7869536f3f
The vlan_macip structure combined a vlan tag id with l2 and l3 headers lengths for tracking offloads. However, this structure was only used as a unit by the e1000 and ixgbe drivers, not generally. This patch removes the structure from the mbuf header and places the fields into the mbuf structure directly at the required point, without any net effect on the structure layout. This allows us to treat the vlan tags and header length fields as separate for future mbuf changes. The drivers which were written to use the combined structure still do so, using a driver-local definition of it. Reduce perf regression caused by splitting vlan_macip field. This is done by providing a single uint16_t value to allow writing/clearing the l2 and l3 lengths together. There is still a small perf hit to the slow path TX due to the reads from vlan_tci and l2/l3 lengths being separated. (<5% in my tests with testpmd with no extra params). Unfortunately, this cannot be eliminated, without restoring the vlan tags and l2/l3 lengths as a combined 32-bit field. This would prevent us from ever looking to move those fields about and is an artificial tie that applies only for performance in igb and ixgbe drivers. Therefore, this patch keeps the vlan_tci field separate from the lengths as the best solution going forward. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
223 lines
6.9 KiB
C
223 lines
6.9 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <rte_memcpy.h>
|
|
|
|
#include "ip_frag_common.h"
|
|
|
|
/**
|
|
* @file
|
|
* IPv6 reassemble
|
|
*
|
|
* Implementation of IPv6 reassembly.
|
|
*
|
|
*/
|
|
|
|
static inline void
|
|
ip_frag_memmove(char *dst, char *src, int len)
|
|
{
|
|
int i;
|
|
|
|
/* go backwards to make sure we don't overwrite anything important */
|
|
for (i = len - 1; i >= 0; i--)
|
|
dst[i] = src[i];
|
|
}
|
|
|
|
/*
|
|
* Reassemble fragments into one packet.
|
|
*/
|
|
struct rte_mbuf *
|
|
ipv6_frag_reassemble(const struct ip_frag_pkt *fp)
|
|
{
|
|
struct ipv6_hdr *ip_hdr;
|
|
struct ipv6_extension_fragment *frag_hdr;
|
|
struct rte_mbuf *m, *prev;
|
|
uint32_t i, n, ofs, first_len;
|
|
uint32_t last_len, move_len, payload_len;
|
|
|
|
first_len = fp->frags[IP_FIRST_FRAG_IDX].len;
|
|
n = fp->last_idx - 1;
|
|
|
|
/*start from the last fragment. */
|
|
m = fp->frags[IP_LAST_FRAG_IDX].mb;
|
|
ofs = fp->frags[IP_LAST_FRAG_IDX].ofs;
|
|
last_len = fp->frags[IP_LAST_FRAG_IDX].len;
|
|
|
|
payload_len = ofs + last_len;
|
|
|
|
while (ofs != first_len) {
|
|
|
|
prev = m;
|
|
|
|
for (i = n; i != IP_FIRST_FRAG_IDX && ofs != first_len; i--) {
|
|
|
|
/* previous fragment found. */
|
|
if (fp->frags[i].ofs + fp->frags[i].len == ofs) {
|
|
|
|
ip_frag_chain(fp->frags[i].mb, m);
|
|
|
|
/* update our last fragment and offset. */
|
|
m = fp->frags[i].mb;
|
|
ofs = fp->frags[i].ofs;
|
|
}
|
|
}
|
|
|
|
/* error - hole in the packet. */
|
|
if (m == prev) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* chain with the first fragment. */
|
|
ip_frag_chain(fp->frags[IP_FIRST_FRAG_IDX].mb, m);
|
|
m = fp->frags[IP_FIRST_FRAG_IDX].mb;
|
|
|
|
/* update mbuf fields for reassembled packet. */
|
|
m->ol_flags |= PKT_TX_IP_CKSUM;
|
|
|
|
/* update ipv6 header for the reassembled datagram */
|
|
ip_hdr = (struct ipv6_hdr *) (rte_pktmbuf_mtod(m, uint8_t *) +
|
|
m->l2_len);
|
|
|
|
ip_hdr->payload_len = rte_cpu_to_be_16(payload_len);
|
|
|
|
/*
|
|
* remove fragmentation header. note that per RFC2460, we need to update
|
|
* the last non-fragmentable header with the "next header" field to contain
|
|
* type of the first fragmentable header, but we currently don't support
|
|
* other headers, so we assume there are no other headers and thus update
|
|
* the main IPv6 header instead.
|
|
*/
|
|
move_len = m->l2_len + m->l3_len - sizeof(*frag_hdr);
|
|
frag_hdr = (struct ipv6_extension_fragment *) (ip_hdr + 1);
|
|
ip_hdr->proto = frag_hdr->next_header;
|
|
|
|
ip_frag_memmove(rte_pktmbuf_mtod(m, char*) + sizeof(*frag_hdr),
|
|
rte_pktmbuf_mtod(m, char*), move_len);
|
|
|
|
rte_pktmbuf_adj(m, sizeof(*frag_hdr));
|
|
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* Process new mbuf with fragment of IPV6 datagram.
|
|
* Incoming mbuf should have its l2_len/l3_len fields setup correctly.
|
|
* @param tbl
|
|
* Table where to lookup/add the fragmented packet.
|
|
* @param mb
|
|
* Incoming mbuf with IPV6 fragment.
|
|
* @param tms
|
|
* Fragment arrival timestamp.
|
|
* @param ip_hdr
|
|
* Pointer to the IPV6 header.
|
|
* @param frag_hdr
|
|
* Pointer to the IPV6 fragment extension header.
|
|
* @return
|
|
* Pointer to mbuf for reassembled packet, or NULL if:
|
|
* - an error occured.
|
|
* - not all fragments of the packet are collected yet.
|
|
*/
|
|
#define MORE_FRAGS(x) (((x) & 0x100) >> 8)
|
|
#define FRAG_OFFSET(x) (rte_cpu_to_be_16(x) >> 3)
|
|
struct rte_mbuf *
|
|
rte_ipv6_frag_reassemble_packet(struct rte_ip_frag_tbl *tbl,
|
|
struct rte_ip_frag_death_row *dr, struct rte_mbuf *mb, uint64_t tms,
|
|
struct ipv6_hdr *ip_hdr, struct ipv6_extension_fragment *frag_hdr)
|
|
{
|
|
struct ip_frag_pkt *fp;
|
|
struct ip_frag_key key;
|
|
uint16_t ip_len, ip_ofs;
|
|
|
|
rte_memcpy(&key.src_dst[0], ip_hdr->src_addr, 16);
|
|
rte_memcpy(&key.src_dst[2], ip_hdr->dst_addr, 16);
|
|
|
|
key.id = frag_hdr->id;
|
|
key.key_len = IPV6_KEYLEN;
|
|
|
|
ip_ofs = FRAG_OFFSET(frag_hdr->frag_data) * 8;
|
|
|
|
/*
|
|
* as per RFC2460, payload length contains all extension headers as well.
|
|
* since we don't support anything but frag headers, this is what we remove
|
|
* from the payload len.
|
|
*/
|
|
ip_len = rte_be_to_cpu_16(ip_hdr->payload_len) - sizeof(*frag_hdr);
|
|
|
|
IP_FRAG_LOG(DEBUG, "%s:%d:\n"
|
|
"mbuf: %p, tms: %" PRIu64
|
|
", key: <" IPv6_KEY_BYTES_FMT ", %#x>, ofs: %u, len: %u, flags: %#x\n"
|
|
"tbl: %p, max_cycles: %" PRIu64 ", entry_mask: %#x, "
|
|
"max_entries: %u, use_entries: %u\n\n",
|
|
__func__, __LINE__,
|
|
mb, tms, IPv6_KEY_BYTES(key.src_dst), key.id, ip_ofs, ip_len, frag_hdr->more_frags,
|
|
tbl, tbl->max_cycles, tbl->entry_mask, tbl->max_entries,
|
|
tbl->use_entries);
|
|
|
|
/* try to find/add entry into the fragment's table. */
|
|
fp = ip_frag_find(tbl, dr, &key, tms);
|
|
if (fp == NULL) {
|
|
IP_FRAG_MBUF2DR(dr, mb);
|
|
return NULL;
|
|
}
|
|
|
|
IP_FRAG_LOG(DEBUG, "%s:%d:\n"
|
|
"tbl: %p, max_entries: %u, use_entries: %u\n"
|
|
"ipv6_frag_pkt: %p, key: <" IPv6_KEY_BYTES_FMT ", %#x>, start: %" PRIu64
|
|
", total_size: %u, frag_size: %u, last_idx: %u\n\n",
|
|
__func__, __LINE__,
|
|
tbl, tbl->max_entries, tbl->use_entries,
|
|
fp, IPv6_KEY_BYTES(fp->key.src_dst), fp->key.id, fp->start,
|
|
fp->total_size, fp->frag_size, fp->last_idx);
|
|
|
|
|
|
/* process the fragmented packet. */
|
|
mb = ip_frag_process(fp, dr, mb, ip_ofs, ip_len,
|
|
MORE_FRAGS(frag_hdr->frag_data));
|
|
ip_frag_inuse(tbl, fp);
|
|
|
|
IP_FRAG_LOG(DEBUG, "%s:%d:\n"
|
|
"mbuf: %p\n"
|
|
"tbl: %p, max_entries: %u, use_entries: %u\n"
|
|
"ipv6_frag_pkt: %p, key: <" IPv6_KEY_BYTES_FMT ", %#x>, start: %" PRIu64
|
|
", total_size: %u, frag_size: %u, last_idx: %u\n\n",
|
|
__func__, __LINE__, mb,
|
|
tbl, tbl->max_entries, tbl->use_entries,
|
|
fp, IPv6_KEY_BYTES(fp->key.src_dst), fp->key.id, fp->start,
|
|
fp->total_size, fp->frag_size, fp->last_idx);
|
|
|
|
return mb;
|
|
}
|