15fb42d511
The rte_eth_dev_close() function now handles freeing resources for devices (e.g., mac_addrs). To conform with the new close() behaviour we are asserting the RTE_ETH_DEV_CLOSE_REMOVE flag so that rte_eth_dev_close() releases all device level dynamic memory. Second level memory allocated to each individual rx/tx queue is now freed as part of the close() operation therefore making it safe for the rte_eth_dev_close() function to free the device private data without orphaning the rx/tx queue pointers. Signed-off-by: Allain Legacy <allain.legacy@windriver.com> Acked-by: Matt Peters <matt.peters@windriver.com>
2308 lines
62 KiB
C
2308 lines
62 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2013-2017 Wind River Systems, Inc.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
|
|
#include <rte_ethdev_driver.h>
|
|
#include <rte_ethdev_pci.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_bus_pci.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_common.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_dev.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_io.h>
|
|
|
|
#include "rte_avp_common.h"
|
|
#include "rte_avp_fifo.h"
|
|
|
|
#include "avp_logs.h"
|
|
|
|
int avp_logtype_driver;
|
|
|
|
static int avp_dev_create(struct rte_pci_device *pci_dev,
|
|
struct rte_eth_dev *eth_dev);
|
|
|
|
static int avp_dev_configure(struct rte_eth_dev *dev);
|
|
static int avp_dev_start(struct rte_eth_dev *dev);
|
|
static void avp_dev_stop(struct rte_eth_dev *dev);
|
|
static void avp_dev_close(struct rte_eth_dev *dev);
|
|
static void avp_dev_info_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_dev_info *dev_info);
|
|
static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask);
|
|
static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete);
|
|
static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev);
|
|
static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev);
|
|
|
|
static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t rx_queue_id,
|
|
uint16_t nb_rx_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *pool);
|
|
|
|
static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t tx_queue_id,
|
|
uint16_t nb_tx_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf);
|
|
|
|
static uint16_t avp_recv_scattered_pkts(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts);
|
|
|
|
static uint16_t avp_recv_pkts(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts);
|
|
|
|
static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts);
|
|
|
|
static uint16_t avp_xmit_pkts(void *tx_queue,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts);
|
|
|
|
static void avp_dev_rx_queue_release(void *rxq);
|
|
static void avp_dev_tx_queue_release(void *txq);
|
|
|
|
static int avp_dev_stats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_stats *stats);
|
|
static void avp_dev_stats_reset(struct rte_eth_dev *dev);
|
|
|
|
|
|
#define AVP_MAX_RX_BURST 64
|
|
#define AVP_MAX_TX_BURST 64
|
|
#define AVP_MAX_MAC_ADDRS 1
|
|
#define AVP_MIN_RX_BUFSIZE RTE_ETHER_MIN_LEN
|
|
|
|
|
|
/*
|
|
* Defines the number of microseconds to wait before checking the response
|
|
* queue for completion.
|
|
*/
|
|
#define AVP_REQUEST_DELAY_USECS (5000)
|
|
|
|
/*
|
|
* Defines the number times to check the response queue for completion before
|
|
* declaring a timeout.
|
|
*/
|
|
#define AVP_MAX_REQUEST_RETRY (100)
|
|
|
|
/* Defines the current PCI driver version number */
|
|
#define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION
|
|
|
|
/*
|
|
* The set of PCI devices this driver supports
|
|
*/
|
|
static const struct rte_pci_id pci_id_avp_map[] = {
|
|
{ .vendor_id = RTE_AVP_PCI_VENDOR_ID,
|
|
.device_id = RTE_AVP_PCI_DEVICE_ID,
|
|
.subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID,
|
|
.subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID,
|
|
.class_id = RTE_CLASS_ANY_ID,
|
|
},
|
|
|
|
{ .vendor_id = 0, /* sentinel */
|
|
},
|
|
};
|
|
|
|
/*
|
|
* dev_ops for avp, bare necessities for basic operation
|
|
*/
|
|
static const struct eth_dev_ops avp_eth_dev_ops = {
|
|
.dev_configure = avp_dev_configure,
|
|
.dev_start = avp_dev_start,
|
|
.dev_stop = avp_dev_stop,
|
|
.dev_close = avp_dev_close,
|
|
.dev_infos_get = avp_dev_info_get,
|
|
.vlan_offload_set = avp_vlan_offload_set,
|
|
.stats_get = avp_dev_stats_get,
|
|
.stats_reset = avp_dev_stats_reset,
|
|
.link_update = avp_dev_link_update,
|
|
.promiscuous_enable = avp_dev_promiscuous_enable,
|
|
.promiscuous_disable = avp_dev_promiscuous_disable,
|
|
.rx_queue_setup = avp_dev_rx_queue_setup,
|
|
.rx_queue_release = avp_dev_rx_queue_release,
|
|
.tx_queue_setup = avp_dev_tx_queue_setup,
|
|
.tx_queue_release = avp_dev_tx_queue_release,
|
|
};
|
|
|
|
/**@{ AVP device flags */
|
|
#define AVP_F_PROMISC (1 << 1)
|
|
#define AVP_F_CONFIGURED (1 << 2)
|
|
#define AVP_F_LINKUP (1 << 3)
|
|
#define AVP_F_DETACHED (1 << 4)
|
|
/**@} */
|
|
|
|
/* Ethernet device validation marker */
|
|
#define AVP_ETHDEV_MAGIC 0x92972862
|
|
|
|
/*
|
|
* Defines the AVP device attributes which are attached to an RTE ethernet
|
|
* device
|
|
*/
|
|
struct avp_dev {
|
|
uint32_t magic; /**< Memory validation marker */
|
|
uint64_t device_id; /**< Unique system identifier */
|
|
struct rte_ether_addr ethaddr; /**< Host specified MAC address */
|
|
struct rte_eth_dev_data *dev_data;
|
|
/**< Back pointer to ethernet device data */
|
|
volatile uint32_t flags; /**< Device operational flags */
|
|
uint16_t port_id; /**< Ethernet port identifier */
|
|
struct rte_mempool *pool; /**< pkt mbuf mempool */
|
|
unsigned int guest_mbuf_size; /**< local pool mbuf size */
|
|
unsigned int host_mbuf_size; /**< host mbuf size */
|
|
unsigned int max_rx_pkt_len; /**< maximum receive unit */
|
|
uint32_t host_features; /**< Supported feature bitmap */
|
|
uint32_t features; /**< Enabled feature bitmap */
|
|
unsigned int num_tx_queues; /**< Negotiated number of transmit queues */
|
|
unsigned int max_tx_queues; /**< Maximum number of transmit queues */
|
|
unsigned int num_rx_queues; /**< Negotiated number of receive queues */
|
|
unsigned int max_rx_queues; /**< Maximum number of receive queues */
|
|
|
|
struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */
|
|
struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */
|
|
struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES];
|
|
/**< Allocated mbufs queue */
|
|
struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES];
|
|
/**< To be freed mbufs queue */
|
|
|
|
/* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */
|
|
rte_spinlock_t lock;
|
|
|
|
/* For request & response */
|
|
struct rte_avp_fifo *req_q; /**< Request queue */
|
|
struct rte_avp_fifo *resp_q; /**< Response queue */
|
|
void *host_sync_addr; /**< (host) Req/Resp Mem address */
|
|
void *sync_addr; /**< Req/Resp Mem address */
|
|
void *host_mbuf_addr; /**< (host) MBUF pool start address */
|
|
void *mbuf_addr; /**< MBUF pool start address */
|
|
} __rte_cache_aligned;
|
|
|
|
/* RTE ethernet private data */
|
|
struct avp_adapter {
|
|
struct avp_dev avp;
|
|
} __rte_cache_aligned;
|
|
|
|
|
|
/* 32-bit MMIO register write */
|
|
#define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr))
|
|
|
|
/* 32-bit MMIO register read */
|
|
#define AVP_READ32(_addr) rte_read32_relaxed((_addr))
|
|
|
|
/* Macro to cast the ethernet device private data to a AVP object */
|
|
#define AVP_DEV_PRIVATE_TO_HW(adapter) \
|
|
(&((struct avp_adapter *)adapter)->avp)
|
|
|
|
/*
|
|
* Defines the structure of a AVP device queue for the purpose of handling the
|
|
* receive and transmit burst callback functions
|
|
*/
|
|
struct avp_queue {
|
|
struct rte_eth_dev_data *dev_data;
|
|
/**< Backpointer to ethernet device data */
|
|
struct avp_dev *avp; /**< Backpointer to AVP device */
|
|
uint16_t queue_id;
|
|
/**< Queue identifier used for indexing current queue */
|
|
uint16_t queue_base;
|
|
/**< Base queue identifier for queue servicing */
|
|
uint16_t queue_limit;
|
|
/**< Maximum queue identifier for queue servicing */
|
|
|
|
uint64_t packets;
|
|
uint64_t bytes;
|
|
uint64_t errors;
|
|
};
|
|
|
|
/* send a request and wait for a response
|
|
*
|
|
* @warning must be called while holding the avp->lock spinlock.
|
|
*/
|
|
static int
|
|
avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request)
|
|
{
|
|
unsigned int retry = AVP_MAX_REQUEST_RETRY;
|
|
void *resp_addr = NULL;
|
|
unsigned int count;
|
|
int ret;
|
|
|
|
PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id);
|
|
|
|
request->result = -ENOTSUP;
|
|
|
|
/* Discard any stale responses before starting a new request */
|
|
while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1))
|
|
PMD_DRV_LOG(DEBUG, "Discarding stale response\n");
|
|
|
|
rte_memcpy(avp->sync_addr, request, sizeof(*request));
|
|
count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1);
|
|
if (count < 1) {
|
|
PMD_DRV_LOG(ERR, "Cannot send request %u to host\n",
|
|
request->req_id);
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
while (retry--) {
|
|
/* wait for a response */
|
|
usleep(AVP_REQUEST_DELAY_USECS);
|
|
|
|
count = avp_fifo_count(avp->resp_q);
|
|
if (count >= 1) {
|
|
/* response received */
|
|
break;
|
|
}
|
|
|
|
if ((count < 1) && (retry == 0)) {
|
|
PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n",
|
|
request->req_id);
|
|
ret = -ETIME;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* retrieve the response */
|
|
count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1);
|
|
if ((count != 1) || (resp_addr != avp->host_sync_addr)) {
|
|
PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n",
|
|
count, resp_addr, avp->host_sync_addr);
|
|
ret = -ENODATA;
|
|
goto done;
|
|
}
|
|
|
|
/* copy to user buffer */
|
|
rte_memcpy(request, avp->sync_addr, sizeof(*request));
|
|
ret = 0;
|
|
|
|
PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n",
|
|
request->result, request->req_id);
|
|
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_avp_request request;
|
|
int ret;
|
|
|
|
/* setup a link state change request */
|
|
memset(&request, 0, sizeof(request));
|
|
request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF;
|
|
request.if_up = state;
|
|
|
|
ret = avp_dev_process_request(avp, &request);
|
|
|
|
return ret == 0 ? request.result : ret;
|
|
}
|
|
|
|
static int
|
|
avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev,
|
|
struct rte_avp_device_config *config)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_avp_request request;
|
|
int ret;
|
|
|
|
/* setup a configure request */
|
|
memset(&request, 0, sizeof(request));
|
|
request.req_id = RTE_AVP_REQ_CFG_DEVICE;
|
|
memcpy(&request.config, config, sizeof(request.config));
|
|
|
|
ret = avp_dev_process_request(avp, &request);
|
|
|
|
return ret == 0 ? request.result : ret;
|
|
}
|
|
|
|
static int
|
|
avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_avp_request request;
|
|
int ret;
|
|
|
|
/* setup a shutdown request */
|
|
memset(&request, 0, sizeof(request));
|
|
request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE;
|
|
|
|
ret = avp_dev_process_request(avp, &request);
|
|
|
|
return ret == 0 ? request.result : ret;
|
|
}
|
|
|
|
/* translate from host mbuf virtual address to guest virtual address */
|
|
static inline void *
|
|
avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address)
|
|
{
|
|
return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address,
|
|
(uintptr_t)avp->host_mbuf_addr),
|
|
(uintptr_t)avp->mbuf_addr);
|
|
}
|
|
|
|
/* translate from host physical address to guest virtual address */
|
|
static void *
|
|
avp_dev_translate_address(struct rte_eth_dev *eth_dev,
|
|
rte_iova_t host_phys_addr)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
struct rte_mem_resource *resource;
|
|
struct rte_avp_memmap_info *info;
|
|
struct rte_avp_memmap *map;
|
|
off_t offset;
|
|
void *addr;
|
|
unsigned int i;
|
|
|
|
addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr;
|
|
resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR];
|
|
info = (struct rte_avp_memmap_info *)resource->addr;
|
|
|
|
offset = 0;
|
|
for (i = 0; i < info->nb_maps; i++) {
|
|
/* search all segments looking for a matching address */
|
|
map = &info->maps[i];
|
|
|
|
if ((host_phys_addr >= map->phys_addr) &&
|
|
(host_phys_addr < (map->phys_addr + map->length))) {
|
|
/* address is within this segment */
|
|
offset += (host_phys_addr - map->phys_addr);
|
|
addr = RTE_PTR_ADD(addr, (uintptr_t)offset);
|
|
|
|
PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n",
|
|
host_phys_addr, addr);
|
|
|
|
return addr;
|
|
}
|
|
offset += map->length;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* verify that the incoming device version is compatible with our version */
|
|
static int
|
|
avp_dev_version_check(uint32_t version)
|
|
{
|
|
uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION);
|
|
uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version);
|
|
|
|
if (device <= driver) {
|
|
/* the host driver version is less than or equal to ours */
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* verify that memory regions have expected version and validation markers */
|
|
static int
|
|
avp_dev_check_regions(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
struct rte_avp_memmap_info *memmap;
|
|
struct rte_avp_device_info *info;
|
|
struct rte_mem_resource *resource;
|
|
unsigned int i;
|
|
|
|
/* Dump resource info for debug */
|
|
for (i = 0; i < PCI_MAX_RESOURCE; i++) {
|
|
resource = &pci_dev->mem_resource[i];
|
|
if ((resource->phys_addr == 0) || (resource->len == 0))
|
|
continue;
|
|
|
|
PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n",
|
|
i, resource->phys_addr,
|
|
resource->len, resource->addr);
|
|
|
|
switch (i) {
|
|
case RTE_AVP_PCI_MEMMAP_BAR:
|
|
memmap = (struct rte_avp_memmap_info *)resource->addr;
|
|
if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) ||
|
|
(memmap->version != RTE_AVP_MEMMAP_VERSION)) {
|
|
PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n",
|
|
memmap->magic, memmap->version);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
case RTE_AVP_PCI_DEVICE_BAR:
|
|
info = (struct rte_avp_device_info *)resource->addr;
|
|
if ((info->magic != RTE_AVP_DEVICE_MAGIC) ||
|
|
avp_dev_version_check(info->version)) {
|
|
PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n",
|
|
info->magic, info->version,
|
|
AVP_DPDK_DRIVER_VERSION);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
case RTE_AVP_PCI_MEMORY_BAR:
|
|
case RTE_AVP_PCI_MMIO_BAR:
|
|
if (resource->addr == NULL) {
|
|
PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n",
|
|
i);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
case RTE_AVP_PCI_MSIX_BAR:
|
|
default:
|
|
/* no validation required */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
avp_dev_detach(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
int ret;
|
|
|
|
PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n",
|
|
eth_dev->data->port_id, avp->device_id);
|
|
|
|
rte_spinlock_lock(&avp->lock);
|
|
|
|
if (avp->flags & AVP_F_DETACHED) {
|
|
PMD_DRV_LOG(NOTICE, "port %u already detached\n",
|
|
eth_dev->data->port_id);
|
|
ret = 0;
|
|
goto unlock;
|
|
}
|
|
|
|
/* shutdown the device first so the host stops sending us packets. */
|
|
ret = avp_dev_ctrl_shutdown(eth_dev);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n",
|
|
ret);
|
|
avp->flags &= ~AVP_F_DETACHED;
|
|
goto unlock;
|
|
}
|
|
|
|
avp->flags |= AVP_F_DETACHED;
|
|
rte_wmb();
|
|
|
|
/* wait for queues to acknowledge the presence of the detach flag */
|
|
rte_delay_ms(1);
|
|
|
|
ret = 0;
|
|
|
|
unlock:
|
|
rte_spinlock_unlock(&avp->lock);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
_avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
|
|
{
|
|
struct avp_dev *avp =
|
|
AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct avp_queue *rxq;
|
|
uint16_t queue_count;
|
|
uint16_t remainder;
|
|
|
|
rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id];
|
|
|
|
/*
|
|
* Must map all AVP fifos as evenly as possible between the configured
|
|
* device queues. Each device queue will service a subset of the AVP
|
|
* fifos. If there is an odd number of device queues the first set of
|
|
* device queues will get the extra AVP fifos.
|
|
*/
|
|
queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues;
|
|
remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues;
|
|
if (rx_queue_id < remainder) {
|
|
/* these queues must service one extra FIFO */
|
|
rxq->queue_base = rx_queue_id * (queue_count + 1);
|
|
rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1;
|
|
} else {
|
|
/* these queues service the regular number of FIFO */
|
|
rxq->queue_base = ((remainder * (queue_count + 1)) +
|
|
((rx_queue_id - remainder) * queue_count));
|
|
rxq->queue_limit = rxq->queue_base + queue_count - 1;
|
|
}
|
|
|
|
PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n",
|
|
rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit);
|
|
|
|
rxq->queue_id = rxq->queue_base;
|
|
}
|
|
|
|
static void
|
|
_avp_set_queue_counts(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_avp_device_info *host_info;
|
|
void *addr;
|
|
|
|
addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
|
|
host_info = (struct rte_avp_device_info *)addr;
|
|
|
|
/*
|
|
* the transmit direction is not negotiated beyond respecting the max
|
|
* number of queues because the host can handle arbitrary guest tx
|
|
* queues (host rx queues).
|
|
*/
|
|
avp->num_tx_queues = eth_dev->data->nb_tx_queues;
|
|
|
|
/*
|
|
* the receive direction is more restrictive. The host requires a
|
|
* minimum number of guest rx queues (host tx queues) therefore
|
|
* negotiate a value that is at least as large as the host minimum
|
|
* requirement. If the host and guest values are not identical then a
|
|
* mapping will be established in the receive_queue_setup function.
|
|
*/
|
|
avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues,
|
|
eth_dev->data->nb_rx_queues);
|
|
|
|
PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n",
|
|
avp->num_tx_queues, avp->num_rx_queues);
|
|
}
|
|
|
|
static int
|
|
avp_dev_attach(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_avp_device_config config;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n",
|
|
eth_dev->data->port_id, avp->device_id);
|
|
|
|
rte_spinlock_lock(&avp->lock);
|
|
|
|
if (!(avp->flags & AVP_F_DETACHED)) {
|
|
PMD_DRV_LOG(NOTICE, "port %u already attached\n",
|
|
eth_dev->data->port_id);
|
|
ret = 0;
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* make sure that the detached flag is set prior to reconfiguring the
|
|
* queues.
|
|
*/
|
|
avp->flags |= AVP_F_DETACHED;
|
|
rte_wmb();
|
|
|
|
/*
|
|
* re-run the device create utility which will parse the new host info
|
|
* and setup the AVP device queue pointers.
|
|
*/
|
|
ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n",
|
|
ret);
|
|
goto unlock;
|
|
}
|
|
|
|
if (avp->flags & AVP_F_CONFIGURED) {
|
|
/*
|
|
* Update the receive queue mapping to handle cases where the
|
|
* source and destination hosts have different queue
|
|
* requirements. As long as the DETACHED flag is asserted the
|
|
* queue table should not be referenced so it should be safe to
|
|
* update it.
|
|
*/
|
|
_avp_set_queue_counts(eth_dev);
|
|
for (i = 0; i < eth_dev->data->nb_rx_queues; i++)
|
|
_avp_set_rx_queue_mappings(eth_dev, i);
|
|
|
|
/*
|
|
* Update the host with our config details so that it knows the
|
|
* device is active.
|
|
*/
|
|
memset(&config, 0, sizeof(config));
|
|
config.device_id = avp->device_id;
|
|
config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
|
|
config.driver_version = AVP_DPDK_DRIVER_VERSION;
|
|
config.features = avp->features;
|
|
config.num_tx_queues = avp->num_tx_queues;
|
|
config.num_rx_queues = avp->num_rx_queues;
|
|
config.if_up = !!(avp->flags & AVP_F_LINKUP);
|
|
|
|
ret = avp_dev_ctrl_set_config(eth_dev, &config);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
|
|
ret);
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
rte_wmb();
|
|
avp->flags &= ~AVP_F_DETACHED;
|
|
|
|
ret = 0;
|
|
|
|
unlock:
|
|
rte_spinlock_unlock(&avp->lock);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
avp_dev_interrupt_handler(void *data)
|
|
{
|
|
struct rte_eth_dev *eth_dev = data;
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
|
|
uint32_t status, value;
|
|
int ret;
|
|
|
|
if (registers == NULL)
|
|
rte_panic("no mapped MMIO register space\n");
|
|
|
|
/* read the interrupt status register
|
|
* note: this register clears on read so all raised interrupts must be
|
|
* handled or remembered for later processing
|
|
*/
|
|
status = AVP_READ32(
|
|
RTE_PTR_ADD(registers,
|
|
RTE_AVP_INTERRUPT_STATUS_OFFSET));
|
|
|
|
if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) {
|
|
/* handle interrupt based on current status */
|
|
value = AVP_READ32(
|
|
RTE_PTR_ADD(registers,
|
|
RTE_AVP_MIGRATION_STATUS_OFFSET));
|
|
switch (value) {
|
|
case RTE_AVP_MIGRATION_DETACHED:
|
|
ret = avp_dev_detach(eth_dev);
|
|
break;
|
|
case RTE_AVP_MIGRATION_ATTACHED:
|
|
ret = avp_dev_attach(eth_dev);
|
|
break;
|
|
default:
|
|
PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n",
|
|
value);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* acknowledge the request by writing out our current status */
|
|
value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR);
|
|
AVP_WRITE32(value,
|
|
RTE_PTR_ADD(registers,
|
|
RTE_AVP_MIGRATION_ACK_OFFSET));
|
|
|
|
PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n");
|
|
}
|
|
|
|
if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK)
|
|
PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n",
|
|
status);
|
|
|
|
/* re-enable UIO interrupt handling */
|
|
ret = rte_intr_enable(&pci_dev->intr_handle);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n",
|
|
ret);
|
|
/* continue */
|
|
}
|
|
}
|
|
|
|
static int
|
|
avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
|
|
int ret;
|
|
|
|
if (registers == NULL)
|
|
return -EINVAL;
|
|
|
|
/* enable UIO interrupt handling */
|
|
ret = rte_intr_enable(&pci_dev->intr_handle);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
/* inform the device that all interrupts are enabled */
|
|
AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK,
|
|
RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
|
|
int ret;
|
|
|
|
if (registers == NULL)
|
|
return 0;
|
|
|
|
/* inform the device that all interrupts are disabled */
|
|
AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK,
|
|
RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
|
|
|
|
/* enable UIO interrupt handling */
|
|
ret = rte_intr_disable(&pci_dev->intr_handle);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
int ret;
|
|
|
|
/* register a callback handler with UIO for interrupt notifications */
|
|
ret = rte_intr_callback_register(&pci_dev->intr_handle,
|
|
avp_dev_interrupt_handler,
|
|
(void *)eth_dev);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
/* enable interrupt processing */
|
|
return avp_dev_enable_interrupts(eth_dev);
|
|
}
|
|
|
|
static int
|
|
avp_dev_migration_pending(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
|
|
uint32_t value;
|
|
|
|
if (registers == NULL)
|
|
return 0;
|
|
|
|
value = AVP_READ32(RTE_PTR_ADD(registers,
|
|
RTE_AVP_MIGRATION_STATUS_OFFSET));
|
|
if (value == RTE_AVP_MIGRATION_DETACHED) {
|
|
/* migration is in progress; ack it if we have not already */
|
|
AVP_WRITE32(value,
|
|
RTE_PTR_ADD(registers,
|
|
RTE_AVP_MIGRATION_ACK_OFFSET));
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* create a AVP device using the supplied device info by first translating it
|
|
* to guest address space(s).
|
|
*/
|
|
static int
|
|
avp_dev_create(struct rte_pci_device *pci_dev,
|
|
struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_avp_device_info *host_info;
|
|
struct rte_mem_resource *resource;
|
|
unsigned int i;
|
|
|
|
resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR];
|
|
if (resource->addr == NULL) {
|
|
PMD_DRV_LOG(ERR, "BAR%u is not mapped\n",
|
|
RTE_AVP_PCI_DEVICE_BAR);
|
|
return -EFAULT;
|
|
}
|
|
host_info = (struct rte_avp_device_info *)resource->addr;
|
|
|
|
if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) ||
|
|
avp_dev_version_check(host_info->version)) {
|
|
PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n",
|
|
host_info->magic, host_info->version,
|
|
AVP_DPDK_DRIVER_VERSION);
|
|
return -EINVAL;
|
|
}
|
|
|
|
PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n",
|
|
RTE_AVP_GET_RELEASE_VERSION(host_info->version),
|
|
RTE_AVP_GET_MAJOR_VERSION(host_info->version),
|
|
RTE_AVP_GET_MINOR_VERSION(host_info->version));
|
|
|
|
PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n",
|
|
host_info->min_tx_queues, host_info->max_tx_queues);
|
|
PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n",
|
|
host_info->min_rx_queues, host_info->max_rx_queues);
|
|
PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n",
|
|
host_info->features);
|
|
|
|
if (avp->magic != AVP_ETHDEV_MAGIC) {
|
|
/*
|
|
* First time initialization (i.e., not during a VM
|
|
* migration)
|
|
*/
|
|
memset(avp, 0, sizeof(*avp));
|
|
avp->magic = AVP_ETHDEV_MAGIC;
|
|
avp->dev_data = eth_dev->data;
|
|
avp->port_id = eth_dev->data->port_id;
|
|
avp->host_mbuf_size = host_info->mbuf_size;
|
|
avp->host_features = host_info->features;
|
|
rte_spinlock_init(&avp->lock);
|
|
memcpy(&avp->ethaddr.addr_bytes[0],
|
|
host_info->ethaddr, RTE_ETHER_ADDR_LEN);
|
|
/* adjust max values to not exceed our max */
|
|
avp->max_tx_queues =
|
|
RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES);
|
|
avp->max_rx_queues =
|
|
RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES);
|
|
} else {
|
|
/* Re-attaching during migration */
|
|
|
|
/* TODO... requires validation of host values */
|
|
if ((host_info->features & avp->features) != avp->features) {
|
|
PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n",
|
|
avp->features, host_info->features);
|
|
/* this should not be possible; continue for now */
|
|
}
|
|
}
|
|
|
|
/* the device id is allowed to change over migrations */
|
|
avp->device_id = host_info->device_id;
|
|
|
|
/* translate incoming host addresses to guest address space */
|
|
PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n",
|
|
host_info->tx_phys);
|
|
PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n",
|
|
host_info->alloc_phys);
|
|
for (i = 0; i < avp->max_tx_queues; i++) {
|
|
avp->tx_q[i] = avp_dev_translate_address(eth_dev,
|
|
host_info->tx_phys + (i * host_info->tx_size));
|
|
|
|
avp->alloc_q[i] = avp_dev_translate_address(eth_dev,
|
|
host_info->alloc_phys + (i * host_info->alloc_size));
|
|
}
|
|
|
|
PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n",
|
|
host_info->rx_phys);
|
|
PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n",
|
|
host_info->free_phys);
|
|
for (i = 0; i < avp->max_rx_queues; i++) {
|
|
avp->rx_q[i] = avp_dev_translate_address(eth_dev,
|
|
host_info->rx_phys + (i * host_info->rx_size));
|
|
avp->free_q[i] = avp_dev_translate_address(eth_dev,
|
|
host_info->free_phys + (i * host_info->free_size));
|
|
}
|
|
|
|
PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n",
|
|
host_info->req_phys);
|
|
PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n",
|
|
host_info->resp_phys);
|
|
PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n",
|
|
host_info->sync_phys);
|
|
PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n",
|
|
host_info->mbuf_phys);
|
|
avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys);
|
|
avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys);
|
|
avp->sync_addr =
|
|
avp_dev_translate_address(eth_dev, host_info->sync_phys);
|
|
avp->mbuf_addr =
|
|
avp_dev_translate_address(eth_dev, host_info->mbuf_phys);
|
|
|
|
/*
|
|
* store the host mbuf virtual address so that we can calculate
|
|
* relative offsets for each mbuf as they are processed
|
|
*/
|
|
avp->host_mbuf_addr = host_info->mbuf_va;
|
|
avp->host_sync_addr = host_info->sync_va;
|
|
|
|
/*
|
|
* store the maximum packet length that is supported by the host.
|
|
*/
|
|
avp->max_rx_pkt_len = host_info->max_rx_pkt_len;
|
|
PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n",
|
|
host_info->max_rx_pkt_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is based on probe() function in avp_pci.c
|
|
* It returns 0 on success.
|
|
*/
|
|
static int
|
|
eth_avp_dev_init(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp =
|
|
AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev;
|
|
int ret;
|
|
|
|
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
eth_dev->dev_ops = &avp_eth_dev_ops;
|
|
eth_dev->rx_pkt_burst = &avp_recv_pkts;
|
|
eth_dev->tx_pkt_burst = &avp_xmit_pkts;
|
|
/* Let rte_eth_dev_close() release the port resources */
|
|
eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
|
|
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
|
|
/*
|
|
* no setup required on secondary processes. All data is saved
|
|
* in dev_private by the primary process. All resource should
|
|
* be mapped to the same virtual address so all pointers should
|
|
* be valid.
|
|
*/
|
|
if (eth_dev->data->scattered_rx) {
|
|
PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
|
|
eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
|
|
eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
rte_eth_copy_pci_info(eth_dev, pci_dev);
|
|
|
|
/* Check current migration status */
|
|
if (avp_dev_migration_pending(eth_dev)) {
|
|
PMD_DRV_LOG(ERR, "VM live migration operation in progress\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Check BAR resources */
|
|
ret = avp_dev_check_regions(eth_dev);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Enable interrupts */
|
|
ret = avp_dev_setup_interrupts(eth_dev);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Handle each subtype */
|
|
ret = avp_dev_create(pci_dev, eth_dev);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Allocate memory for storing MAC addresses */
|
|
eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev",
|
|
RTE_ETHER_ADDR_LEN, 0);
|
|
if (eth_dev->data->mac_addrs == NULL) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n",
|
|
RTE_ETHER_ADDR_LEN);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get a mac from device config */
|
|
rte_ether_addr_copy(&avp->ethaddr, ð_dev->data->mac_addrs[0]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_avp_dev_uninit(struct rte_eth_dev *eth_dev)
|
|
{
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
|
|
return -EPERM;
|
|
|
|
if (eth_dev->data == NULL)
|
|
return 0;
|
|
|
|
avp_dev_close(eth_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
|
|
struct rte_pci_device *pci_dev)
|
|
{
|
|
return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter),
|
|
eth_avp_dev_init);
|
|
}
|
|
|
|
static int
|
|
eth_avp_pci_remove(struct rte_pci_device *pci_dev)
|
|
{
|
|
return rte_eth_dev_pci_generic_remove(pci_dev,
|
|
eth_avp_dev_uninit);
|
|
}
|
|
|
|
static struct rte_pci_driver rte_avp_pmd = {
|
|
.id_table = pci_id_avp_map,
|
|
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
|
|
.probe = eth_avp_pci_probe,
|
|
.remove = eth_avp_pci_remove,
|
|
};
|
|
|
|
static int
|
|
avp_dev_enable_scattered(struct rte_eth_dev *eth_dev,
|
|
struct avp_dev *avp)
|
|
{
|
|
unsigned int max_rx_pkt_len;
|
|
|
|
max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
|
|
|
|
if ((max_rx_pkt_len > avp->guest_mbuf_size) ||
|
|
(max_rx_pkt_len > avp->host_mbuf_size)) {
|
|
/*
|
|
* If the guest MTU is greater than either the host or guest
|
|
* buffers then chained mbufs have to be enabled in the TX
|
|
* direction. It is assumed that the application will not need
|
|
* to send packets larger than their max_rx_pkt_len (MRU).
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) ||
|
|
(avp->max_rx_pkt_len > avp->host_mbuf_size)) {
|
|
/*
|
|
* If the host MRU is greater than its own mbuf size or the
|
|
* guest mbuf size then chained mbufs have to be enabled in the
|
|
* RX direction.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
|
|
uint16_t rx_queue_id,
|
|
uint16_t nb_rx_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *pool)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_pktmbuf_pool_private *mbp_priv;
|
|
struct avp_queue *rxq;
|
|
|
|
if (rx_queue_id >= eth_dev->data->nb_rx_queues) {
|
|
PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n",
|
|
rx_queue_id, eth_dev->data->nb_rx_queues);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Save mbuf pool pointer */
|
|
avp->pool = pool;
|
|
|
|
/* Save the local mbuf size */
|
|
mbp_priv = rte_mempool_get_priv(pool);
|
|
avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size);
|
|
avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM;
|
|
|
|
if (avp_dev_enable_scattered(eth_dev, avp)) {
|
|
if (!eth_dev->data->scattered_rx) {
|
|
PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
|
|
eth_dev->data->scattered_rx = 1;
|
|
eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
|
|
eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
|
|
}
|
|
}
|
|
|
|
PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n",
|
|
avp->max_rx_pkt_len,
|
|
eth_dev->data->dev_conf.rxmode.max_rx_pkt_len,
|
|
avp->host_mbuf_size,
|
|
avp->guest_mbuf_size);
|
|
|
|
/* allocate a queue object */
|
|
rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxq == NULL) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* save back pointers to AVP and Ethernet devices */
|
|
rxq->avp = avp;
|
|
rxq->dev_data = eth_dev->data;
|
|
eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq;
|
|
|
|
/* setup the queue receive mapping for the current queue. */
|
|
_avp_set_rx_queue_mappings(eth_dev, rx_queue_id);
|
|
|
|
PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq);
|
|
|
|
(void)nb_rx_desc;
|
|
(void)rx_conf;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
|
|
uint16_t tx_queue_id,
|
|
uint16_t nb_tx_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct avp_queue *txq;
|
|
|
|
if (tx_queue_id >= eth_dev->data->nb_tx_queues) {
|
|
PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n",
|
|
tx_queue_id, eth_dev->data->nb_tx_queues);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* allocate a queue object */
|
|
txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq == NULL) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* only the configured set of transmit queues are used */
|
|
txq->queue_id = tx_queue_id;
|
|
txq->queue_base = tx_queue_id;
|
|
txq->queue_limit = tx_queue_id;
|
|
|
|
/* save back pointers to AVP and Ethernet devices */
|
|
txq->avp = avp;
|
|
txq->dev_data = eth_dev->data;
|
|
eth_dev->data->tx_queues[tx_queue_id] = (void *)txq;
|
|
|
|
PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq);
|
|
|
|
(void)nb_tx_desc;
|
|
(void)tx_conf;
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
_avp_cmp_ether_addr(struct rte_ether_addr *a, struct rte_ether_addr *b)
|
|
{
|
|
uint16_t *_a = (uint16_t *)&a->addr_bytes[0];
|
|
uint16_t *_b = (uint16_t *)&b->addr_bytes[0];
|
|
return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]);
|
|
}
|
|
|
|
static inline int
|
|
_avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m)
|
|
{
|
|
struct rte_ether_hdr *eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
|
|
|
|
if (likely(_avp_cmp_ether_addr(&avp->ethaddr, ð->d_addr) == 0)) {
|
|
/* allow all packets destined to our address */
|
|
return 0;
|
|
}
|
|
|
|
if (likely(rte_is_broadcast_ether_addr(ð->d_addr))) {
|
|
/* allow all broadcast packets */
|
|
return 0;
|
|
}
|
|
|
|
if (likely(rte_is_multicast_ether_addr(ð->d_addr))) {
|
|
/* allow all multicast packets */
|
|
return 0;
|
|
}
|
|
|
|
if (avp->flags & AVP_F_PROMISC) {
|
|
/* allow all packets when in promiscuous mode */
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
|
|
static inline void
|
|
__avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf)
|
|
{
|
|
struct rte_avp_desc *first_buf;
|
|
struct rte_avp_desc *pkt_buf;
|
|
unsigned int pkt_len;
|
|
unsigned int nb_segs;
|
|
void *pkt_data;
|
|
unsigned int i;
|
|
|
|
first_buf = avp_dev_translate_buffer(avp, buf);
|
|
|
|
i = 0;
|
|
pkt_len = 0;
|
|
nb_segs = first_buf->nb_segs;
|
|
do {
|
|
/* Adjust pointers for guest addressing */
|
|
pkt_buf = avp_dev_translate_buffer(avp, buf);
|
|
if (pkt_buf == NULL)
|
|
rte_panic("bad buffer: segment %u has an invalid address %p\n",
|
|
i, buf);
|
|
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
|
|
if (pkt_data == NULL)
|
|
rte_panic("bad buffer: segment %u has a NULL data pointer\n",
|
|
i);
|
|
if (pkt_buf->data_len == 0)
|
|
rte_panic("bad buffer: segment %u has 0 data length\n",
|
|
i);
|
|
pkt_len += pkt_buf->data_len;
|
|
nb_segs--;
|
|
i++;
|
|
|
|
} while (nb_segs && (buf = pkt_buf->next) != NULL);
|
|
|
|
if (nb_segs != 0)
|
|
rte_panic("bad buffer: expected %u segments found %u\n",
|
|
first_buf->nb_segs, (first_buf->nb_segs - nb_segs));
|
|
if (pkt_len != first_buf->pkt_len)
|
|
rte_panic("bad buffer: expected length %u found %u\n",
|
|
first_buf->pkt_len, pkt_len);
|
|
}
|
|
|
|
#define avp_dev_buffer_sanity_check(a, b) \
|
|
__avp_dev_buffer_sanity_check((a), (b))
|
|
|
|
#else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */
|
|
|
|
#define avp_dev_buffer_sanity_check(a, b) do {} while (0)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Copy a host buffer chain to a set of mbufs. This function assumes that
|
|
* there exactly the required number of mbufs to copy all source bytes.
|
|
*/
|
|
static inline struct rte_mbuf *
|
|
avp_dev_copy_from_buffers(struct avp_dev *avp,
|
|
struct rte_avp_desc *buf,
|
|
struct rte_mbuf **mbufs,
|
|
unsigned int count)
|
|
{
|
|
struct rte_mbuf *m_previous = NULL;
|
|
struct rte_avp_desc *pkt_buf;
|
|
unsigned int total_length = 0;
|
|
unsigned int copy_length;
|
|
unsigned int src_offset;
|
|
struct rte_mbuf *m;
|
|
uint16_t ol_flags;
|
|
uint16_t vlan_tci;
|
|
void *pkt_data;
|
|
unsigned int i;
|
|
|
|
avp_dev_buffer_sanity_check(avp, buf);
|
|
|
|
/* setup the first source buffer */
|
|
pkt_buf = avp_dev_translate_buffer(avp, buf);
|
|
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
|
|
total_length = pkt_buf->pkt_len;
|
|
src_offset = 0;
|
|
|
|
if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
|
|
ol_flags = PKT_RX_VLAN;
|
|
vlan_tci = pkt_buf->vlan_tci;
|
|
} else {
|
|
ol_flags = 0;
|
|
vlan_tci = 0;
|
|
}
|
|
|
|
for (i = 0; (i < count) && (buf != NULL); i++) {
|
|
/* fill each destination buffer */
|
|
m = mbufs[i];
|
|
|
|
if (m_previous != NULL)
|
|
m_previous->next = m;
|
|
|
|
m_previous = m;
|
|
|
|
do {
|
|
/*
|
|
* Copy as many source buffers as will fit in the
|
|
* destination buffer.
|
|
*/
|
|
copy_length = RTE_MIN((avp->guest_mbuf_size -
|
|
rte_pktmbuf_data_len(m)),
|
|
(pkt_buf->data_len -
|
|
src_offset));
|
|
rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
|
|
rte_pktmbuf_data_len(m)),
|
|
RTE_PTR_ADD(pkt_data, src_offset),
|
|
copy_length);
|
|
rte_pktmbuf_data_len(m) += copy_length;
|
|
src_offset += copy_length;
|
|
|
|
if (likely(src_offset == pkt_buf->data_len)) {
|
|
/* need a new source buffer */
|
|
buf = pkt_buf->next;
|
|
if (buf != NULL) {
|
|
pkt_buf = avp_dev_translate_buffer(
|
|
avp, buf);
|
|
pkt_data = avp_dev_translate_buffer(
|
|
avp, pkt_buf->data);
|
|
src_offset = 0;
|
|
}
|
|
}
|
|
|
|
if (unlikely(rte_pktmbuf_data_len(m) ==
|
|
avp->guest_mbuf_size)) {
|
|
/* need a new destination mbuf */
|
|
break;
|
|
}
|
|
|
|
} while (buf != NULL);
|
|
}
|
|
|
|
m = mbufs[0];
|
|
m->ol_flags = ol_flags;
|
|
m->nb_segs = count;
|
|
rte_pktmbuf_pkt_len(m) = total_length;
|
|
m->vlan_tci = vlan_tci;
|
|
|
|
__rte_mbuf_sanity_check(m, 1);
|
|
|
|
return m;
|
|
}
|
|
|
|
static uint16_t
|
|
avp_recv_scattered_pkts(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct avp_queue *rxq = (struct avp_queue *)rx_queue;
|
|
struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
|
|
struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS];
|
|
struct avp_dev *avp = rxq->avp;
|
|
struct rte_avp_desc *pkt_buf;
|
|
struct rte_avp_fifo *free_q;
|
|
struct rte_avp_fifo *rx_q;
|
|
struct rte_avp_desc *buf;
|
|
unsigned int count, avail, n;
|
|
unsigned int guest_mbuf_size;
|
|
struct rte_mbuf *m;
|
|
unsigned int required;
|
|
unsigned int buf_len;
|
|
unsigned int port_id;
|
|
unsigned int i;
|
|
|
|
if (unlikely(avp->flags & AVP_F_DETACHED)) {
|
|
/* VM live migration in progress */
|
|
return 0;
|
|
}
|
|
|
|
guest_mbuf_size = avp->guest_mbuf_size;
|
|
port_id = avp->port_id;
|
|
rx_q = avp->rx_q[rxq->queue_id];
|
|
free_q = avp->free_q[rxq->queue_id];
|
|
|
|
/* setup next queue to service */
|
|
rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
|
|
(rxq->queue_id + 1) : rxq->queue_base;
|
|
|
|
/* determine how many slots are available in the free queue */
|
|
count = avp_fifo_free_count(free_q);
|
|
|
|
/* determine how many packets are available in the rx queue */
|
|
avail = avp_fifo_count(rx_q);
|
|
|
|
/* determine how many packets can be received */
|
|
count = RTE_MIN(count, avail);
|
|
count = RTE_MIN(count, nb_pkts);
|
|
count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
|
|
|
|
if (unlikely(count == 0)) {
|
|
/* no free buffers, or no buffers on the rx queue */
|
|
return 0;
|
|
}
|
|
|
|
/* retrieve pending packets */
|
|
n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
|
|
PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
|
|
count, rx_q);
|
|
|
|
count = 0;
|
|
for (i = 0; i < n; i++) {
|
|
/* prefetch next entry while processing current one */
|
|
if (i + 1 < n) {
|
|
pkt_buf = avp_dev_translate_buffer(avp,
|
|
avp_bufs[i + 1]);
|
|
rte_prefetch0(pkt_buf);
|
|
}
|
|
buf = avp_bufs[i];
|
|
|
|
/* Peek into the first buffer to determine the total length */
|
|
pkt_buf = avp_dev_translate_buffer(avp, buf);
|
|
buf_len = pkt_buf->pkt_len;
|
|
|
|
/* Allocate enough mbufs to receive the entire packet */
|
|
required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size;
|
|
if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) {
|
|
rxq->dev_data->rx_mbuf_alloc_failed++;
|
|
continue;
|
|
}
|
|
|
|
/* Copy the data from the buffers to our mbufs */
|
|
m = avp_dev_copy_from_buffers(avp, buf, mbufs, required);
|
|
|
|
/* finalize mbuf */
|
|
m->port = port_id;
|
|
|
|
if (_avp_mac_filter(avp, m) != 0) {
|
|
/* silently discard packets not destined to our MAC */
|
|
rte_pktmbuf_free(m);
|
|
continue;
|
|
}
|
|
|
|
/* return new mbuf to caller */
|
|
rx_pkts[count++] = m;
|
|
rxq->bytes += buf_len;
|
|
}
|
|
|
|
rxq->packets += count;
|
|
|
|
/* return the buffers to the free queue */
|
|
avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
static uint16_t
|
|
avp_recv_pkts(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct avp_queue *rxq = (struct avp_queue *)rx_queue;
|
|
struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
|
|
struct avp_dev *avp = rxq->avp;
|
|
struct rte_avp_desc *pkt_buf;
|
|
struct rte_avp_fifo *free_q;
|
|
struct rte_avp_fifo *rx_q;
|
|
unsigned int count, avail, n;
|
|
unsigned int pkt_len;
|
|
struct rte_mbuf *m;
|
|
char *pkt_data;
|
|
unsigned int i;
|
|
|
|
if (unlikely(avp->flags & AVP_F_DETACHED)) {
|
|
/* VM live migration in progress */
|
|
return 0;
|
|
}
|
|
|
|
rx_q = avp->rx_q[rxq->queue_id];
|
|
free_q = avp->free_q[rxq->queue_id];
|
|
|
|
/* setup next queue to service */
|
|
rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
|
|
(rxq->queue_id + 1) : rxq->queue_base;
|
|
|
|
/* determine how many slots are available in the free queue */
|
|
count = avp_fifo_free_count(free_q);
|
|
|
|
/* determine how many packets are available in the rx queue */
|
|
avail = avp_fifo_count(rx_q);
|
|
|
|
/* determine how many packets can be received */
|
|
count = RTE_MIN(count, avail);
|
|
count = RTE_MIN(count, nb_pkts);
|
|
count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
|
|
|
|
if (unlikely(count == 0)) {
|
|
/* no free buffers, or no buffers on the rx queue */
|
|
return 0;
|
|
}
|
|
|
|
/* retrieve pending packets */
|
|
n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
|
|
PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
|
|
count, rx_q);
|
|
|
|
count = 0;
|
|
for (i = 0; i < n; i++) {
|
|
/* prefetch next entry while processing current one */
|
|
if (i < n - 1) {
|
|
pkt_buf = avp_dev_translate_buffer(avp,
|
|
avp_bufs[i + 1]);
|
|
rte_prefetch0(pkt_buf);
|
|
}
|
|
|
|
/* Adjust host pointers for guest addressing */
|
|
pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
|
|
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
|
|
pkt_len = pkt_buf->pkt_len;
|
|
|
|
if (unlikely((pkt_len > avp->guest_mbuf_size) ||
|
|
(pkt_buf->nb_segs > 1))) {
|
|
/*
|
|
* application should be using the scattered receive
|
|
* function
|
|
*/
|
|
rxq->errors++;
|
|
continue;
|
|
}
|
|
|
|
/* process each packet to be transmitted */
|
|
m = rte_pktmbuf_alloc(avp->pool);
|
|
if (unlikely(m == NULL)) {
|
|
rxq->dev_data->rx_mbuf_alloc_failed++;
|
|
continue;
|
|
}
|
|
|
|
/* copy data out of the host buffer to our buffer */
|
|
m->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len);
|
|
|
|
/* initialize the local mbuf */
|
|
rte_pktmbuf_data_len(m) = pkt_len;
|
|
rte_pktmbuf_pkt_len(m) = pkt_len;
|
|
m->port = avp->port_id;
|
|
|
|
if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
|
|
m->ol_flags = PKT_RX_VLAN;
|
|
m->vlan_tci = pkt_buf->vlan_tci;
|
|
}
|
|
|
|
if (_avp_mac_filter(avp, m) != 0) {
|
|
/* silently discard packets not destined to our MAC */
|
|
rte_pktmbuf_free(m);
|
|
continue;
|
|
}
|
|
|
|
/* return new mbuf to caller */
|
|
rx_pkts[count++] = m;
|
|
rxq->bytes += pkt_len;
|
|
}
|
|
|
|
rxq->packets += count;
|
|
|
|
/* return the buffers to the free queue */
|
|
avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Copy a chained mbuf to a set of host buffers. This function assumes that
|
|
* there are sufficient destination buffers to contain the entire source
|
|
* packet.
|
|
*/
|
|
static inline uint16_t
|
|
avp_dev_copy_to_buffers(struct avp_dev *avp,
|
|
struct rte_mbuf *mbuf,
|
|
struct rte_avp_desc **buffers,
|
|
unsigned int count)
|
|
{
|
|
struct rte_avp_desc *previous_buf = NULL;
|
|
struct rte_avp_desc *first_buf = NULL;
|
|
struct rte_avp_desc *pkt_buf;
|
|
struct rte_avp_desc *buf;
|
|
size_t total_length;
|
|
struct rte_mbuf *m;
|
|
size_t copy_length;
|
|
size_t src_offset;
|
|
char *pkt_data;
|
|
unsigned int i;
|
|
|
|
__rte_mbuf_sanity_check(mbuf, 1);
|
|
|
|
m = mbuf;
|
|
src_offset = 0;
|
|
total_length = rte_pktmbuf_pkt_len(m);
|
|
for (i = 0; (i < count) && (m != NULL); i++) {
|
|
/* fill each destination buffer */
|
|
buf = buffers[i];
|
|
|
|
if (i < count - 1) {
|
|
/* prefetch next entry while processing this one */
|
|
pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
|
|
rte_prefetch0(pkt_buf);
|
|
}
|
|
|
|
/* Adjust pointers for guest addressing */
|
|
pkt_buf = avp_dev_translate_buffer(avp, buf);
|
|
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
|
|
|
|
/* setup the buffer chain */
|
|
if (previous_buf != NULL)
|
|
previous_buf->next = buf;
|
|
else
|
|
first_buf = pkt_buf;
|
|
|
|
previous_buf = pkt_buf;
|
|
|
|
do {
|
|
/*
|
|
* copy as many source mbuf segments as will fit in the
|
|
* destination buffer.
|
|
*/
|
|
copy_length = RTE_MIN((avp->host_mbuf_size -
|
|
pkt_buf->data_len),
|
|
(rte_pktmbuf_data_len(m) -
|
|
src_offset));
|
|
rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
|
|
RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
|
|
src_offset),
|
|
copy_length);
|
|
pkt_buf->data_len += copy_length;
|
|
src_offset += copy_length;
|
|
|
|
if (likely(src_offset == rte_pktmbuf_data_len(m))) {
|
|
/* need a new source buffer */
|
|
m = m->next;
|
|
src_offset = 0;
|
|
}
|
|
|
|
if (unlikely(pkt_buf->data_len ==
|
|
avp->host_mbuf_size)) {
|
|
/* need a new destination buffer */
|
|
break;
|
|
}
|
|
|
|
} while (m != NULL);
|
|
}
|
|
|
|
first_buf->nb_segs = count;
|
|
first_buf->pkt_len = total_length;
|
|
|
|
if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
|
|
first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
|
|
first_buf->vlan_tci = mbuf->vlan_tci;
|
|
}
|
|
|
|
avp_dev_buffer_sanity_check(avp, buffers[0]);
|
|
|
|
return total_length;
|
|
}
|
|
|
|
|
|
static uint16_t
|
|
avp_xmit_scattered_pkts(void *tx_queue,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
|
|
RTE_AVP_MAX_MBUF_SEGMENTS)];
|
|
struct avp_queue *txq = (struct avp_queue *)tx_queue;
|
|
struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
|
|
struct avp_dev *avp = txq->avp;
|
|
struct rte_avp_fifo *alloc_q;
|
|
struct rte_avp_fifo *tx_q;
|
|
unsigned int count, avail, n;
|
|
unsigned int orig_nb_pkts;
|
|
struct rte_mbuf *m;
|
|
unsigned int required;
|
|
unsigned int segments;
|
|
unsigned int tx_bytes;
|
|
unsigned int i;
|
|
|
|
orig_nb_pkts = nb_pkts;
|
|
if (unlikely(avp->flags & AVP_F_DETACHED)) {
|
|
/* VM live migration in progress */
|
|
/* TODO ... buffer for X packets then drop? */
|
|
txq->errors += nb_pkts;
|
|
return 0;
|
|
}
|
|
|
|
tx_q = avp->tx_q[txq->queue_id];
|
|
alloc_q = avp->alloc_q[txq->queue_id];
|
|
|
|
/* limit the number of transmitted packets to the max burst size */
|
|
if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
|
|
nb_pkts = AVP_MAX_TX_BURST;
|
|
|
|
/* determine how many buffers are available to copy into */
|
|
avail = avp_fifo_count(alloc_q);
|
|
if (unlikely(avail > (AVP_MAX_TX_BURST *
|
|
RTE_AVP_MAX_MBUF_SEGMENTS)))
|
|
avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;
|
|
|
|
/* determine how many slots are available in the transmit queue */
|
|
count = avp_fifo_free_count(tx_q);
|
|
|
|
/* determine how many packets can be sent */
|
|
nb_pkts = RTE_MIN(count, nb_pkts);
|
|
|
|
/* determine how many packets will fit in the available buffers */
|
|
count = 0;
|
|
segments = 0;
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
m = tx_pkts[i];
|
|
if (likely(i < (unsigned int)nb_pkts - 1)) {
|
|
/* prefetch next entry while processing this one */
|
|
rte_prefetch0(tx_pkts[i + 1]);
|
|
}
|
|
required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
|
|
avp->host_mbuf_size;
|
|
|
|
if (unlikely((required == 0) ||
|
|
(required > RTE_AVP_MAX_MBUF_SEGMENTS)))
|
|
break;
|
|
else if (unlikely(required + segments > avail))
|
|
break;
|
|
segments += required;
|
|
count++;
|
|
}
|
|
nb_pkts = count;
|
|
|
|
if (unlikely(nb_pkts == 0)) {
|
|
/* no available buffers, or no space on the tx queue */
|
|
txq->errors += orig_nb_pkts;
|
|
return 0;
|
|
}
|
|
|
|
PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
|
|
nb_pkts, tx_q);
|
|
|
|
/* retrieve sufficient send buffers */
|
|
n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
|
|
if (unlikely(n != segments)) {
|
|
PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
|
|
"n=%u, segments=%u, orig=%u\n",
|
|
n, segments, orig_nb_pkts);
|
|
txq->errors += orig_nb_pkts;
|
|
return 0;
|
|
}
|
|
|
|
tx_bytes = 0;
|
|
count = 0;
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
/* process each packet to be transmitted */
|
|
m = tx_pkts[i];
|
|
|
|
/* determine how many buffers are required for this packet */
|
|
required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
|
|
avp->host_mbuf_size;
|
|
|
|
tx_bytes += avp_dev_copy_to_buffers(avp, m,
|
|
&avp_bufs[count], required);
|
|
tx_bufs[i] = avp_bufs[count];
|
|
count += required;
|
|
|
|
/* free the original mbuf */
|
|
rte_pktmbuf_free(m);
|
|
}
|
|
|
|
txq->packets += nb_pkts;
|
|
txq->bytes += tx_bytes;
|
|
|
|
#ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
|
|
for (i = 0; i < nb_pkts; i++)
|
|
avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
|
|
#endif
|
|
|
|
/* send the packets */
|
|
n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
|
|
if (unlikely(n != orig_nb_pkts))
|
|
txq->errors += (orig_nb_pkts - n);
|
|
|
|
return n;
|
|
}
|
|
|
|
|
|
static uint16_t
|
|
avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct avp_queue *txq = (struct avp_queue *)tx_queue;
|
|
struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
|
|
struct avp_dev *avp = txq->avp;
|
|
struct rte_avp_desc *pkt_buf;
|
|
struct rte_avp_fifo *alloc_q;
|
|
struct rte_avp_fifo *tx_q;
|
|
unsigned int count, avail, n;
|
|
struct rte_mbuf *m;
|
|
unsigned int pkt_len;
|
|
unsigned int tx_bytes;
|
|
char *pkt_data;
|
|
unsigned int i;
|
|
|
|
if (unlikely(avp->flags & AVP_F_DETACHED)) {
|
|
/* VM live migration in progress */
|
|
/* TODO ... buffer for X packets then drop?! */
|
|
txq->errors++;
|
|
return 0;
|
|
}
|
|
|
|
tx_q = avp->tx_q[txq->queue_id];
|
|
alloc_q = avp->alloc_q[txq->queue_id];
|
|
|
|
/* limit the number of transmitted packets to the max burst size */
|
|
if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
|
|
nb_pkts = AVP_MAX_TX_BURST;
|
|
|
|
/* determine how many buffers are available to copy into */
|
|
avail = avp_fifo_count(alloc_q);
|
|
|
|
/* determine how many slots are available in the transmit queue */
|
|
count = avp_fifo_free_count(tx_q);
|
|
|
|
/* determine how many packets can be sent */
|
|
count = RTE_MIN(count, avail);
|
|
count = RTE_MIN(count, nb_pkts);
|
|
|
|
if (unlikely(count == 0)) {
|
|
/* no available buffers, or no space on the tx queue */
|
|
txq->errors += nb_pkts;
|
|
return 0;
|
|
}
|
|
|
|
PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
|
|
count, tx_q);
|
|
|
|
/* retrieve sufficient send buffers */
|
|
n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
|
|
if (unlikely(n != count)) {
|
|
txq->errors++;
|
|
return 0;
|
|
}
|
|
|
|
tx_bytes = 0;
|
|
for (i = 0; i < count; i++) {
|
|
/* prefetch next entry while processing the current one */
|
|
if (i < count - 1) {
|
|
pkt_buf = avp_dev_translate_buffer(avp,
|
|
avp_bufs[i + 1]);
|
|
rte_prefetch0(pkt_buf);
|
|
}
|
|
|
|
/* process each packet to be transmitted */
|
|
m = tx_pkts[i];
|
|
|
|
/* Adjust pointers for guest addressing */
|
|
pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
|
|
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
|
|
pkt_len = rte_pktmbuf_pkt_len(m);
|
|
|
|
if (unlikely((pkt_len > avp->guest_mbuf_size) ||
|
|
(pkt_len > avp->host_mbuf_size))) {
|
|
/*
|
|
* application should be using the scattered transmit
|
|
* function; send it truncated to avoid the performance
|
|
* hit of having to manage returning the already
|
|
* allocated buffer to the free list. This should not
|
|
* happen since the application should have set the
|
|
* max_rx_pkt_len based on its MTU and it should be
|
|
* policing its own packet sizes.
|
|
*/
|
|
txq->errors++;
|
|
pkt_len = RTE_MIN(avp->guest_mbuf_size,
|
|
avp->host_mbuf_size);
|
|
}
|
|
|
|
/* copy data out of our mbuf and into the AVP buffer */
|
|
rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
|
|
pkt_buf->pkt_len = pkt_len;
|
|
pkt_buf->data_len = pkt_len;
|
|
pkt_buf->nb_segs = 1;
|
|
pkt_buf->next = NULL;
|
|
|
|
if (m->ol_flags & PKT_TX_VLAN_PKT) {
|
|
pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
|
|
pkt_buf->vlan_tci = m->vlan_tci;
|
|
}
|
|
|
|
tx_bytes += pkt_len;
|
|
|
|
/* free the original mbuf */
|
|
rte_pktmbuf_free(m);
|
|
}
|
|
|
|
txq->packets += count;
|
|
txq->bytes += tx_bytes;
|
|
|
|
/* send the packets */
|
|
n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);
|
|
|
|
return n;
|
|
}
|
|
|
|
static void
|
|
avp_dev_rx_queue_release(void *rx_queue)
|
|
{
|
|
struct avp_queue *rxq = (struct avp_queue *)rx_queue;
|
|
struct avp_dev *avp = rxq->avp;
|
|
struct rte_eth_dev_data *data = avp->dev_data;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < avp->num_rx_queues; i++) {
|
|
if (data->rx_queues[i] == rxq) {
|
|
rte_free(data->rx_queues[i]);
|
|
data->rx_queues[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
avp_dev_rx_queue_release_all(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_eth_dev_data *data = avp->dev_data;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < avp->num_rx_queues; i++) {
|
|
if (data->rx_queues[i]) {
|
|
rte_free(data->rx_queues[i]);
|
|
data->rx_queues[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
avp_dev_tx_queue_release(void *tx_queue)
|
|
{
|
|
struct avp_queue *txq = (struct avp_queue *)tx_queue;
|
|
struct avp_dev *avp = txq->avp;
|
|
struct rte_eth_dev_data *data = avp->dev_data;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < avp->num_tx_queues; i++) {
|
|
if (data->tx_queues[i] == txq) {
|
|
rte_free(data->tx_queues[i]);
|
|
data->tx_queues[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
avp_dev_tx_queue_release_all(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_eth_dev_data *data = avp->dev_data;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < avp->num_tx_queues; i++) {
|
|
if (data->tx_queues[i]) {
|
|
rte_free(data->tx_queues[i]);
|
|
data->tx_queues[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
avp_dev_configure(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_avp_device_info *host_info;
|
|
struct rte_avp_device_config config;
|
|
int mask = 0;
|
|
void *addr;
|
|
int ret;
|
|
|
|
rte_spinlock_lock(&avp->lock);
|
|
if (avp->flags & AVP_F_DETACHED) {
|
|
PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
|
|
ret = -ENOTSUP;
|
|
goto unlock;
|
|
}
|
|
|
|
addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
|
|
host_info = (struct rte_avp_device_info *)addr;
|
|
|
|
/* Setup required number of queues */
|
|
_avp_set_queue_counts(eth_dev);
|
|
|
|
mask = (ETH_VLAN_STRIP_MASK |
|
|
ETH_VLAN_FILTER_MASK |
|
|
ETH_VLAN_EXTEND_MASK);
|
|
ret = avp_vlan_offload_set(eth_dev, mask);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n",
|
|
ret);
|
|
goto unlock;
|
|
}
|
|
|
|
/* update device config */
|
|
memset(&config, 0, sizeof(config));
|
|
config.device_id = host_info->device_id;
|
|
config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
|
|
config.driver_version = AVP_DPDK_DRIVER_VERSION;
|
|
config.features = avp->features;
|
|
config.num_tx_queues = avp->num_tx_queues;
|
|
config.num_rx_queues = avp->num_rx_queues;
|
|
|
|
ret = avp_dev_ctrl_set_config(eth_dev, &config);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
|
|
ret);
|
|
goto unlock;
|
|
}
|
|
|
|
avp->flags |= AVP_F_CONFIGURED;
|
|
ret = 0;
|
|
|
|
unlock:
|
|
rte_spinlock_unlock(&avp->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
avp_dev_start(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
int ret;
|
|
|
|
rte_spinlock_lock(&avp->lock);
|
|
if (avp->flags & AVP_F_DETACHED) {
|
|
PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
|
|
ret = -ENOTSUP;
|
|
goto unlock;
|
|
}
|
|
|
|
/* update link state */
|
|
ret = avp_dev_ctrl_set_link_state(eth_dev, 1);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
|
|
ret);
|
|
goto unlock;
|
|
}
|
|
|
|
/* remember current link state */
|
|
avp->flags |= AVP_F_LINKUP;
|
|
|
|
ret = 0;
|
|
|
|
unlock:
|
|
rte_spinlock_unlock(&avp->lock);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
avp_dev_stop(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
int ret;
|
|
|
|
rte_spinlock_lock(&avp->lock);
|
|
if (avp->flags & AVP_F_DETACHED) {
|
|
PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
|
|
goto unlock;
|
|
}
|
|
|
|
/* remember current link state */
|
|
avp->flags &= ~AVP_F_LINKUP;
|
|
|
|
/* update link state */
|
|
ret = avp_dev_ctrl_set_link_state(eth_dev, 0);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
|
|
ret);
|
|
}
|
|
|
|
unlock:
|
|
rte_spinlock_unlock(&avp->lock);
|
|
}
|
|
|
|
static void
|
|
avp_dev_close(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
int ret;
|
|
|
|
rte_spinlock_lock(&avp->lock);
|
|
if (avp->flags & AVP_F_DETACHED) {
|
|
PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
|
|
goto unlock;
|
|
}
|
|
|
|
/* remember current link state */
|
|
avp->flags &= ~AVP_F_LINKUP;
|
|
avp->flags &= ~AVP_F_CONFIGURED;
|
|
|
|
ret = avp_dev_disable_interrupts(eth_dev);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to disable interrupts\n");
|
|
/* continue */
|
|
}
|
|
|
|
/* update device state */
|
|
ret = avp_dev_ctrl_shutdown(eth_dev);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n",
|
|
ret);
|
|
/* continue */
|
|
}
|
|
|
|
/* release dynamic storage for rx/tx queues */
|
|
avp_dev_rx_queue_release_all(eth_dev);
|
|
avp_dev_tx_queue_release_all(eth_dev);
|
|
|
|
unlock:
|
|
rte_spinlock_unlock(&avp->lock);
|
|
}
|
|
|
|
static int
|
|
avp_dev_link_update(struct rte_eth_dev *eth_dev,
|
|
__rte_unused int wait_to_complete)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_eth_link *link = ð_dev->data->dev_link;
|
|
|
|
link->link_speed = ETH_SPEED_NUM_10G;
|
|
link->link_duplex = ETH_LINK_FULL_DUPLEX;
|
|
link->link_status = !!(avp->flags & AVP_F_LINKUP);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
|
|
rte_spinlock_lock(&avp->lock);
|
|
if ((avp->flags & AVP_F_PROMISC) == 0) {
|
|
avp->flags |= AVP_F_PROMISC;
|
|
PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n",
|
|
eth_dev->data->port_id);
|
|
}
|
|
rte_spinlock_unlock(&avp->lock);
|
|
}
|
|
|
|
static void
|
|
avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
|
|
rte_spinlock_lock(&avp->lock);
|
|
if ((avp->flags & AVP_F_PROMISC) != 0) {
|
|
avp->flags &= ~AVP_F_PROMISC;
|
|
PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n",
|
|
eth_dev->data->port_id);
|
|
}
|
|
rte_spinlock_unlock(&avp->lock);
|
|
}
|
|
|
|
static void
|
|
avp_dev_info_get(struct rte_eth_dev *eth_dev,
|
|
struct rte_eth_dev_info *dev_info)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
|
|
dev_info->max_rx_queues = avp->max_rx_queues;
|
|
dev_info->max_tx_queues = avp->max_tx_queues;
|
|
dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE;
|
|
dev_info->max_rx_pktlen = avp->max_rx_pkt_len;
|
|
dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS;
|
|
if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
|
|
dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
|
|
dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
|
|
}
|
|
}
|
|
|
|
static int
|
|
avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct rte_eth_conf *dev_conf = ð_dev->data->dev_conf;
|
|
uint64_t offloads = dev_conf->rxmode.offloads;
|
|
|
|
if (mask & ETH_VLAN_STRIP_MASK) {
|
|
if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
|
|
if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
|
|
avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD;
|
|
else
|
|
avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD;
|
|
} else {
|
|
PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n");
|
|
}
|
|
}
|
|
|
|
if (mask & ETH_VLAN_FILTER_MASK) {
|
|
if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
|
|
PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n");
|
|
}
|
|
|
|
if (mask & ETH_VLAN_EXTEND_MASK) {
|
|
if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
|
|
PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < avp->num_rx_queues; i++) {
|
|
struct avp_queue *rxq = avp->dev_data->rx_queues[i];
|
|
|
|
if (rxq) {
|
|
stats->ipackets += rxq->packets;
|
|
stats->ibytes += rxq->bytes;
|
|
stats->ierrors += rxq->errors;
|
|
|
|
stats->q_ipackets[i] += rxq->packets;
|
|
stats->q_ibytes[i] += rxq->bytes;
|
|
stats->q_errors[i] += rxq->errors;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < avp->num_tx_queues; i++) {
|
|
struct avp_queue *txq = avp->dev_data->tx_queues[i];
|
|
|
|
if (txq) {
|
|
stats->opackets += txq->packets;
|
|
stats->obytes += txq->bytes;
|
|
stats->oerrors += txq->errors;
|
|
|
|
stats->q_opackets[i] += txq->packets;
|
|
stats->q_obytes[i] += txq->bytes;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
avp_dev_stats_reset(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < avp->num_rx_queues; i++) {
|
|
struct avp_queue *rxq = avp->dev_data->rx_queues[i];
|
|
|
|
if (rxq) {
|
|
rxq->bytes = 0;
|
|
rxq->packets = 0;
|
|
rxq->errors = 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < avp->num_tx_queues; i++) {
|
|
struct avp_queue *txq = avp->dev_data->tx_queues[i];
|
|
|
|
if (txq) {
|
|
txq->bytes = 0;
|
|
txq->packets = 0;
|
|
txq->errors = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd);
|
|
RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map);
|
|
|
|
RTE_INIT(avp_init_log)
|
|
{
|
|
avp_logtype_driver = rte_log_register("pmd.net.avp.driver");
|
|
if (avp_logtype_driver >= 0)
|
|
rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE);
|
|
}
|