numam-dpdk/lib/librte_hash/rte_jhash.h
David Marchand 5a1c7b6ddd hash: use x86 common flag for jhash
jhash has been forgotten when factorising the x86 arch check.

Fixes: dbf17d44f375 ("hash: use common x86 flag")

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
2020-10-22 22:07:15 +02:00

386 lines
9.2 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2015 Intel Corporation.
*/
#ifndef _RTE_JHASH_H
#define _RTE_JHASH_H
/**
* @file
*
* jhash functions.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <string.h>
#include <limits.h>
#include <rte_config.h>
#include <rte_log.h>
#include <rte_byteorder.h>
/* jhash.h: Jenkins hash support.
*
* Copyright (C) 2006 Bob Jenkins (bob_jenkins@burtleburtle.net)
*
* http://burtleburtle.net/bob/hash/
*
* These are the credits from Bob's sources:
*
* lookup3.c, by Bob Jenkins, May 2006, Public Domain.
*
* These are functions for producing 32-bit hashes for hash table lookup.
* hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
* are externally useful functions. Routines to test the hash are included
* if SELF_TEST is defined. You can use this free for any purpose. It's in
* the public domain. It has no warranty.
*
* $FreeBSD$
*/
#define rot(x, k) (((x) << (k)) | ((x) >> (32-(k))))
/** @internal Internal function. NOTE: Arguments are modified. */
#define __rte_jhash_mix(a, b, c) do { \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c, 16); c += b; \
b -= a; b ^= rot(a, 19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
} while (0)
#define __rte_jhash_final(a, b, c) do { \
c ^= b; c -= rot(b, 14); \
a ^= c; a -= rot(c, 11); \
b ^= a; b -= rot(a, 25); \
c ^= b; c -= rot(b, 16); \
a ^= c; a -= rot(c, 4); \
b ^= a; b -= rot(a, 14); \
c ^= b; c -= rot(b, 24); \
} while (0)
/** The golden ratio: an arbitrary value. */
#define RTE_JHASH_GOLDEN_RATIO 0xdeadbeef
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define BIT_SHIFT(x, y, k) (((x) >> (k)) | ((uint64_t)(y) << (32-(k))))
#else
#define BIT_SHIFT(x, y, k) (((uint64_t)(x) << (k)) | ((y) >> (32-(k))))
#endif
#define LOWER8b_MASK rte_le_to_cpu_32(0xff)
#define LOWER16b_MASK rte_le_to_cpu_32(0xffff)
#define LOWER24b_MASK rte_le_to_cpu_32(0xffffff)
static inline void
__rte_jhash_2hashes(const void *key, uint32_t length, uint32_t *pc,
uint32_t *pb, unsigned check_align)
{
uint32_t a, b, c;
/* Set up the internal state */
a = b = c = RTE_JHASH_GOLDEN_RATIO + ((uint32_t)length) + *pc;
c += *pb;
/*
* Check key alignment. For x86 architecture, first case is always optimal
* If check_align is not set, first case will be used
*/
#if defined(RTE_ARCH_X86)
const uint32_t *k = (const uint32_t *)key;
const uint32_t s = 0;
#else
const uint32_t *k = (uint32_t *)((uintptr_t)key & (uintptr_t)~3);
const uint32_t s = ((uintptr_t)key & 3) * CHAR_BIT;
#endif
if (!check_align || s == 0) {
while (length > 12) {
a += k[0];
b += k[1];
c += k[2];
__rte_jhash_mix(a, b, c);
k += 3;
length -= 12;
}
switch (length) {
case 12:
c += k[2]; b += k[1]; a += k[0]; break;
case 11:
c += k[2] & LOWER24b_MASK; b += k[1]; a += k[0]; break;
case 10:
c += k[2] & LOWER16b_MASK; b += k[1]; a += k[0]; break;
case 9:
c += k[2] & LOWER8b_MASK; b += k[1]; a += k[0]; break;
case 8:
b += k[1]; a += k[0]; break;
case 7:
b += k[1] & LOWER24b_MASK; a += k[0]; break;
case 6:
b += k[1] & LOWER16b_MASK; a += k[0]; break;
case 5:
b += k[1] & LOWER8b_MASK; a += k[0]; break;
case 4:
a += k[0]; break;
case 3:
a += k[0] & LOWER24b_MASK; break;
case 2:
a += k[0] & LOWER16b_MASK; break;
case 1:
a += k[0] & LOWER8b_MASK; break;
/* zero length strings require no mixing */
case 0:
*pc = c;
*pb = b;
return;
};
} else {
/* all but the last block: affect some 32 bits of (a, b, c) */
while (length > 12) {
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s);
__rte_jhash_mix(a, b, c);
k += 3;
length -= 12;
}
/* last block: affect all 32 bits of (c) */
switch (length) {
case 12:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s);
break;
case 11:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s) & LOWER24b_MASK;
break;
case 10:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s) & LOWER16b_MASK;
break;
case 9:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s) & LOWER8b_MASK;
break;
case 8:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
break;
case 7:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s) & LOWER24b_MASK;
break;
case 6:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s) & LOWER16b_MASK;
break;
case 5:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s) & LOWER8b_MASK;
break;
case 4:
a += BIT_SHIFT(k[0], k[1], s);
break;
case 3:
a += BIT_SHIFT(k[0], k[1], s) & LOWER24b_MASK;
break;
case 2:
a += BIT_SHIFT(k[0], k[1], s) & LOWER16b_MASK;
break;
case 1:
a += BIT_SHIFT(k[0], k[1], s) & LOWER8b_MASK;
break;
/* zero length strings require no mixing */
case 0:
*pc = c;
*pb = b;
return;
}
}
__rte_jhash_final(a, b, c);
*pc = c;
*pb = b;
}
/**
* Same as rte_jhash, but takes two seeds and return two uint32_ts.
* pc and pb must be non-null, and *pc and *pb must both be initialized
* with seeds. If you pass in (*pb)=0, the output (*pc) will be
* the same as the return value from rte_jhash.
*
* @param key
* Key to calculate hash of.
* @param length
* Length of key in bytes.
* @param pc
* IN: seed OUT: primary hash value.
* @param pb
* IN: second seed OUT: secondary hash value.
*/
static inline void
rte_jhash_2hashes(const void *key, uint32_t length, uint32_t *pc, uint32_t *pb)
{
__rte_jhash_2hashes(key, length, pc, pb, 1);
}
/**
* Same as rte_jhash_32b, but takes two seeds and return two uint32_ts.
* pc and pb must be non-null, and *pc and *pb must both be initialized
* with seeds. If you pass in (*pb)=0, the output (*pc) will be
* the same as the return value from rte_jhash_32b.
*
* @param k
* Key to calculate hash of.
* @param length
* Length of key in units of 4 bytes.
* @param pc
* IN: seed OUT: primary hash value.
* @param pb
* IN: second seed OUT: secondary hash value.
*/
static inline void
rte_jhash_32b_2hashes(const uint32_t *k, uint32_t length, uint32_t *pc, uint32_t *pb)
{
__rte_jhash_2hashes((const void *) k, (length << 2), pc, pb, 0);
}
/**
* The most generic version, hashes an arbitrary sequence
* of bytes. No alignment or length assumptions are made about
* the input key. For keys not aligned to four byte boundaries
* or a multiple of four bytes in length, the memory region
* just after may be read (but not used in the computation).
* This may cross a page boundary.
*
* @param key
* Key to calculate hash of.
* @param length
* Length of key in bytes.
* @param initval
* Initialising value of hash.
* @return
* Calculated hash value.
*/
static inline uint32_t
rte_jhash(const void *key, uint32_t length, uint32_t initval)
{
uint32_t initval2 = 0;
rte_jhash_2hashes(key, length, &initval, &initval2);
return initval;
}
/**
* A special optimized version that handles 1 or more of uint32_ts.
* The length parameter here is the number of uint32_ts in the key.
*
* @param k
* Key to calculate hash of.
* @param length
* Length of key in units of 4 bytes.
* @param initval
* Initialising value of hash.
* @return
* Calculated hash value.
*/
static inline uint32_t
rte_jhash_32b(const uint32_t *k, uint32_t length, uint32_t initval)
{
uint32_t initval2 = 0;
rte_jhash_32b_2hashes(k, length, &initval, &initval2);
return initval;
}
static inline uint32_t
__rte_jhash_3words(uint32_t a, uint32_t b, uint32_t c, uint32_t initval)
{
a += RTE_JHASH_GOLDEN_RATIO + initval;
b += RTE_JHASH_GOLDEN_RATIO + initval;
c += RTE_JHASH_GOLDEN_RATIO + initval;
__rte_jhash_final(a, b, c);
return c;
}
/**
* A special ultra-optimized versions that knows it is hashing exactly
* 3 words.
*
* @param a
* First word to calculate hash of.
* @param b
* Second word to calculate hash of.
* @param c
* Third word to calculate hash of.
* @param initval
* Initialising value of hash.
* @return
* Calculated hash value.
*/
static inline uint32_t
rte_jhash_3words(uint32_t a, uint32_t b, uint32_t c, uint32_t initval)
{
return __rte_jhash_3words(a + 12, b + 12, c + 12, initval);
}
/**
* A special ultra-optimized versions that knows it is hashing exactly
* 2 words.
*
* @param a
* First word to calculate hash of.
* @param b
* Second word to calculate hash of.
* @param initval
* Initialising value of hash.
* @return
* Calculated hash value.
*/
static inline uint32_t
rte_jhash_2words(uint32_t a, uint32_t b, uint32_t initval)
{
return __rte_jhash_3words(a + 8, b + 8, 8, initval);
}
/**
* A special ultra-optimized versions that knows it is hashing exactly
* 1 word.
*
* @param a
* Word to calculate hash of.
* @param initval
* Initialising value of hash.
* @return
* Calculated hash value.
*/
static inline uint32_t
rte_jhash_1word(uint32_t a, uint32_t initval)
{
return __rte_jhash_3words(a + 4, 4, 4, initval);
}
#ifdef __cplusplus
}
#endif
#endif /* _RTE_JHASH_H */