descs, enq, e, input_len_B,
out_len_B, &in_offset, &out_offset);
enq_descs++;
}
while (num_b > 0) {
uint32_t e = op->ldpc_enc.tb_params.eb;
uint32_t out_len_B = (e + 7) >> 3;
uint8_t enq = RTE_MIN(num_b, ACC_MUX_5GDL_DESC);
num_b -= enq;
enqueue_ldpc_enc_part_tb(q, op, enq_descs, enq, e, input_len_B,
out_len_B, &in_offset, &out_offset);
enq_descs++;
}
return_descs = enq_descs - init_enq_descs;
/* Keep total number of CBs in first TB. */
desc_idx = ((q->sw_ring_head + init_enq_descs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
desc->req.cbs_in_tb = return_descs; /** Actual number of descriptors. */
desc->req.op_addr = op;
/* Set SDone on last CB descriptor for TB mode. */
desc_idx = ((q->sw_ring_head + enq_descs - 1)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
desc->req.op_addr = op;
return return_descs;
}
/** Enqueue one decode operations for ACC200 device in CB mode. */
static inline int
enqueue_dec_one_op_cb(struct acc_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs)
{
union acc_dma_desc *desc = NULL;
int ret;
uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output,
*s_output_head, *s_output;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc200_fcw_td_fill(op, &desc->req.fcw_td);
input = op->turbo_dec.input.data;
h_output_head = h_output = op->turbo_dec.hard_output.data;
s_output_head = s_output = op->turbo_dec.soft_output.data;
in_offset = op->turbo_dec.input.offset;
h_out_offset = op->turbo_dec.hard_output.offset;
s_out_offset = op->turbo_dec.soft_output.offset;
h_out_length = s_out_length = 0;
mbuf_total_left = op->turbo_dec.input.length;
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
ret = acc200_dma_desc_td_fill(op, &desc->req, &input, h_output,
s_output, &in_offset, &h_out_offset, &s_out_offset,
&h_out_length, &s_out_length, &mbuf_total_left,
&seg_total_left, 0);
if (unlikely(ret < 0))
return ret;
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
/* Soft output */
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT))
mbuf_append(s_output_head, s_output, s_out_length);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td));
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
/** Enqueue one decode operations for ACC200 device in CB mode */
static inline int
enqueue_ldpc_dec_one_op_cb(struct acc_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs, bool same_op)
{
int ret, hq_len;
union acc_dma_desc *desc;
uint16_t desc_idx;
struct rte_mbuf *input, *h_output_head, *h_output;
uint32_t in_offset, h_out_offset, mbuf_total_left, h_out_length = 0;
union acc_harq_layout_data *harq_layout;
if (op->ldpc_dec.cb_params.e == 0)
return -EINVAL;
desc_idx = ((q->sw_ring_head + total_enqueued_cbs) & q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
input = op->ldpc_dec.input.data;
h_output_head = h_output = op->ldpc_dec.hard_output.data;
in_offset = op->ldpc_dec.input.offset;
h_out_offset = op->ldpc_dec.hard_output.offset;
mbuf_total_left = op->ldpc_dec.input.length;
harq_layout = q->d->harq_layout;
if (same_op) {
union acc_dma_desc *prev_desc;
desc_idx = ((q->sw_ring_head + total_enqueued_cbs - 1) & q->sw_ring_wrap_mask);
prev_desc = q->ring_addr + desc_idx;
uint8_t *prev_ptr = (uint8_t *) prev_desc;
uint8_t *new_ptr = (uint8_t *) desc;
/* Copy first 4 words and BDESCs. */
rte_memcpy(new_ptr, prev_ptr, ACC_5GUL_SIZE_0);
rte_memcpy(new_ptr + ACC_5GUL_OFFSET_0,
prev_ptr + ACC_5GUL_OFFSET_0,
ACC_5GUL_SIZE_1);
desc->req.op_addr = prev_desc->req.op_addr;
/* Copy FCW. */
rte_memcpy(new_ptr + ACC_DESC_FCW_OFFSET,
prev_ptr + ACC_DESC_FCW_OFFSET,
ACC_FCW_LD_BLEN);
acc200_dma_desc_ld_update(op, &desc->req, input, h_output,
&in_offset, &h_out_offset,
&h_out_length, harq_layout);
} else {
struct acc_fcw_ld *fcw;
uint32_t seg_total_left;
fcw = &desc->req.fcw_ld;
acc200_fcw_ld_fill(op, fcw, harq_layout);
/* Special handling when using mbuf or not. */
if (check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_DEC_SCATTER_GATHER))
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
else
seg_total_left = fcw->rm_e;
ret = acc200_dma_desc_ld_fill(op, &desc->req, &input, h_output,
&in_offset, &h_out_offset,
&h_out_length, &mbuf_total_left,
&seg_total_left, fcw);
if (unlikely(ret < 0))
return ret;
}
/* Hard output. */
mbuf_append(h_output_head, h_output, h_out_length);
if (op->ldpc_dec.harq_combined_output.length > 0) {
/* Push the HARQ output into host memory. */
struct rte_mbuf *hq_output_head, *hq_output;
hq_output_head = op->ldpc_dec.harq_combined_output.data;
hq_output = op->ldpc_dec.harq_combined_output.data;
hq_len = op->ldpc_dec.harq_combined_output.length;
if (unlikely(!mbuf_append(hq_output_head, hq_output, hq_len))) {
rte_bbdev_log(ERR, "HARQ output mbuf issue %d %d\n",
hq_output->buf_len,
hq_len);
return -1;
}
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_ld,
sizeof(desc->req.fcw_ld) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
/* One CB (one op) was successfully prepared to enqueue. */
return 1;
}
/* Enqueue one decode operations for ACC200 device in TB mode. */
static inline int
enqueue_ldpc_dec_one_op_tb(struct acc_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc_dma_desc *desc = NULL;
union acc_dma_desc *desc_first = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, h_out_offset, h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output;
uint16_t current_enqueued_cbs = 0;
uint16_t sys_cols, trail_len = 0;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) & q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
desc_first = desc;
uint64_t fcw_offset = (desc_idx << 8) + ACC_DESC_FCW_OFFSET;
union acc_harq_layout_data *harq_layout = q->d->harq_layout;
acc200_fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout);
input = op->ldpc_dec.input.data;
h_output_head = h_output = op->ldpc_dec.hard_output.data;
in_offset = op->ldpc_dec.input.offset;
h_out_offset = op->ldpc_dec.hard_output.offset;
h_out_length = 0;
mbuf_total_left = op->ldpc_dec.input.length;
c = op->ldpc_dec.tb_params.c;
r = op->ldpc_dec.tb_params.r;
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK)) {
sys_cols = (op->ldpc_dec.basegraph == 1) ? 22 : 10;
trail_len = sys_cols * op->ldpc_dec.z_c -
op->ldpc_dec.n_filler - 24;
}
while (mbuf_total_left > 0 && r < c) {
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_DEC_SCATTER_GATHER))
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
else
seg_total_left = op->ldpc_dec.input.length;
/* Set up DMA descriptor. */
desc_idx = ((q->sw_ring_head + total_enqueued_cbs) & q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
fcw_offset = (desc_idx << 8) + ACC_DESC_FCW_OFFSET;
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC_FCW_LD_BLEN;
rte_memcpy(&desc->req.fcw_ld, &desc_first->req.fcw_ld, ACC_FCW_LD_BLEN);
desc->req.fcw_ld.tb_trailer_size = (c - r - 1) * trail_len;
ret = acc200_dma_desc_ld_fill(op, &desc->req, &input,
h_output, &in_offset, &h_out_offset,
&h_out_length,
&mbuf_total_left, &seg_total_left,
&desc->req.fcw_ld);
if (unlikely(ret < 0))
return ret;
/* Hard output. */
mbuf_append(h_output_head, h_output, h_out_length);
/* Set total number of CBs in TB. */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_DEC_SCATTER_GATHER)
&& (seg_total_left == 0)) {
/* Go to the next mbuf. */
input = input->next;
in_offset = 0;
h_output = h_output->next;
h_out_offset = 0;
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* Set SDone on last CB descriptor for TB mode. */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
/* Enqueue one decode operations for ACC200 device in TB mode */
static inline int
enqueue_dec_one_op_tb(struct acc_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc_dma_desc *desc = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output,
*s_output_head, *s_output;
uint16_t current_enqueued_cbs = 0;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC_DESC_FCW_OFFSET;
acc200_fcw_td_fill(op, &desc->req.fcw_td);
input = op->turbo_dec.input.data;
h_output_head = h_output = op->turbo_dec.hard_output.data;
s_output_head = s_output = op->turbo_dec.soft_output.data;
in_offset = op->turbo_dec.input.offset;
h_out_offset = op->turbo_dec.hard_output.offset;
s_out_offset = op->turbo_dec.soft_output.offset;
h_out_length = s_out_length = 0;
mbuf_total_left = op->turbo_dec.input.length;
c = op->turbo_dec.tb_params.c;
r = op->turbo_dec.tb_params.r;
while (mbuf_total_left > 0 && r < c) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC_FCW_TD_BLEN;
ret = acc200_dma_desc_td_fill(op, &desc->req, &input,
h_output, s_output, &in_offset, &h_out_offset,
&s_out_offset, &h_out_length, &s_out_length,
&mbuf_total_left, &seg_total_left, r);
if (unlikely(ret < 0))
return ret;
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
/* Soft output */
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUTPUT))
mbuf_append(s_output_head, s_output, s_out_length);
/* Set total number of CBs in TB */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (seg_total_left == 0) {
/* Go to the next mbuf */
input = input->next;
in_offset = 0;
h_output = h_output->next;
h_out_offset = 0;
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
s_output = s_output->next;
s_out_offset = 0;
}
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
/* Set SDone on last CB descriptor for TB mode */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
/* Enqueue encode operations for ACC200 device in CB mode. */
static uint16_t
acc200_enqueue_enc_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i;
union acc_dma_desc *desc;
int ret;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing */
if (unlikely(avail - 1 < 0)) {
acc_enqueue_ring_full(q_data);
break;
}
avail -= 1;
ret = enqueue_enc_one_op_cb(q, ops[i], i);
if (ret < 0) {
acc_enqueue_invalid(q_data);
break;
}
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue */
/* Set SDone in last CB in enqueued ops for CB mode*/
desc = q->ring_addr + ((q->sw_ring_head + i - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/** Enqueue encode operations for ACC200 device in CB mode. */
static inline uint16_t
acc200_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i = 0;
union acc_dma_desc *desc;
int ret, desc_idx = 0;
int16_t enq, left = num;
while (left > 0) {
if (unlikely(avail < 1)) {
acc_enqueue_ring_full(q_data);
break;
}
avail--;
enq = RTE_MIN(left, ACC_MUX_5GDL_DESC);
enq = check_mux(&ops[i], enq);
ret = enqueue_ldpc_enc_n_op_cb(q, &ops[i], desc_idx, enq);
if (ret < 0) {
acc_enqueue_invalid(q_data);
break;
}
i += enq;
desc_idx++;
left = num - i;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue. */
/* Set SDone in last CB in enqueued ops for CB mode. */
desc = q->ring_addr + ((q->sw_ring_head + desc_idx - 1) & q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc_dma_enqueue(q, desc_idx, &q_data->queue_stats);
/* Update stats. */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue encode operations for ACC200 device in TB mode. */
static uint16_t
acc200_enqueue_enc_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_enc(&ops[i]->turbo_enc);
/* Check if there are available space for further processing */
if (unlikely((avail - cbs_in_tb < 0) || (cbs_in_tb == 0))) {
acc_enqueue_ring_full(q_data);
break;
}
avail -= cbs_in_tb;
ret = enqueue_enc_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
if (ret <= 0) {
acc_enqueue_invalid(q_data);
break;
}
enqueued_cbs += ret;
}
if (unlikely(enqueued_cbs == 0))
return 0; /* Nothing to enqueue */
acc_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue LDPC encode operations for ACC200 device in TB mode. */
static uint16_t
acc200_enqueue_ldpc_enc_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i, enqueued_descs = 0;
uint8_t cbs_in_tb;
int descs_used;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_ldpc_enc(&ops[i]->ldpc_enc);
/* Check if there are available space for further processing. */
if (unlikely((avail - cbs_in_tb < 0) || (cbs_in_tb == 0))) {
acc_enqueue_ring_full(q_data);
break;
}
descs_used = enqueue_ldpc_enc_one_op_tb(q, ops[i], enqueued_descs, cbs_in_tb);
if (descs_used < 0) {
acc_enqueue_invalid(q_data);
break;
}
enqueued_descs += descs_used;
avail -= descs_used;
}
if (unlikely(enqueued_descs == 0))
return 0; /* Nothing to enqueue. */
acc_dma_enqueue(q, enqueued_descs, &q_data->queue_stats);
/* Update stats. */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue encode operations for ACC200 device. */
static uint16_t
acc200_enqueue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
int32_t aq_avail = acc_aq_avail(q_data, num);
if (unlikely((aq_avail <= 0) || (num == 0)))
return 0;
if (ops[0]->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc200_enqueue_enc_tb(q_data, ops, num);
else
return acc200_enqueue_enc_cb(q_data, ops, num);
}
/* Enqueue encode operations for ACC200 device. */
static uint16_t
acc200_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
int32_t aq_avail = acc_aq_avail(q_data, num);
if (unlikely((aq_avail <= 0) || (num == 0)))
return 0;
if (ops[0]->ldpc_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc200_enqueue_ldpc_enc_tb(q_data, ops, num);
else
return acc200_enqueue_ldpc_enc_cb(q_data, ops, num);
}
/* Enqueue decode operations for ACC200 device in CB mode. */
static uint16_t
acc200_enqueue_dec_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i;
union acc_dma_desc *desc;
int ret;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing. */
if (unlikely(avail - 1 < 0))
break;
avail -= 1;
ret = enqueue_dec_one_op_cb(q, ops[i], i);
if (ret < 0)
break;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue. */
/* Set SDone in last CB in enqueued ops for CB mode. */
desc = q->ring_addr + ((q->sw_ring_head + i - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats. */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC200 device in TB mode. */
static uint16_t
acc200_enqueue_ldpc_dec_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_ldpc_dec(&ops[i]->ldpc_dec);
/* Check if there are available space for further processing. */
if (unlikely((avail - cbs_in_tb < 0) ||
(cbs_in_tb == 0)))
break;
avail -= cbs_in_tb;
ret = enqueue_ldpc_dec_one_op_tb(q, ops[i],
enqueued_cbs, cbs_in_tb);
if (ret <= 0)
break;
enqueued_cbs += ret;
}
acc_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats. */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC200 device in CB mode. */
static uint16_t
acc200_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i;
union acc_dma_desc *desc;
int ret;
bool same_op = false;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing. */
if (unlikely(avail < 1)) {
acc_enqueue_ring_full(q_data);
break;
}
avail -= 1;
rte_bbdev_log(INFO, "Op %d %d %d %d %d %d %d %d %d %d %d %d\n",
i, ops[i]->ldpc_dec.op_flags, ops[i]->ldpc_dec.rv_index,
ops[i]->ldpc_dec.iter_max, ops[i]->ldpc_dec.iter_count,
ops[i]->ldpc_dec.basegraph, ops[i]->ldpc_dec.z_c,
ops[i]->ldpc_dec.n_cb, ops[i]->ldpc_dec.q_m,
ops[i]->ldpc_dec.n_filler, ops[i]->ldpc_dec.cb_params.e,
same_op);
ret = enqueue_ldpc_dec_one_op_cb(q, ops[i], i, same_op);
if (ret < 0) {
acc_enqueue_invalid(q_data);
break;
}
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue. */
/* Set SDone in last CB in enqueued ops for CB mode. */
desc = q->ring_addr + ((q->sw_ring_head + i - 1) & q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats. */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC200 device in TB mode */
static uint16_t
acc200_enqueue_dec_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_dec(&ops[i]->turbo_dec);
/* Check if there are available space for further processing */
if (unlikely((avail - cbs_in_tb < 0) || (cbs_in_tb == 0))) {
acc_enqueue_ring_full(q_data);
break;
}
avail -= cbs_in_tb;
ret = enqueue_dec_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
if (ret <= 0) {
acc_enqueue_invalid(q_data);
break;
}
enqueued_cbs += ret;
}
acc_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC200 device. */
static uint16_t
acc200_enqueue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
int32_t aq_avail = acc_aq_avail(q_data, num);
if (unlikely((aq_avail <= 0) || (num == 0)))
return 0;
if (ops[0]->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc200_enqueue_dec_tb(q_data, ops, num);
else
return acc200_enqueue_dec_cb(q_data, ops, num);
}
/* Enqueue decode operations for ACC200 device. */
static uint16_t
acc200_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
int32_t aq_avail = acc_aq_avail(q_data, num);
if (unlikely((aq_avail <= 0) || (num == 0)))
return 0;
if (ops[0]->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc200_enqueue_ldpc_dec_tb(q_data, ops, num);
else
return acc200_enqueue_ldpc_dec_cb(q_data, ops, num);
}
/* Dequeue one encode operations from ACC200 device in CB mode. */
static inline int
dequeue_enc_one_op_cb(struct acc_queue *q, struct rte_bbdev_enc_op **ref_op,
uint16_t *dequeued_ops, uint32_t *aq_dequeued, uint16_t *dequeued_descs)
{
union acc_dma_desc *desc, atom_desc;
union acc_dma_rsp_desc rsp;
struct rte_bbdev_enc_op *op;
int i;
struct acc_ptrs *context_ptrs;
int desc_idx = ((q->sw_ring_tail + *dequeued_descs) & q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, __ATOMIC_RELAXED);
/* Check fdone bit. */
if (!(atom_desc.rsp.val & ACC_FDONE))
return -1;
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
/* Dequeue. */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response. */
op->status = 0;
op->status |= ((rsp.input_err) ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0; /* Reserved bits. */
desc->rsp.add_info_1 = 0; /* Reserved bits. */
ref_op[0] = op;
context_ptrs = q->companion_ring_addr + desc_idx;
for (i = 1 ; i < desc->req.numCBs; i++)
ref_op[i] = context_ptrs->ptr[i].op_addr;
/* One op was successfully dequeued. */
(*dequeued_descs)++;
*dequeued_ops += desc->req.numCBs;
return desc->req.numCBs;
}
/* Dequeue one LDPC encode operations from ACC200 device in TB mode.
* That operation may cover multiple descriptors.
*/
static inline int
dequeue_enc_one_op_tb(struct acc_queue *q, struct rte_bbdev_enc_op **ref_op,
uint16_t *dequeued_ops, uint32_t *aq_dequeued,
uint16_t *dequeued_descs)
{
union acc_dma_desc *desc, *last_desc, atom_desc;
union acc_dma_rsp_desc rsp;
struct rte_bbdev_enc_op *op;
uint8_t i = 0;
uint16_t current_dequeued_descs = 0, descs_in_tb;
desc = q->ring_addr + ((q->sw_ring_tail + *dequeued_descs) & q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, __ATOMIC_RELAXED);
/* Check fdone bit. */
if (!(atom_desc.rsp.val & ACC_FDONE))
return -1;
/* Get number of CBs in dequeued TB. */
descs_in_tb = desc->req.cbs_in_tb;
/* Get last CB */
last_desc = q->ring_addr + ((q->sw_ring_tail + *dequeued_descs + descs_in_tb - 1)
& q->sw_ring_wrap_mask);
/* Check if last CB in TB is ready to dequeue (and thus
* the whole TB) - checking sdone bit. If not return.
*/
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc, __ATOMIC_RELAXED);
if (!(atom_desc.rsp.val & ACC_SDONE))
return -1;
/* Dequeue. */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response. */
op->status = 0;
while (i < descs_in_tb) {
desc = q->ring_addr + ((q->sw_ring_tail + *dequeued_descs) & q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, __ATOMIC_RELAXED);
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
op->status |= ((rsp.input_err) ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
desc->rsp.add_info_1 = 0;
(*dequeued_descs)++;
current_dequeued_descs++;
i++;
}
*ref_op = op;
(*dequeued_ops)++;
return current_dequeued_descs;
}
/* Dequeue one decode operation from ACC200 device in CB mode. */
static inline int
dequeue_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
struct acc_queue *q, struct rte_bbdev_dec_op **ref_op,
uint16_t dequeued_cbs, uint32_t *aq_dequeued)
{
union acc_dma_desc *desc, atom_desc;
union acc_dma_rsp_desc rsp;
struct rte_bbdev_dec_op *op;
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) & q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, __ATOMIC_RELAXED);
/* Check fdone bit. */
if (!(atom_desc.rsp.val & ACC_FDONE))
return -1;
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x\n", desc, rsp.val);
/* Dequeue. */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response. */
op->status = 0;
op->status |= ((rsp.input_err) ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
if (op->status != 0) {
/* These errors are not expected. */
q_data->queue_stats.dequeue_err_count++;
}
/* CRC invalid if error exists. */
if (!op->status)
op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
op->turbo_dec.iter_count = (uint8_t) rsp.iter_cnt;
/* Check if this is the last desc in batch (Atomic Queue). */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
desc->rsp.add_info_1 = 0;
*ref_op = op;
/* One CB (op) was successfully dequeued. */
return 1;
}
/* Dequeue one decode operations from ACC200 device in CB mode. */
static inline int
dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
struct acc_queue *q, struct rte_bbdev_dec_op **ref_op,
uint16_t dequeued_cbs, uint32_t *aq_dequeued)
{
union acc_dma_desc *desc, atom_desc;
union acc_dma_rsp_desc rsp;
struct rte_bbdev_dec_op *op;
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) & q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, __ATOMIC_RELAXED);
/* Check fdone bit. */
if (!(atom_desc.rsp.val & ACC_FDONE))
return -1;
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x %x %x\n", desc, rsp.val, desc->rsp.add_info_0,
desc->rsp.add_info_1);
/* Dequeue. */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response. */
op->status = 0;
op->status |= rsp.input_err << RTE_BBDEV_DATA_ERROR;
op->status |= rsp.dma_err << RTE_BBDEV_DRV_ERROR;
op->status |= rsp.fcw_err << RTE_BBDEV_DRV_ERROR;
if (op->status != 0)
q_data->queue_stats.dequeue_err_count++;
op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
if (op->ldpc_dec.hard_output.length > 0 && !rsp.synd_ok)
op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK) ||
check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_CRC_TYPE_16_CHECK)) {
if (desc->rsp.add_info_1 != 0)
op->status |= 1 << RTE_BBDEV_CRC_ERROR;
}
op->ldpc_dec.iter_count = (uint8_t) rsp.iter_cnt;
/* Check if this is the last desc in batch (Atomic Queue). */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
desc->rsp.add_info_1 = 0;
*ref_op = op;
/* One CB (op) was successfully dequeued. */
return 1;
}
/* Dequeue one decode operations from ACC200 device in TB mode. */
static inline int
dequeue_dec_one_op_tb(struct acc_queue *q, struct rte_bbdev_dec_op **ref_op,
uint16_t dequeued_cbs, uint32_t *aq_dequeued)
{
union acc_dma_desc *desc, *last_desc, atom_desc;
union acc_dma_rsp_desc rsp;
struct rte_bbdev_dec_op *op;
uint8_t cbs_in_tb = 1, cb_idx = 0;
uint32_t tb_crc_check = 0;
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) & q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, __ATOMIC_RELAXED);
/* Check fdone bit. */
if (!(atom_desc.rsp.val & ACC_FDONE))
return -1;
/* Dequeue. */
op = desc->req.op_addr;
/* Get number of CBs in dequeued TB. */
cbs_in_tb = desc->req.cbs_in_tb;
/* Get last CB. */
last_desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs + cbs_in_tb - 1)
& q->sw_ring_wrap_mask);
/* Check if last CB in TB is ready to dequeue (and thus the whole TB) - checking sdone bit.
* If not return.
*/
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc, __ATOMIC_RELAXED);
if (!(atom_desc.rsp.val & ACC_SDONE))
return -1;
/* Clearing status, it will be set based on response. */
op->status = 0;
/* Read remaining CBs if exists. */
while (cb_idx < cbs_in_tb) {
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) & q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, __ATOMIC_RELAXED);
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x %x %x", desc,
rsp.val, desc->rsp.add_info_0,
desc->rsp.add_info_1);
op->status |= ((rsp.input_err) ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK))
tb_crc_check ^= desc->rsp.add_info_1;
/* CRC invalid if error exists. */
if (!op->status)
op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
op->turbo_dec.iter_count = RTE_MAX((uint8_t) rsp.iter_cnt,
op->turbo_dec.iter_count);
/* Check if this is the last desc in batch (Atomic Queue). */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
desc->rsp.add_info_1 = 0;
dequeued_cbs++;
cb_idx++;
}
if (check_bit(op->ldpc_dec.op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK)) {
rte_bbdev_log_debug("TB-CRC Check %x\n", tb_crc_check);
if (tb_crc_check > 0)
op->status |= 1 << RTE_BBDEV_CRC_ERROR;
}
*ref_op = op;
return cb_idx;
}
/* Dequeue encode operations from ACC200 device. */
static uint16_t
acc200_dequeue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
uint32_t avail = acc_ring_avail_deq(q);
uint32_t aq_dequeued = 0;
uint16_t i, dequeued_ops = 0, dequeued_descs = 0;
int ret, cbm;
struct rte_bbdev_enc_op *op;
if (avail == 0)
return 0;
op = (q->ring_addr + (q->sw_ring_tail &
q->sw_ring_wrap_mask))->req.op_addr;
cbm = op->turbo_enc.code_block_mode;
for (i = 0; i < num; i++) {
if (cbm == RTE_BBDEV_TRANSPORT_BLOCK)
ret = dequeue_enc_one_op_tb(q, &ops[dequeued_ops],
&dequeued_ops, &aq_dequeued,
&dequeued_descs);
else
ret = dequeue_enc_one_op_cb(q, &ops[dequeued_ops],
&dequeued_ops, &aq_dequeued,
&dequeued_descs);
if (ret < 0)
break;
if (dequeued_ops >= num)
break;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_descs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += dequeued_ops;
return dequeued_ops;
}
/* Dequeue LDPC encode operations from ACC200 device. */
static uint16_t
acc200_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
uint32_t avail = acc_ring_avail_deq(q);
uint32_t aq_dequeued = 0;
uint16_t i, dequeued_ops = 0, dequeued_descs = 0;
int ret, cbm;
struct rte_bbdev_enc_op *op;
if (avail == 0)
return 0;
op = (q->ring_addr + (q->sw_ring_tail & q->sw_ring_wrap_mask))->req.op_addr;
cbm = op->ldpc_enc.code_block_mode;
for (i = 0; i < avail; i++) {
if (cbm == RTE_BBDEV_TRANSPORT_BLOCK)
ret = dequeue_enc_one_op_tb(q, &ops[dequeued_ops],
&dequeued_ops, &aq_dequeued,
&dequeued_descs);
else
ret = dequeue_enc_one_op_cb(q, &ops[dequeued_ops],
&dequeued_ops, &aq_dequeued,
&dequeued_descs);
if (ret < 0)
break;
if (dequeued_ops >= num)
break;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_descs;
/* Update enqueue stats. */
q_data->queue_stats.dequeued_count += dequeued_ops;
return dequeued_ops;
}
/* Dequeue decode operations from ACC200 device. */
static uint16_t
acc200_dequeue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
uint16_t dequeue_num;
uint32_t avail = acc_ring_avail_deq(q);
uint32_t aq_dequeued = 0;
uint16_t i;
uint16_t dequeued_cbs = 0;
struct rte_bbdev_dec_op *op;
int ret;
dequeue_num = (avail < num) ? avail : num;
for (i = 0; i < dequeue_num; ++i) {
op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask))->req.op_addr;
if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
else
ret = dequeue_dec_one_op_cb(q_data, q, &ops[i],
dequeued_cbs, &aq_dequeued);
if (ret <= 0)
break;
dequeued_cbs += ret;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_cbs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Dequeue decode operations from ACC200 device. */
static uint16_t
acc200_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
uint16_t dequeue_num;
uint32_t avail = acc_ring_avail_deq(q);
uint32_t aq_dequeued = 0;
uint16_t i;
uint16_t dequeued_cbs = 0;
struct rte_bbdev_dec_op *op;
int ret;
dequeue_num = RTE_MIN(avail, num);
for (i = 0; i < dequeue_num; ++i) {
op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask))->req.op_addr;
if (op->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
else
ret = dequeue_ldpc_dec_one_op_cb(
q_data, q, &ops[i], dequeued_cbs,
&aq_dequeued);
if (ret <= 0)
break;
dequeued_cbs += ret;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_cbs;
/* Update enqueue stats. */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Fill in a frame control word for FFT processing. */
static inline void
acc200_fcw_fft_fill(struct rte_bbdev_fft_op *op, struct acc_fcw_fft *fcw)
{
fcw->in_frame_size = op->fft.input_sequence_size;
fcw->leading_pad_size = op->fft.input_leading_padding;
fcw->out_frame_size = op->fft.output_sequence_size;
fcw->leading_depad_size = op->fft.output_leading_depadding;
fcw->cs_window_sel = op->fft.window_index[0] +
(op->fft.window_index[1] << 8) +
(op->fft.window_index[2] << 16) +
(op->fft.window_index[3] << 24);
fcw->cs_window_sel2 = op->fft.window_index[4] +
(op->fft.window_index[5] << 8);
fcw->cs_enable_bmap = op->fft.cs_bitmap;
fcw->num_antennas = op->fft.num_antennas_log2;
fcw->idft_size = op->fft.idft_log2;
fcw->dft_size = op->fft.dft_log2;
fcw->cs_offset = op->fft.cs_time_adjustment;
fcw->idft_shift = op->fft.idft_shift;
fcw->dft_shift = op->fft.dft_shift;
fcw->cs_multiplier = op->fft.ncs_reciprocal;
if (check_bit(op->fft.op_flags, RTE_BBDEV_FFT_IDFT_BYPASS)) {
if (check_bit(op->fft.op_flags, RTE_BBDEV_FFT_WINDOWING_BYPASS))
fcw->bypass = 2;
else
fcw->bypass = 1;
} else if (check_bit(op->fft.op_flags, RTE_BBDEV_FFT_DFT_BYPASS))
fcw->bypass = 3;
else
fcw->bypass = 0;
}
static inline int
acc200_dma_desc_fft_fill(struct rte_bbdev_fft_op *op,
struct acc_dma_req_desc *desc,
struct rte_mbuf *input, struct rte_mbuf *output,
uint32_t *in_offset, uint32_t *out_offset)
{
/* FCW already done. */
acc_header_init(desc);
desc->data_ptrs[1].address = rte_pktmbuf_iova_offset(input, *in_offset);
desc->data_ptrs[1].blen = op->fft.input_sequence_size * 4;
desc->data_ptrs[1].blkid = ACC_DMA_BLKID_IN;
desc->data_ptrs[1].last = 1;
desc->data_ptrs[1].dma_ext = 0;
desc->data_ptrs[2].address = rte_pktmbuf_iova_offset(output, *out_offset);
desc->data_ptrs[2].blen = op->fft.output_sequence_size * 4;
desc->data_ptrs[2].blkid = ACC_DMA_BLKID_OUT_HARD;
desc->data_ptrs[2].last = 1;
desc->data_ptrs[2].dma_ext = 0;
desc->m2dlen = 2;
desc->d2mlen = 1;
desc->ib_ant_offset = op->fft.input_sequence_size;
desc->num_ant = op->fft.num_antennas_log2 - 3;
int num_cs = 0, i;
for (i = 0; i < 12; i++)
if (check_bit(op->fft.cs_bitmap, 1 << i))
num_cs++;
desc->num_cs = num_cs;
desc->ob_cyc_offset = op->fft.output_sequence_size;
desc->ob_ant_offset = op->fft.output_sequence_size * num_cs;
desc->op_addr = op;
return 0;
}
/** Enqueue one FFT operation for ACC200 device. */
static inline int
enqueue_fft_one_op(struct acc_queue *q, struct rte_bbdev_fft_op *op,
uint16_t total_enqueued_cbs)
{
union acc_dma_desc *desc;
uint16_t desc_idx;
struct rte_mbuf *input, *output;
uint32_t in_offset, out_offset;
struct acc_fcw_fft *fcw;
desc_idx = (q->sw_ring_head + total_enqueued_cbs) & q->sw_ring_wrap_mask;
desc = q->ring_addr + desc_idx;
input = op->fft.base_input.data;
output = op->fft.base_output.data;
in_offset = op->fft.base_input.offset;
out_offset = op->fft.base_output.offset;
fcw = &desc->req.fcw_fft;
acc200_fcw_fft_fill(op, fcw);
acc200_dma_desc_fft_fill(op, &desc->req, input, output, &in_offset, &out_offset);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_fft,
sizeof(desc->req.fcw_fft));
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
return 1;
}
/* Enqueue decode operations for ACC200 device. */
static uint16_t
acc200_enqueue_fft(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_fft_op **ops, uint16_t num)
{
struct acc_queue *q;
int32_t aq_avail, avail;
uint16_t i;
union acc_dma_desc *desc;
int ret;
aq_avail = acc_aq_avail(q_data, num);
if (unlikely((aq_avail <= 0) || (num == 0)))
return 0;
q = q_data->queue_private;
avail = acc_ring_avail_enq(q);
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing. */
if (unlikely(avail < 1))
break;
avail -= 1;
ret = enqueue_fft_one_op(q, ops[i], i);
if (ret < 0)
break;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue. */
/* Set SDone in last CB in enqueued ops for CB mode. */
desc = q->ring_addr + ((q->sw_ring_head + i - 1) & q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Dequeue one FFT operations from ACC200 device. */
static inline int
dequeue_fft_one_op(struct rte_bbdev_queue_data *q_data,
struct acc_queue *q, struct rte_bbdev_fft_op **ref_op,
uint16_t dequeued_cbs, uint32_t *aq_dequeued)
{
union acc_dma_desc *desc, atom_desc;
union acc_dma_rsp_desc rsp;
struct rte_bbdev_fft_op *op;
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) & q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, __ATOMIC_RELAXED);
/* Check fdone bit */
if (!(atom_desc.rsp.val & ACC_FDONE))
return -1;
rsp.val = atom_desc.rsp.val;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "Resp", &desc->rsp.val,
sizeof(desc->rsp.val));
#endif
/* Dequeue. */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response. */
op->status = 0;
op->status |= rsp.input_err << RTE_BBDEV_DATA_ERROR;
op->status |= rsp.dma_err << RTE_BBDEV_DRV_ERROR;
op->status |= rsp.fcw_err << RTE_BBDEV_DRV_ERROR;
if (op->status != 0)
q_data->queue_stats.dequeue_err_count++;
/* Check if this is the last desc in batch (Atomic Queue). */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
*ref_op = op;
/* One CB (op) was successfully dequeued. */
return 1;
}
/* Dequeue FFT operations from ACC200 device. */
static uint16_t
acc200_dequeue_fft(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_fft_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
uint16_t dequeue_num, i, dequeued_cbs = 0;
uint32_t avail = acc_ring_avail_deq(q);
uint32_t aq_dequeued = 0;
int ret;
dequeue_num = RTE_MIN(avail, num);
for (i = 0; i < dequeue_num; ++i) {
ret = dequeue_fft_one_op(q_data, q, &ops[i], dequeued_cbs, &aq_dequeued);
if (ret <= 0)
break;
dequeued_cbs += ret;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_cbs;
/* Update enqueue stats. */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Initialization Function */
static void
acc200_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
{
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
dev->dev_ops = &acc200_bbdev_ops;
dev->enqueue_enc_ops = acc200_enqueue_enc;
dev->enqueue_dec_ops = acc200_enqueue_dec;
dev->dequeue_enc_ops = acc200_dequeue_enc;
dev->dequeue_dec_ops = acc200_dequeue_dec;
dev->enqueue_ldpc_enc_ops = acc200_enqueue_ldpc_enc;
dev->enqueue_ldpc_dec_ops = acc200_enqueue_ldpc_dec;
dev->dequeue_ldpc_enc_ops = acc200_dequeue_ldpc_enc;
dev->dequeue_ldpc_dec_ops = acc200_dequeue_ldpc_dec;
dev->enqueue_fft_ops = acc200_enqueue_fft;
dev->dequeue_fft_ops = acc200_dequeue_fft;
((struct acc_device *) dev->data->dev_private)->pf_device =
!strcmp(drv->driver.name,
RTE_STR(ACC200PF_DRIVER_NAME));
((struct acc_device *) dev->data->dev_private)->mmio_base =
pci_dev->mem_resource[0].addr;
rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"",
drv->driver.name, dev->data->name,
(void *)pci_dev->mem_resource[0].addr,
pci_dev->mem_resource[0].phys_addr);
}
static int acc200_pci_probe(struct rte_pci_driver *pci_drv,
struct rte_pci_device *pci_dev)
{
struct rte_bbdev *bbdev = NULL;
char dev_name[RTE_BBDEV_NAME_MAX_LEN];
if (pci_dev == NULL) {
rte_bbdev_log(ERR, "NULL PCI device");
return -EINVAL;
}
rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
/* Allocate memory to be used privately by drivers. */
bbdev = rte_bbdev_allocate(pci_dev->device.name);
if (bbdev == NULL)
return -ENODEV;
/* allocate device private memory. */
bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
sizeof(struct acc_device), RTE_CACHE_LINE_SIZE,
pci_dev->device.numa_node);
if (bbdev->data->dev_private == NULL) {
rte_bbdev_log(CRIT,
"Allocate of %zu bytes for device \"%s\" failed",
sizeof(struct acc_device), dev_name);
rte_bbdev_release(bbdev);
return -ENOMEM;
}
/* Fill HW specific part of device structure. */
bbdev->device = &pci_dev->device;
bbdev->intr_handle = pci_dev->intr_handle;
bbdev->data->socket_id = pci_dev->device.numa_node;
/* Invoke ACC200 device initialization function. */
acc200_bbdev_init(bbdev, pci_drv);
rte_bbdev_log_debug("Initialised bbdev %s (id = %u)",
dev_name, bbdev->data->dev_id);
return 0;
}
static struct rte_pci_driver acc200_pci_pf_driver = {
.probe = acc200_pci_probe,
.remove = acc_pci_remove,
.id_table = pci_id_acc200_pf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
static struct rte_pci_driver acc200_pci_vf_driver = {
.probe = acc200_pci_probe,
.remove = acc_pci_remove,
.id_table = pci_id_acc200_vf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
RTE_PMD_REGISTER_PCI(ACC200PF_DRIVER_NAME, acc200_pci_pf_driver);
RTE_PMD_REGISTER_PCI_TABLE(ACC200PF_DRIVER_NAME, pci_id_acc200_pf_map);
RTE_PMD_REGISTER_PCI(ACC200VF_DRIVER_NAME, acc200_pci_vf_driver);
RTE_PMD_REGISTER_PCI_TABLE(ACC200VF_DRIVER_NAME, pci_id_acc200_vf_map);