numam-dpdk/drivers/net/mlx5/mlx5_rxtx.h
Shachar Beiser 43e9d9794c net/mlx5: support upstream rdma-core
This removes the dependency on specific Mellanox OFED libraries by
using the upstream rdma-core and linux upstream community code.
Both rdma-core upstream and Mellanox OFED are Linux user-space packages:
  1. Rdma-core is Linux upstream user-space package.(Generic)
  2. Mellanox OFED is Mellanox's Linux user-space package.(Proprietary)
The difference between the two are the APIs towards the kernel.

Support for x86-32 is removed due to issues in rdma-core library.
ICC compilation will be supported as soon as the following patch is
integrated in rdma-core:
https://marc.info/?l=linux-rdma&m=150643474705690&w=2

Signed-off-by: Shachar Beiser <shacharbe@mellanox.com>
Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com>
2017-10-06 02:49:49 +02:00

617 lines
19 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef RTE_PMD_MLX5_RXTX_H_
#define RTE_PMD_MLX5_RXTX_H_
#include <stddef.h>
#include <stdint.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/mlx5dv.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_common.h>
#include <rte_hexdump.h>
#include "mlx5_utils.h"
#include "mlx5.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"
struct mlx5_rxq_stats {
unsigned int idx; /**< Mapping index. */
#ifdef MLX5_PMD_SOFT_COUNTERS
uint64_t ipackets; /**< Total of successfully received packets. */
uint64_t ibytes; /**< Total of successfully received bytes. */
#endif
uint64_t idropped; /**< Total of packets dropped when RX ring full. */
uint64_t rx_nombuf; /**< Total of RX mbuf allocation failures. */
};
struct mlx5_txq_stats {
unsigned int idx; /**< Mapping index. */
#ifdef MLX5_PMD_SOFT_COUNTERS
uint64_t opackets; /**< Total of successfully sent packets. */
uint64_t obytes; /**< Total of successfully sent bytes. */
#endif
uint64_t oerrors; /**< Total number of failed transmitted packets. */
};
/* Flow director queue structure. */
struct fdir_queue {
struct ibv_qp *qp; /* Associated RX QP. */
struct ibv_rwq_ind_table *ind_table; /* Indirection table. */
struct ibv_wq *wq; /* Work queue. */
struct ibv_cq *cq; /* Completion queue. */
};
struct priv;
/* Compressed CQE context. */
struct rxq_zip {
uint16_t ai; /* Array index. */
uint16_t ca; /* Current array index. */
uint16_t na; /* Next array index. */
uint16_t cq_ci; /* The next CQE. */
uint32_t cqe_cnt; /* Number of CQEs. */
};
/* RX queue descriptor. */
struct rxq {
unsigned int csum:1; /* Enable checksum offloading. */
unsigned int csum_l2tun:1; /* Same for L2 tunnels. */
unsigned int vlan_strip:1; /* Enable VLAN stripping. */
unsigned int crc_present:1; /* CRC must be subtracted. */
unsigned int sges_n:2; /* Log 2 of SGEs (max buffers per packet). */
unsigned int cqe_n:4; /* Log 2 of CQ elements. */
unsigned int elts_n:4; /* Log 2 of Mbufs. */
unsigned int port_id:8;
unsigned int rss_hash:1; /* RSS hash result is enabled. */
unsigned int mark:1; /* Marked flow available on the queue. */
unsigned int pending_err:1; /* CQE error needs to be handled. */
unsigned int :7; /* Remaining bits. */
volatile uint32_t *rq_db;
volatile uint32_t *cq_db;
uint16_t rq_ci;
uint16_t rq_pi;
uint16_t cq_ci;
volatile struct mlx5_wqe_data_seg(*wqes)[];
volatile struct mlx5_cqe(*cqes)[];
struct rxq_zip zip; /* Compressed context. */
struct rte_mbuf *(*elts)[];
struct rte_mempool *mp;
struct mlx5_rxq_stats stats;
uint64_t mbuf_initializer; /* Default rearm_data for vectorized Rx. */
struct rte_mbuf fake_mbuf; /* elts padding for vectorized Rx. */
void *cq_uar; /* CQ user access region. */
uint32_t cqn; /* CQ number. */
uint8_t cq_arm_sn; /* CQ arm seq number. */
} __rte_cache_aligned;
/* RX queue control descriptor. */
struct rxq_ctrl {
struct priv *priv; /* Back pointer to private data. */
struct ibv_cq *cq; /* Completion Queue. */
struct ibv_wq *wq; /* Work Queue. */
struct fdir_queue *fdir_queue; /* Flow director queue. */
struct ibv_mr *mr; /* Memory Region (for mp). */
struct ibv_comp_channel *channel;
unsigned int socket; /* CPU socket ID for allocations. */
struct rxq rxq; /* Data path structure. */
};
/* Hash RX queue types. */
enum hash_rxq_type {
HASH_RXQ_TCPV4,
HASH_RXQ_UDPV4,
HASH_RXQ_IPV4,
HASH_RXQ_TCPV6,
HASH_RXQ_UDPV6,
HASH_RXQ_IPV6,
HASH_RXQ_ETH,
};
/* Flow structure with Ethernet specification. It is packed to prevent padding
* between attr and spec as this layout is expected by libibverbs. */
struct flow_attr_spec_eth {
struct ibv_flow_attr attr;
struct ibv_flow_spec_eth spec;
} __attribute__((packed));
/* Define a struct flow_attr_spec_eth object as an array of at least
* "size" bytes. Room after the first index is normally used to store
* extra flow specifications. */
#define FLOW_ATTR_SPEC_ETH(name, size) \
struct flow_attr_spec_eth name \
[((size) / sizeof(struct flow_attr_spec_eth)) + \
!!((size) % sizeof(struct flow_attr_spec_eth))]
/* Initialization data for hash RX queue. */
struct hash_rxq_init {
uint64_t hash_fields; /* Fields that participate in the hash. */
uint64_t dpdk_rss_hf; /* Matching DPDK RSS hash fields. */
unsigned int flow_priority; /* Flow priority to use. */
union {
struct {
enum ibv_flow_spec_type type;
uint16_t size;
} hdr;
struct ibv_flow_spec_tcp_udp tcp_udp;
struct ibv_flow_spec_ipv4 ipv4;
struct ibv_flow_spec_ipv6 ipv6;
struct ibv_flow_spec_eth eth;
} flow_spec; /* Flow specification template. */
const struct hash_rxq_init *underlayer; /* Pointer to underlayer. */
};
/* Initialization data for indirection table. */
struct ind_table_init {
unsigned int max_size; /* Maximum number of WQs. */
/* Hash RX queues using this table. */
unsigned int hash_types;
unsigned int hash_types_n;
};
/* Initialization data for special flows. */
struct special_flow_init {
uint8_t dst_mac_val[6];
uint8_t dst_mac_mask[6];
unsigned int hash_types;
unsigned int per_vlan:1;
};
enum hash_rxq_flow_type {
HASH_RXQ_FLOW_TYPE_PROMISC,
HASH_RXQ_FLOW_TYPE_ALLMULTI,
HASH_RXQ_FLOW_TYPE_BROADCAST,
HASH_RXQ_FLOW_TYPE_IPV6MULTI,
HASH_RXQ_FLOW_TYPE_MAC,
};
#ifndef NDEBUG
static inline const char *
hash_rxq_flow_type_str(enum hash_rxq_flow_type flow_type)
{
switch (flow_type) {
case HASH_RXQ_FLOW_TYPE_PROMISC:
return "promiscuous";
case HASH_RXQ_FLOW_TYPE_ALLMULTI:
return "allmulticast";
case HASH_RXQ_FLOW_TYPE_BROADCAST:
return "broadcast";
case HASH_RXQ_FLOW_TYPE_IPV6MULTI:
return "IPv6 multicast";
case HASH_RXQ_FLOW_TYPE_MAC:
return "MAC";
}
return NULL;
}
#endif /* NDEBUG */
struct hash_rxq {
struct priv *priv; /* Back pointer to private data. */
struct ibv_qp *qp; /* Hash RX QP. */
enum hash_rxq_type type; /* Hash RX queue type. */
/* MAC flow steering rules, one per VLAN ID. */
struct ibv_flow *mac_flow
[MLX5_MAX_MAC_ADDRESSES][MLX5_MAX_VLAN_IDS];
struct ibv_flow *special_flow
[MLX5_MAX_SPECIAL_FLOWS][MLX5_MAX_VLAN_IDS];
};
/* TX queue descriptor. */
__extension__
struct txq {
uint16_t elts_head; /* Current counter in (*elts)[]. */
uint16_t elts_tail; /* Counter of first element awaiting completion. */
uint16_t elts_comp; /* Counter since last completion request. */
uint16_t mpw_comp; /* WQ index since last completion request. */
uint16_t cq_ci; /* Consumer index for completion queue. */
uint16_t cq_pi; /* Producer index for completion queue. */
uint16_t wqe_ci; /* Consumer index for work queue. */
uint16_t wqe_pi; /* Producer index for work queue. */
uint16_t elts_n:4; /* (*elts)[] length (in log2). */
uint16_t cqe_n:4; /* Number of CQ elements (in log2). */
uint16_t wqe_n:4; /* Number of of WQ elements (in log2). */
uint16_t inline_en:1; /* When set inline is enabled. */
uint16_t tso_en:1; /* When set hardware TSO is enabled. */
uint16_t tunnel_en:1;
/* When set TX offload for tunneled packets are supported. */
uint16_t mpw_hdr_dseg:1; /* Enable DSEGs in the title WQEBB. */
uint16_t max_inline; /* Multiple of RTE_CACHE_LINE_SIZE to inline. */
uint16_t inline_max_packet_sz; /* Max packet size for inlining. */
uint32_t qp_num_8s; /* QP number shifted by 8. */
uint32_t flags; /* Flags for Tx Queue. */
volatile struct mlx5_cqe (*cqes)[]; /* Completion queue. */
volatile void *wqes; /* Work queue (use volatile to write into). */
volatile uint32_t *qp_db; /* Work queue doorbell. */
volatile uint32_t *cq_db; /* Completion queue doorbell. */
volatile void *bf_reg; /* Blueflame register. */
struct {
uintptr_t start; /* Start address of MR */
uintptr_t end; /* End address of MR */
struct ibv_mr *mr; /* Memory Region (for mp). */
uint32_t lkey; /* rte_cpu_to_be_32(mr->lkey) */
} mp2mr[MLX5_PMD_TX_MP_CACHE]; /* MP to MR translation table. */
uint16_t mr_cache_idx; /* Index of last hit entry. */
struct rte_mbuf *(*elts)[]; /* TX elements. */
struct mlx5_txq_stats stats; /* TX queue counters. */
} __rte_cache_aligned;
/* TX queue control descriptor. */
struct txq_ctrl {
struct priv *priv; /* Back pointer to private data. */
struct ibv_cq *cq; /* Completion Queue. */
struct ibv_qp *qp; /* Queue Pair. */
unsigned int socket; /* CPU socket ID for allocations. */
struct txq txq; /* Data path structure. */
};
/* mlx5_rxq.c */
extern const struct hash_rxq_init hash_rxq_init[];
extern const unsigned int hash_rxq_init_n;
extern uint8_t rss_hash_default_key[];
extern const size_t rss_hash_default_key_len;
size_t priv_flow_attr(struct priv *, struct ibv_flow_attr *,
size_t, enum hash_rxq_type);
int priv_create_hash_rxqs(struct priv *);
void priv_destroy_hash_rxqs(struct priv *);
int priv_allow_flow_type(struct priv *, enum hash_rxq_flow_type);
int priv_rehash_flows(struct priv *);
void rxq_cleanup(struct rxq_ctrl *);
int mlx5_rx_queue_setup(struct rte_eth_dev *, uint16_t, uint16_t, unsigned int,
const struct rte_eth_rxconf *, struct rte_mempool *);
void mlx5_rx_queue_release(void *);
int priv_rx_intr_vec_enable(struct priv *priv);
void priv_rx_intr_vec_disable(struct priv *priv);
int mlx5_rx_intr_enable(struct rte_eth_dev *dev, uint16_t rx_queue_id);
int mlx5_rx_intr_disable(struct rte_eth_dev *dev, uint16_t rx_queue_id);
/* mlx5_txq.c */
void txq_cleanup(struct txq_ctrl *);
int txq_ctrl_setup(struct rte_eth_dev *, struct txq_ctrl *, uint16_t,
unsigned int, const struct rte_eth_txconf *);
int mlx5_tx_queue_setup(struct rte_eth_dev *, uint16_t, uint16_t, unsigned int,
const struct rte_eth_txconf *);
void mlx5_tx_queue_release(void *);
/* mlx5_rxtx.c */
extern uint32_t mlx5_ptype_table[];
void mlx5_set_ptype_table(void);
uint16_t mlx5_tx_burst(void *, struct rte_mbuf **, uint16_t);
uint16_t mlx5_tx_burst_mpw(void *, struct rte_mbuf **, uint16_t);
uint16_t mlx5_tx_burst_mpw_inline(void *, struct rte_mbuf **, uint16_t);
uint16_t mlx5_tx_burst_empw(void *, struct rte_mbuf **, uint16_t);
uint16_t mlx5_rx_burst(void *, struct rte_mbuf **, uint16_t);
uint16_t removed_tx_burst(void *, struct rte_mbuf **, uint16_t);
uint16_t removed_rx_burst(void *, struct rte_mbuf **, uint16_t);
int mlx5_rx_descriptor_status(void *, uint16_t);
int mlx5_tx_descriptor_status(void *, uint16_t);
/* Vectorized version of mlx5_rxtx.c */
int priv_check_raw_vec_tx_support(struct priv *);
int priv_check_vec_tx_support(struct priv *);
int rxq_check_vec_support(struct rxq *);
int priv_check_vec_rx_support(struct priv *);
uint16_t mlx5_tx_burst_raw_vec(void *, struct rte_mbuf **, uint16_t);
uint16_t mlx5_tx_burst_vec(void *, struct rte_mbuf **, uint16_t);
uint16_t mlx5_rx_burst_vec(void *, struct rte_mbuf **, uint16_t);
/* mlx5_mr.c */
struct ibv_mr *mlx5_mp2mr(struct ibv_pd *, struct rte_mempool *);
void txq_mp2mr_iter(struct rte_mempool *, void *);
uint32_t txq_mp2mr_reg(struct txq *, struct rte_mempool *, unsigned int);
#ifndef NDEBUG
/**
* Verify or set magic value in CQE.
*
* @param cqe
* Pointer to CQE.
*
* @return
* 0 the first time.
*/
static inline int
check_cqe_seen(volatile struct mlx5_cqe *cqe)
{
static const uint8_t magic[] = "seen";
volatile uint8_t (*buf)[sizeof(cqe->rsvd0)] = &cqe->rsvd0;
int ret = 1;
unsigned int i;
for (i = 0; i < sizeof(magic) && i < sizeof(*buf); ++i)
if (!ret || (*buf)[i] != magic[i]) {
ret = 0;
(*buf)[i] = magic[i];
}
return ret;
}
#endif /* NDEBUG */
/**
* Check whether CQE is valid.
*
* @param cqe
* Pointer to CQE.
* @param cqes_n
* Size of completion queue.
* @param ci
* Consumer index.
*
* @return
* 0 on success, 1 on failure.
*/
static __rte_always_inline int
check_cqe(volatile struct mlx5_cqe *cqe,
unsigned int cqes_n, const uint16_t ci)
{
uint16_t idx = ci & cqes_n;
uint8_t op_own = cqe->op_own;
uint8_t op_owner = MLX5_CQE_OWNER(op_own);
uint8_t op_code = MLX5_CQE_OPCODE(op_own);
if (unlikely((op_owner != (!!(idx))) || (op_code == MLX5_CQE_INVALID)))
return 1; /* No CQE. */
#ifndef NDEBUG
if ((op_code == MLX5_CQE_RESP_ERR) ||
(op_code == MLX5_CQE_REQ_ERR)) {
volatile struct mlx5_err_cqe *err_cqe = (volatile void *)cqe;
uint8_t syndrome = err_cqe->syndrome;
if ((syndrome == MLX5_CQE_SYNDROME_LOCAL_LENGTH_ERR) ||
(syndrome == MLX5_CQE_SYNDROME_REMOTE_ABORTED_ERR))
return 0;
if (!check_cqe_seen(cqe)) {
ERROR("unexpected CQE error %u (0x%02x)"
" syndrome 0x%02x",
op_code, op_code, syndrome);
rte_hexdump(stderr, "MLX5 Error CQE:",
(const void *)((uintptr_t)err_cqe),
sizeof(*err_cqe));
}
return 1;
} else if ((op_code != MLX5_CQE_RESP_SEND) &&
(op_code != MLX5_CQE_REQ)) {
if (!check_cqe_seen(cqe)) {
ERROR("unexpected CQE opcode %u (0x%02x)",
op_code, op_code);
rte_hexdump(stderr, "MLX5 CQE:",
(const void *)((uintptr_t)cqe),
sizeof(*cqe));
}
return 1;
}
#endif /* NDEBUG */
return 0;
}
/**
* Return the address of the WQE.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe_ci
* WQE consumer index.
*
* @return
* WQE address.
*/
static inline uintptr_t *
tx_mlx5_wqe(struct txq *txq, uint16_t ci)
{
ci &= ((1 << txq->wqe_n) - 1);
return (uintptr_t *)((uintptr_t)txq->wqes + ci * MLX5_WQE_SIZE);
}
/**
* Manage TX completions.
*
* When sending a burst, mlx5_tx_burst() posts several WRs.
*
* @param txq
* Pointer to TX queue structure.
*/
static __rte_always_inline void
mlx5_tx_complete(struct txq *txq)
{
const uint16_t elts_n = 1 << txq->elts_n;
const uint16_t elts_m = elts_n - 1;
const unsigned int cqe_n = 1 << txq->cqe_n;
const unsigned int cqe_cnt = cqe_n - 1;
uint16_t elts_free = txq->elts_tail;
uint16_t elts_tail;
uint16_t cq_ci = txq->cq_ci;
volatile struct mlx5_cqe *cqe = NULL;
volatile struct mlx5_wqe_ctrl *ctrl;
struct rte_mbuf *m, *free[elts_n];
struct rte_mempool *pool = NULL;
unsigned int blk_n = 0;
cqe = &(*txq->cqes)[cq_ci & cqe_cnt];
if (unlikely(check_cqe(cqe, cqe_n, cq_ci)))
return;
#ifndef NDEBUG
if ((MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_RESP_ERR) ||
(MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_REQ_ERR)) {
if (!check_cqe_seen(cqe)) {
ERROR("unexpected error CQE, TX stopped");
rte_hexdump(stderr, "MLX5 TXQ:",
(const void *)((uintptr_t)txq->wqes),
((1 << txq->wqe_n) *
MLX5_WQE_SIZE));
}
return;
}
#endif /* NDEBUG */
++cq_ci;
txq->wqe_pi = rte_be_to_cpu_16(cqe->wqe_counter);
ctrl = (volatile struct mlx5_wqe_ctrl *)
tx_mlx5_wqe(txq, txq->wqe_pi);
elts_tail = ctrl->ctrl3;
assert((elts_tail & elts_m) < (1 << txq->wqe_n));
/* Free buffers. */
while (elts_free != elts_tail) {
m = rte_pktmbuf_prefree_seg((*txq->elts)[elts_free++ & elts_m]);
if (likely(m != NULL)) {
if (likely(m->pool == pool)) {
free[blk_n++] = m;
} else {
if (likely(pool != NULL))
rte_mempool_put_bulk(pool,
(void *)free,
blk_n);
free[0] = m;
pool = m->pool;
blk_n = 1;
}
}
}
if (blk_n)
rte_mempool_put_bulk(pool, (void *)free, blk_n);
#ifndef NDEBUG
elts_free = txq->elts_tail;
/* Poisoning. */
while (elts_free != elts_tail) {
memset(&(*txq->elts)[elts_free & elts_m],
0x66,
sizeof((*txq->elts)[elts_free & elts_m]));
++elts_free;
}
#endif
txq->cq_ci = cq_ci;
txq->elts_tail = elts_tail;
/* Update the consumer index. */
rte_wmb();
*txq->cq_db = rte_cpu_to_be_32(cq_ci);
}
/**
* Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which
* the cloned mbuf is allocated is returned instead.
*
* @param buf
* Pointer to mbuf.
*
* @return
* Memory pool where data is located for given mbuf.
*/
static struct rte_mempool *
mlx5_tx_mb2mp(struct rte_mbuf *buf)
{
if (unlikely(RTE_MBUF_INDIRECT(buf)))
return rte_mbuf_from_indirect(buf)->pool;
return buf->pool;
}
/**
* Get Memory Region (MR) <-> rte_mbuf association from txq->mp2mr[].
* Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
* remove an entry first.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] mp
* Memory Pool for which a Memory Region lkey must be returned.
*
* @return
* mr->lkey on success, (uint32_t)-1 on failure.
*/
static __rte_always_inline uint32_t
mlx5_tx_mb2mr(struct txq *txq, struct rte_mbuf *mb)
{
uint16_t i = txq->mr_cache_idx;
uintptr_t addr = rte_pktmbuf_mtod(mb, uintptr_t);
assert(i < RTE_DIM(txq->mp2mr));
if (likely(txq->mp2mr[i].start <= addr && txq->mp2mr[i].end >= addr))
return txq->mp2mr[i].lkey;
for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
if (unlikely(txq->mp2mr[i].mr == NULL)) {
/* Unknown MP, add a new MR for it. */
break;
}
if (txq->mp2mr[i].start <= addr &&
txq->mp2mr[i].end >= addr) {
assert(txq->mp2mr[i].lkey != (uint32_t)-1);
assert(rte_cpu_to_be_32(txq->mp2mr[i].mr->lkey) ==
txq->mp2mr[i].lkey);
txq->mr_cache_idx = i;
return txq->mp2mr[i].lkey;
}
}
txq->mr_cache_idx = 0;
return txq_mp2mr_reg(txq, mlx5_tx_mb2mp(mb), i);
}
/**
* Ring TX queue doorbell.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe
* Pointer to the last WQE posted in the NIC.
*/
static __rte_always_inline void
mlx5_tx_dbrec(struct txq *txq, volatile struct mlx5_wqe *wqe)
{
uint64_t *dst = (uint64_t *)((uintptr_t)txq->bf_reg);
volatile uint64_t *src = ((volatile uint64_t *)wqe);
rte_io_wmb();
*txq->qp_db = rte_cpu_to_be_32(txq->wqe_ci);
/* Ensure ordering between DB record and BF copy. */
rte_wmb();
*dst = *src;
}
#endif /* RTE_PMD_MLX5_RXTX_H_ */