numam-dpdk/app/test/test_mbuf.c
Cyril Chemparathy 7621d6a8d0 eal: add and use unaligned integer types
On machines that are strict on pointer alignment, current code breaks
on GCC's -Wcast-align checks on casts from narrower to wider types.
This patch introduces new unaligned_uint(16|32|64)_t types, which
correctly retain alignment in such cases.  Strict alignment
architectures will need to define CONFIG_RTE_ARCH_STRICT_ALIGN in
order to effect these new types.

Signed-off-by: Cyril Chemparathy <cchemparathy@ezchip.com>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
2015-06-24 12:00:41 +02:00

1030 lines
26 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_debug.h>
#include <rte_log.h>
#include <rte_common.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_random.h>
#include <rte_cycles.h>
#include "test.h"
#define MBUF_DATA_SIZE 2048
#define NB_MBUF 128
#define MBUF_TEST_DATA_LEN 1464
#define MBUF_TEST_DATA_LEN2 50
#define MBUF_TEST_HDR1_LEN 20
#define MBUF_TEST_HDR2_LEN 30
#define MBUF_TEST_ALL_HDRS_LEN (MBUF_TEST_HDR1_LEN+MBUF_TEST_HDR2_LEN)
/* size of private data for mbuf in pktmbuf_pool2 */
#define MBUF2_PRIV_SIZE 128
#define REFCNT_MAX_ITER 64
#define REFCNT_MAX_TIMEOUT 10
#define REFCNT_MAX_REF (RTE_MAX_LCORE)
#define REFCNT_MBUF_NUM 64
#define REFCNT_RING_SIZE (REFCNT_MBUF_NUM * REFCNT_MAX_REF)
#define MAGIC_DATA 0x42424242
#define MAKE_STRING(x) # x
static struct rte_mempool *pktmbuf_pool = NULL;
static struct rte_mempool *pktmbuf_pool2 = NULL;
#ifdef RTE_MBUF_REFCNT_ATOMIC
static struct rte_mempool *refcnt_pool = NULL;
static struct rte_ring *refcnt_mbuf_ring = NULL;
static volatile uint32_t refcnt_stop_slaves;
static unsigned refcnt_lcore[RTE_MAX_LCORE];
#endif
/*
* MBUF
* ====
*
* #. Allocate a mbuf pool.
*
* - The pool contains NB_MBUF elements, where each mbuf is MBUF_SIZE
* bytes long.
*
* #. Test multiple allocations of mbufs from this pool.
*
* - Allocate NB_MBUF and store pointers in a table.
* - If an allocation fails, return an error.
* - Free all these mbufs.
* - Repeat the same test to check that mbufs were freed correctly.
*
* #. Test data manipulation in pktmbuf.
*
* - Alloc an mbuf.
* - Append data using rte_pktmbuf_append().
* - Test for error in rte_pktmbuf_append() when len is too large.
* - Trim data at the end of mbuf using rte_pktmbuf_trim().
* - Test for error in rte_pktmbuf_trim() when len is too large.
* - Prepend a header using rte_pktmbuf_prepend().
* - Test for error in rte_pktmbuf_prepend() when len is too large.
* - Remove data at the beginning of mbuf using rte_pktmbuf_adj().
* - Test for error in rte_pktmbuf_adj() when len is too large.
* - Check that appended data is not corrupt.
* - Free the mbuf.
* - Between all these tests, check data_len and pkt_len, and
* that the mbuf is contiguous.
* - Repeat the test to check that allocation operations
* reinitialize the mbuf correctly.
*
* #. Test packet cloning
* - Clone a mbuf and verify the data
* - Clone the cloned mbuf and verify the data
* - Attach a mbuf to another that does not have the same priv_size.
*/
#define GOTO_FAIL(str, ...) do { \
printf("mbuf test FAILED (l.%d): <" str ">\n", \
__LINE__, ##__VA_ARGS__); \
goto fail; \
} while(0)
/*
* test data manipulation in mbuf with non-ascii data
*/
static int
test_pktmbuf_with_non_ascii_data(void)
{
struct rte_mbuf *m = NULL;
char *data;
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("Cannot allocate mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN);
if (data == NULL)
GOTO_FAIL("Cannot append data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
memset(data, 0xff, rte_pktmbuf_pkt_len(m));
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN);
rte_pktmbuf_free(m);
return 0;
fail:
if(m) {
rte_pktmbuf_free(m);
}
return -1;
}
/*
* test data manipulation in mbuf
*/
static int
test_one_pktmbuf(void)
{
struct rte_mbuf *m = NULL;
char *data, *data2, *hdr;
unsigned i;
printf("Test pktmbuf API\n");
/* alloc a mbuf */
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("Cannot allocate mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
rte_pktmbuf_dump(stdout, m, 0);
/* append data */
data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN);
if (data == NULL)
GOTO_FAIL("Cannot append data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
memset(data, 0x66, rte_pktmbuf_pkt_len(m));
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN);
rte_pktmbuf_dump(stdout, m, 2*MBUF_TEST_DATA_LEN);
/* this append should fail */
data2 = rte_pktmbuf_append(m, (uint16_t)(rte_pktmbuf_tailroom(m) + 1));
if (data2 != NULL)
GOTO_FAIL("Append should not succeed");
/* append some more data */
data2 = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN2);
if (data2 == NULL)
GOTO_FAIL("Cannot append data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
/* trim data at the end of mbuf */
if (rte_pktmbuf_trim(m, MBUF_TEST_DATA_LEN2) < 0)
GOTO_FAIL("Cannot trim data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
/* this trim should fail */
if (rte_pktmbuf_trim(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) == 0)
GOTO_FAIL("trim should not succeed");
/* prepend one header */
hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR1_LEN);
if (hdr == NULL)
GOTO_FAIL("Cannot prepend");
if (data - hdr != MBUF_TEST_HDR1_LEN)
GOTO_FAIL("Prepend failed");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
memset(hdr, 0x55, MBUF_TEST_HDR1_LEN);
/* prepend another header */
hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR2_LEN);
if (hdr == NULL)
GOTO_FAIL("Cannot prepend");
if (data - hdr != MBUF_TEST_ALL_HDRS_LEN)
GOTO_FAIL("Prepend failed");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
memset(hdr, 0x55, MBUF_TEST_HDR2_LEN);
rte_mbuf_sanity_check(m, 1);
rte_mbuf_sanity_check(m, 0);
rte_pktmbuf_dump(stdout, m, 0);
/* this prepend should fail */
hdr = rte_pktmbuf_prepend(m, (uint16_t)(rte_pktmbuf_headroom(m) + 1));
if (hdr != NULL)
GOTO_FAIL("prepend should not succeed");
/* remove data at beginning of mbuf (adj) */
if (data != rte_pktmbuf_adj(m, MBUF_TEST_ALL_HDRS_LEN))
GOTO_FAIL("rte_pktmbuf_adj failed");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
/* this adj should fail */
if (rte_pktmbuf_adj(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) != NULL)
GOTO_FAIL("rte_pktmbuf_adj should not succeed");
/* check data */
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
for (i=0; i<MBUF_TEST_DATA_LEN; i++) {
if (data[i] != 0x66)
GOTO_FAIL("Data corrupted at offset %u", i);
}
/* free mbuf */
rte_pktmbuf_free(m);
m = NULL;
return 0;
fail:
if (m)
rte_pktmbuf_free(m);
return -1;
}
static int
testclone_testupdate_testdetach(void)
{
struct rte_mbuf *m = NULL;
struct rte_mbuf *clone = NULL;
struct rte_mbuf *clone2 = NULL;
unaligned_uint32_t *data;
/* alloc a mbuf */
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("ooops not allocating mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
rte_pktmbuf_append(m, sizeof(uint32_t));
data = rte_pktmbuf_mtod(m, unaligned_uint32_t *);
*data = MAGIC_DATA;
/* clone the allocated mbuf */
clone = rte_pktmbuf_clone(m, pktmbuf_pool);
if (clone == NULL)
GOTO_FAIL("cannot clone data\n");
data = rte_pktmbuf_mtod(clone, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone\n");
if (rte_mbuf_refcnt_read(m) != 2)
GOTO_FAIL("invalid refcnt in m\n");
/* free the clone */
rte_pktmbuf_free(clone);
clone = NULL;
/* same test with a chained mbuf */
m->next = rte_pktmbuf_alloc(pktmbuf_pool);
if (m->next == NULL)
GOTO_FAIL("Next Pkt Null\n");
rte_pktmbuf_append(m->next, sizeof(uint32_t));
data = rte_pktmbuf_mtod(m->next, unaligned_uint32_t *);
*data = MAGIC_DATA;
clone = rte_pktmbuf_clone(m, pktmbuf_pool);
if (clone == NULL)
GOTO_FAIL("cannot clone data\n");
data = rte_pktmbuf_mtod(clone, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone\n");
data = rte_pktmbuf_mtod(clone->next, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone->next\n");
if (rte_mbuf_refcnt_read(m) != 2)
GOTO_FAIL("invalid refcnt in m\n");
if (rte_mbuf_refcnt_read(m->next) != 2)
GOTO_FAIL("invalid refcnt in m->next\n");
/* try to clone the clone */
clone2 = rte_pktmbuf_clone(clone, pktmbuf_pool);
if (clone2 == NULL)
GOTO_FAIL("cannot clone the clone\n");
data = rte_pktmbuf_mtod(clone2, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone2\n");
data = rte_pktmbuf_mtod(clone2->next, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone2->next\n");
if (rte_mbuf_refcnt_read(m) != 3)
GOTO_FAIL("invalid refcnt in m\n");
if (rte_mbuf_refcnt_read(m->next) != 3)
GOTO_FAIL("invalid refcnt in m->next\n");
/* free mbuf */
rte_pktmbuf_free(m);
rte_pktmbuf_free(clone);
rte_pktmbuf_free(clone2);
m = NULL;
clone = NULL;
clone2 = NULL;
printf("%s ok\n", __func__);
return 0;
fail:
if (m)
rte_pktmbuf_free(m);
if (clone)
rte_pktmbuf_free(clone);
if (clone2)
rte_pktmbuf_free(clone2);
return -1;
}
static int
test_attach_from_different_pool(void)
{
struct rte_mbuf *m = NULL;
struct rte_mbuf *clone = NULL;
struct rte_mbuf *clone2 = NULL;
char *data, *c_data, *c_data2;
/* alloc a mbuf */
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("cannot allocate mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
data = rte_pktmbuf_mtod(m, char *);
/* allocate a new mbuf from the second pool, and attach it to the first
* mbuf */
clone = rte_pktmbuf_alloc(pktmbuf_pool2);
if (clone == NULL)
GOTO_FAIL("cannot allocate mbuf from second pool\n");
/* check data room size and priv size, and erase priv */
if (rte_pktmbuf_data_room_size(clone->pool) != 0)
GOTO_FAIL("data room size should be 0\n");
if (rte_pktmbuf_priv_size(clone->pool) != MBUF2_PRIV_SIZE)
GOTO_FAIL("data room size should be %d\n", MBUF2_PRIV_SIZE);
memset(clone + 1, 0, MBUF2_PRIV_SIZE);
/* save data pointer to compare it after detach() */
c_data = rte_pktmbuf_mtod(clone, char *);
if (c_data != (char *)clone + sizeof(*clone) + MBUF2_PRIV_SIZE)
GOTO_FAIL("bad data pointer in clone");
if (rte_pktmbuf_headroom(clone) != 0)
GOTO_FAIL("bad headroom in clone");
rte_pktmbuf_attach(clone, m);
if (rte_pktmbuf_mtod(clone, char *) != data)
GOTO_FAIL("clone was not attached properly\n");
if (rte_pktmbuf_headroom(clone) != RTE_PKTMBUF_HEADROOM)
GOTO_FAIL("bad headroom in clone after attach");
if (rte_mbuf_refcnt_read(m) != 2)
GOTO_FAIL("invalid refcnt in m\n");
/* allocate a new mbuf from the second pool, and attach it to the first
* cloned mbuf */
clone2 = rte_pktmbuf_alloc(pktmbuf_pool2);
if (clone2 == NULL)
GOTO_FAIL("cannot allocate clone2 from second pool\n");
/* check data room size and priv size, and erase priv */
if (rte_pktmbuf_data_room_size(clone2->pool) != 0)
GOTO_FAIL("data room size should be 0\n");
if (rte_pktmbuf_priv_size(clone2->pool) != MBUF2_PRIV_SIZE)
GOTO_FAIL("data room size should be %d\n", MBUF2_PRIV_SIZE);
memset(clone2 + 1, 0, MBUF2_PRIV_SIZE);
/* save data pointer to compare it after detach() */
c_data2 = rte_pktmbuf_mtod(clone2, char *);
if (c_data2 != (char *)clone2 + sizeof(*clone2) + MBUF2_PRIV_SIZE)
GOTO_FAIL("bad data pointer in clone2");
if (rte_pktmbuf_headroom(clone2) != 0)
GOTO_FAIL("bad headroom in clone2");
rte_pktmbuf_attach(clone2, clone);
if (rte_pktmbuf_mtod(clone2, char *) != data)
GOTO_FAIL("clone2 was not attached properly\n");
if (rte_pktmbuf_headroom(clone2) != RTE_PKTMBUF_HEADROOM)
GOTO_FAIL("bad headroom in clone2 after attach");
if (rte_mbuf_refcnt_read(m) != 3)
GOTO_FAIL("invalid refcnt in m\n");
/* detach the clones */
rte_pktmbuf_detach(clone);
if (c_data != rte_pktmbuf_mtod(clone, char *))
GOTO_FAIL("clone was not detached properly\n");
rte_pktmbuf_detach(clone2);
if (c_data2 != rte_pktmbuf_mtod(clone2, char *))
GOTO_FAIL("clone2 was not detached properly\n");
/* free the clones and the initial mbuf */
rte_pktmbuf_free(clone2);
rte_pktmbuf_free(clone);
rte_pktmbuf_free(m);
printf("%s ok\n", __func__);
return 0;
fail:
if (m)
rte_pktmbuf_free(m);
if (clone)
rte_pktmbuf_free(clone);
if (clone2)
rte_pktmbuf_free(clone2);
return -1;
}
#undef GOTO_FAIL
/*
* test allocation and free of mbufs
*/
static int
test_pktmbuf_pool(void)
{
unsigned i;
struct rte_mbuf *m[NB_MBUF];
int ret = 0;
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
}
}
struct rte_mbuf *extra = NULL;
extra = rte_pktmbuf_alloc(pktmbuf_pool);
if(extra != NULL) {
printf("Error pool not empty");
ret = -1;
}
extra = rte_pktmbuf_clone(m[0], pktmbuf_pool);
if(extra != NULL) {
printf("Error pool not empty");
ret = -1;
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL)
rte_pktmbuf_free(m[i]);
}
return ret;
}
/*
* test that the pointer to the data on a packet mbuf is set properly
*/
static int
test_pktmbuf_pool_ptr(void)
{
unsigned i;
struct rte_mbuf *m[NB_MBUF];
int ret = 0;
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
break;
}
m[i]->data_off += 64;
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL)
rte_pktmbuf_free(m[i]);
}
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
break;
}
if (m[i]->data_off != RTE_PKTMBUF_HEADROOM) {
printf("invalid data_off\n");
ret = -1;
}
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL)
rte_pktmbuf_free(m[i]);
}
return ret;
}
static int
test_pktmbuf_free_segment(void)
{
unsigned i;
struct rte_mbuf *m[NB_MBUF];
int ret = 0;
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
}
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL) {
struct rte_mbuf *mb, *mt;
mb = m[i];
while(mb != NULL) {
mt = mb;
mb = mb->next;
rte_pktmbuf_free_seg(mt);
}
}
}
return ret;
}
/*
* Stress test for rte_mbuf atomic refcnt.
* Implies that RTE_MBUF_REFCNT_ATOMIC is defined.
* For more efficency, recomended to run with RTE_LIBRTE_MBUF_DEBUG defined.
*/
#ifdef RTE_MBUF_REFCNT_ATOMIC
static int
test_refcnt_slave(__attribute__((unused)) void *arg)
{
unsigned lcore, free;
void *mp = 0;
lcore = rte_lcore_id();
printf("%s started at lcore %u\n", __func__, lcore);
free = 0;
while (refcnt_stop_slaves == 0) {
if (rte_ring_dequeue(refcnt_mbuf_ring, &mp) == 0) {
free++;
rte_pktmbuf_free((struct rte_mbuf *)mp);
}
}
refcnt_lcore[lcore] += free;
printf("%s finished at lcore %u, "
"number of freed mbufs: %u\n",
__func__, lcore, free);
return (0);
}
static void
test_refcnt_iter(unsigned lcore, unsigned iter)
{
uint16_t ref;
unsigned i, n, tref, wn;
struct rte_mbuf *m;
tref = 0;
/* For each mbuf in the pool:
* - allocate mbuf,
* - increment it's reference up to N+1,
* - enqueue it N times into the ring for slave cores to free.
*/
for (i = 0, n = rte_mempool_count(refcnt_pool);
i != n && (m = rte_pktmbuf_alloc(refcnt_pool)) != NULL;
i++) {
ref = RTE_MAX(rte_rand() % REFCNT_MAX_REF, 1UL);
tref += ref;
if ((ref & 1) != 0) {
rte_pktmbuf_refcnt_update(m, ref);
while (ref-- != 0)
rte_ring_enqueue(refcnt_mbuf_ring, m);
} else {
while (ref-- != 0) {
rte_pktmbuf_refcnt_update(m, 1);
rte_ring_enqueue(refcnt_mbuf_ring, m);
}
}
rte_pktmbuf_free(m);
}
if (i != n)
rte_panic("(lcore=%u, iter=%u): was able to allocate only "
"%u from %u mbufs\n", lcore, iter, i, n);
/* wait till slave lcores will consume all mbufs */
while (!rte_ring_empty(refcnt_mbuf_ring))
;
/* check that all mbufs are back into mempool by now */
for (wn = 0; wn != REFCNT_MAX_TIMEOUT; wn++) {
if ((i = rte_mempool_count(refcnt_pool)) == n) {
refcnt_lcore[lcore] += tref;
printf("%s(lcore=%u, iter=%u) completed, "
"%u references processed\n",
__func__, lcore, iter, tref);
return;
}
rte_delay_ms(1000);
}
rte_panic("(lcore=%u, iter=%u): after %us only "
"%u of %u mbufs left free\n", lcore, iter, wn, i, n);
}
static int
test_refcnt_master(void)
{
unsigned i, lcore;
lcore = rte_lcore_id();
printf("%s started at lcore %u\n", __func__, lcore);
for (i = 0; i != REFCNT_MAX_ITER; i++)
test_refcnt_iter(lcore, i);
refcnt_stop_slaves = 1;
rte_wmb();
printf("%s finished at lcore %u\n", __func__, lcore);
return (0);
}
#endif
static int
test_refcnt_mbuf(void)
{
#ifdef RTE_MBUF_REFCNT_ATOMIC
unsigned lnum, master, slave, tref;
if ((lnum = rte_lcore_count()) == 1) {
printf("skipping %s, number of lcores: %u is not enough\n",
__func__, lnum);
return (0);
}
printf("starting %s, at %u lcores\n", __func__, lnum);
/* create refcnt pool & ring if they don't exist */
if (refcnt_pool == NULL &&
(refcnt_pool = rte_pktmbuf_pool_create(
MAKE_STRING(refcnt_pool),
REFCNT_MBUF_NUM, 0, 0, 0,
SOCKET_ID_ANY)) == NULL) {
printf("%s: cannot allocate " MAKE_STRING(refcnt_pool) "\n",
__func__);
return (-1);
}
if (refcnt_mbuf_ring == NULL &&
(refcnt_mbuf_ring = rte_ring_create("refcnt_mbuf_ring",
REFCNT_RING_SIZE, SOCKET_ID_ANY,
RING_F_SP_ENQ)) == NULL) {
printf("%s: cannot allocate " MAKE_STRING(refcnt_mbuf_ring)
"\n", __func__);
return (-1);
}
refcnt_stop_slaves = 0;
memset(refcnt_lcore, 0, sizeof (refcnt_lcore));
rte_eal_mp_remote_launch(test_refcnt_slave, NULL, SKIP_MASTER);
test_refcnt_master();
rte_eal_mp_wait_lcore();
/* check that we porcessed all references */
tref = 0;
master = rte_get_master_lcore();
RTE_LCORE_FOREACH_SLAVE(slave)
tref += refcnt_lcore[slave];
if (tref != refcnt_lcore[master])
rte_panic("refernced mbufs: %u, freed mbufs: %u\n",
tref, refcnt_lcore[master]);
rte_mempool_dump(stdout, refcnt_pool);
rte_ring_dump(stdout, refcnt_mbuf_ring);
#endif
return (0);
}
#include <unistd.h>
#include <sys/wait.h>
/* use fork() to test mbuf errors panic */
static int
verify_mbuf_check_panics(struct rte_mbuf *buf)
{
int pid;
int status;
pid = fork();
if (pid == 0) {
rte_mbuf_sanity_check(buf, 1); /* should panic */
exit(0); /* return normally if it doesn't panic */
} else if (pid < 0){
printf("Fork Failed\n");
return -1;
}
wait(&status);
if(status == 0)
return -1;
return 0;
}
static int
test_failing_mbuf_sanity_check(void)
{
struct rte_mbuf *buf;
struct rte_mbuf badbuf;
printf("Checking rte_mbuf_sanity_check for failure conditions\n");
/* get a good mbuf to use to make copies */
buf = rte_pktmbuf_alloc(pktmbuf_pool);
if (buf == NULL)
return -1;
printf("Checking good mbuf initially\n");
if (verify_mbuf_check_panics(buf) != -1)
return -1;
printf("Now checking for error conditions\n");
if (verify_mbuf_check_panics(NULL)) {
printf("Error with NULL mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.pool = NULL;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-pool mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.buf_physaddr = 0;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-physaddr mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.buf_addr = NULL;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-addr mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.refcnt = 0;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-refcnt(0) mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.refcnt = UINT16_MAX;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-refcnt(MAX) mbuf test\n");
return -1;
}
return 0;
}
static int
test_mbuf(void)
{
RTE_BUILD_BUG_ON(sizeof(struct rte_mbuf) != RTE_CACHE_LINE_SIZE * 2);
/* create pktmbuf pool if it does not exist */
if (pktmbuf_pool == NULL) {
pktmbuf_pool = rte_pktmbuf_pool_create("test_pktmbuf_pool",
NB_MBUF, 32, 0, MBUF_DATA_SIZE, SOCKET_ID_ANY);
}
if (pktmbuf_pool == NULL) {
printf("cannot allocate mbuf pool\n");
return -1;
}
/* create a specific pktmbuf pool with a priv_size != 0 and no data
* room size */
if (pktmbuf_pool2 == NULL) {
pktmbuf_pool2 = rte_pktmbuf_pool_create("test_pktmbuf_pool2",
NB_MBUF, 32, MBUF2_PRIV_SIZE, 0, SOCKET_ID_ANY);
}
if (pktmbuf_pool2 == NULL) {
printf("cannot allocate mbuf pool\n");
return -1;
}
/* test multiple mbuf alloc */
if (test_pktmbuf_pool() < 0) {
printf("test_mbuf_pool() failed\n");
return -1;
}
/* do it another time to check that all mbufs were freed */
if (test_pktmbuf_pool() < 0) {
printf("test_mbuf_pool() failed (2)\n");
return -1;
}
/* test that the pointer to the data on a packet mbuf is set properly */
if (test_pktmbuf_pool_ptr() < 0) {
printf("test_pktmbuf_pool_ptr() failed\n");
return -1;
}
/* test data manipulation in mbuf */
if (test_one_pktmbuf() < 0) {
printf("test_one_mbuf() failed\n");
return -1;
}
/*
* do it another time, to check that allocation reinitialize
* the mbuf correctly
*/
if (test_one_pktmbuf() < 0) {
printf("test_one_mbuf() failed (2)\n");
return -1;
}
if (test_pktmbuf_with_non_ascii_data() < 0) {
printf("test_pktmbuf_with_non_ascii_data() failed\n");
return -1;
}
/* test free pktmbuf segment one by one */
if (test_pktmbuf_free_segment() < 0) {
printf("test_pktmbuf_free_segment() failed.\n");
return -1;
}
if (testclone_testupdate_testdetach()<0){
printf("testclone_and_testupdate() failed \n");
return -1;
}
if (test_attach_from_different_pool() < 0) {
printf("test_attach_from_different_pool() failed\n");
return -1;
}
if (test_refcnt_mbuf()<0){
printf("test_refcnt_mbuf() failed \n");
return -1;
}
if (test_failing_mbuf_sanity_check() < 0) {
printf("test_failing_mbuf_sanity_check() failed\n");
return -1;
}
return 0;
}
static struct test_command mbuf_cmd = {
.command = "mbuf_autotest",
.callback = test_mbuf,
};
REGISTER_TEST_COMMAND(mbuf_cmd);