462321b44a
Otherwise cache_flushthresh can be bigger than n, and a consumer can starve others by keeping every element either in use or in the cache. Signed-off-by: Zoltan Kiss <zoltan.kiss@linaro.org> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com>
894 lines
24 KiB
C
894 lines
24 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <errno.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_spinlock.h>
|
|
|
|
#include "rte_mempool.h"
|
|
|
|
TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
|
|
|
|
static struct rte_tailq_elem rte_mempool_tailq = {
|
|
.name = "RTE_MEMPOOL",
|
|
};
|
|
EAL_REGISTER_TAILQ(rte_mempool_tailq)
|
|
|
|
#define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
|
|
#define CALC_CACHE_FLUSHTHRESH(c) \
|
|
((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
|
|
|
|
/*
|
|
* return the greatest common divisor between a and b (fast algorithm)
|
|
*
|
|
*/
|
|
static unsigned get_gcd(unsigned a, unsigned b)
|
|
{
|
|
unsigned c;
|
|
|
|
if (0 == a)
|
|
return b;
|
|
if (0 == b)
|
|
return a;
|
|
|
|
if (a < b) {
|
|
c = a;
|
|
a = b;
|
|
b = c;
|
|
}
|
|
|
|
while (b != 0) {
|
|
c = a % b;
|
|
a = b;
|
|
b = c;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Depending on memory configuration, objects addresses are spread
|
|
* between channels and ranks in RAM: the pool allocator will add
|
|
* padding between objects. This function return the new size of the
|
|
* object.
|
|
*/
|
|
static unsigned optimize_object_size(unsigned obj_size)
|
|
{
|
|
unsigned nrank, nchan;
|
|
unsigned new_obj_size;
|
|
|
|
/* get number of channels */
|
|
nchan = rte_memory_get_nchannel();
|
|
if (nchan == 0)
|
|
nchan = 1;
|
|
|
|
nrank = rte_memory_get_nrank();
|
|
if (nrank == 0)
|
|
nrank = 1;
|
|
|
|
/* process new object size */
|
|
new_obj_size = (obj_size + RTE_CACHE_LINE_MASK) / RTE_CACHE_LINE_SIZE;
|
|
while (get_gcd(new_obj_size, nrank * nchan) != 1)
|
|
new_obj_size++;
|
|
return new_obj_size * RTE_CACHE_LINE_SIZE;
|
|
}
|
|
|
|
static void
|
|
mempool_add_elem(struct rte_mempool *mp, void *obj, uint32_t obj_idx,
|
|
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg)
|
|
{
|
|
struct rte_mempool **mpp;
|
|
|
|
obj = (char *)obj + mp->header_size;
|
|
|
|
/* set mempool ptr in header */
|
|
mpp = __mempool_from_obj(obj);
|
|
*mpp = mp;
|
|
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
__mempool_write_header_cookie(obj, 1);
|
|
__mempool_write_trailer_cookie(obj);
|
|
#endif
|
|
/* call the initializer */
|
|
if (obj_init)
|
|
obj_init(mp, obj_init_arg, obj, obj_idx);
|
|
|
|
/* enqueue in ring */
|
|
rte_ring_sp_enqueue(mp->ring, obj);
|
|
}
|
|
|
|
uint32_t
|
|
rte_mempool_obj_iter(void *vaddr, uint32_t elt_num, size_t elt_sz, size_t align,
|
|
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift,
|
|
rte_mempool_obj_iter_t obj_iter, void *obj_iter_arg)
|
|
{
|
|
uint32_t i, j, k;
|
|
uint32_t pgn;
|
|
uintptr_t end, start, va;
|
|
uintptr_t pg_sz;
|
|
|
|
pg_sz = (uintptr_t)1 << pg_shift;
|
|
va = (uintptr_t)vaddr;
|
|
|
|
i = 0;
|
|
j = 0;
|
|
|
|
while (i != elt_num && j != pg_num) {
|
|
|
|
start = RTE_ALIGN_CEIL(va, align);
|
|
end = start + elt_sz;
|
|
|
|
pgn = (end >> pg_shift) - (start >> pg_shift);
|
|
pgn += j;
|
|
|
|
/* do we have enough space left for the next element. */
|
|
if (pgn >= pg_num)
|
|
break;
|
|
|
|
for (k = j;
|
|
k != pgn &&
|
|
paddr[k] + pg_sz == paddr[k + 1];
|
|
k++)
|
|
;
|
|
|
|
/*
|
|
* if next pgn chunks of memory physically continuous,
|
|
* use it to create next element.
|
|
* otherwise, just skip that chunk unused.
|
|
*/
|
|
if (k == pgn) {
|
|
if (obj_iter != NULL)
|
|
obj_iter(obj_iter_arg, (void *)start,
|
|
(void *)end, i);
|
|
va = end;
|
|
j = pgn;
|
|
i++;
|
|
} else {
|
|
va = RTE_ALIGN_CEIL((va + 1), pg_sz);
|
|
j++;
|
|
}
|
|
}
|
|
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* Populate mempool with the objects.
|
|
*/
|
|
|
|
struct mempool_populate_arg {
|
|
struct rte_mempool *mp;
|
|
rte_mempool_obj_ctor_t *obj_init;
|
|
void *obj_init_arg;
|
|
};
|
|
|
|
static void
|
|
mempool_obj_populate(void *arg, void *start, void *end, uint32_t idx)
|
|
{
|
|
struct mempool_populate_arg *pa = arg;
|
|
|
|
mempool_add_elem(pa->mp, start, idx, pa->obj_init, pa->obj_init_arg);
|
|
pa->mp->elt_va_end = (uintptr_t)end;
|
|
}
|
|
|
|
static void
|
|
mempool_populate(struct rte_mempool *mp, size_t num, size_t align,
|
|
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg)
|
|
{
|
|
uint32_t elt_sz;
|
|
struct mempool_populate_arg arg;
|
|
|
|
elt_sz = mp->elt_size + mp->header_size + mp->trailer_size;
|
|
arg.mp = mp;
|
|
arg.obj_init = obj_init;
|
|
arg.obj_init_arg = obj_init_arg;
|
|
|
|
mp->size = rte_mempool_obj_iter((void *)mp->elt_va_start,
|
|
num, elt_sz, align,
|
|
mp->elt_pa, mp->pg_num, mp->pg_shift,
|
|
mempool_obj_populate, &arg);
|
|
}
|
|
|
|
uint32_t
|
|
rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
|
|
struct rte_mempool_objsz *sz)
|
|
{
|
|
struct rte_mempool_objsz lsz;
|
|
|
|
sz = (sz != NULL) ? sz : &lsz;
|
|
|
|
/*
|
|
* In header, we have at least the pointer to the pool, and
|
|
* optionaly a 64 bits cookie.
|
|
*/
|
|
sz->header_size = 0;
|
|
sz->header_size += sizeof(struct rte_mempool *); /* ptr to pool */
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
sz->header_size += sizeof(uint64_t); /* cookie */
|
|
#endif
|
|
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
|
|
sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
|
|
RTE_CACHE_LINE_SIZE);
|
|
|
|
/* trailer contains the cookie in debug mode */
|
|
sz->trailer_size = 0;
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
sz->trailer_size += sizeof(uint64_t); /* cookie */
|
|
#endif
|
|
/* element size is 8 bytes-aligned at least */
|
|
sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
|
|
|
|
/* expand trailer to next cache line */
|
|
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
|
|
sz->total_size = sz->header_size + sz->elt_size +
|
|
sz->trailer_size;
|
|
sz->trailer_size += ((RTE_CACHE_LINE_SIZE -
|
|
(sz->total_size & RTE_CACHE_LINE_MASK)) &
|
|
RTE_CACHE_LINE_MASK);
|
|
}
|
|
|
|
/*
|
|
* increase trailer to add padding between objects in order to
|
|
* spread them across memory channels/ranks
|
|
*/
|
|
if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
|
|
unsigned new_size;
|
|
new_size = optimize_object_size(sz->header_size + sz->elt_size +
|
|
sz->trailer_size);
|
|
sz->trailer_size = new_size - sz->header_size - sz->elt_size;
|
|
}
|
|
|
|
if (! rte_eal_has_hugepages()) {
|
|
/*
|
|
* compute trailer size so that pool elements fit exactly in
|
|
* a standard page
|
|
*/
|
|
int page_size = getpagesize();
|
|
int new_size = page_size - sz->header_size - sz->elt_size;
|
|
if (new_size < 0 || (unsigned int)new_size < sz->trailer_size) {
|
|
printf("When hugepages are disabled, pool objects "
|
|
"can't exceed PAGE_SIZE: %d + %d + %d > %d\n",
|
|
sz->header_size, sz->elt_size, sz->trailer_size,
|
|
page_size);
|
|
return 0;
|
|
}
|
|
sz->trailer_size = new_size;
|
|
}
|
|
|
|
/* this is the size of an object, including header and trailer */
|
|
sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
|
|
|
|
return (sz->total_size);
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate maximum amount of memory required to store given number of objects.
|
|
*/
|
|
size_t
|
|
rte_mempool_xmem_size(uint32_t elt_num, size_t elt_sz, uint32_t pg_shift)
|
|
{
|
|
size_t n, pg_num, pg_sz, sz;
|
|
|
|
pg_sz = (size_t)1 << pg_shift;
|
|
|
|
if ((n = pg_sz / elt_sz) > 0) {
|
|
pg_num = (elt_num + n - 1) / n;
|
|
sz = pg_num << pg_shift;
|
|
} else {
|
|
sz = RTE_ALIGN_CEIL(elt_sz, pg_sz) * elt_num;
|
|
}
|
|
|
|
return (sz);
|
|
}
|
|
|
|
/*
|
|
* Calculate how much memory would be actually required with the
|
|
* given memory footprint to store required number of elements.
|
|
*/
|
|
static void
|
|
mempool_lelem_iter(void *arg, __rte_unused void *start, void *end,
|
|
__rte_unused uint32_t idx)
|
|
{
|
|
*(uintptr_t *)arg = (uintptr_t)end;
|
|
}
|
|
|
|
ssize_t
|
|
rte_mempool_xmem_usage(void *vaddr, uint32_t elt_num, size_t elt_sz,
|
|
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
|
|
{
|
|
uint32_t n;
|
|
uintptr_t va, uv;
|
|
size_t pg_sz, usz;
|
|
|
|
pg_sz = (size_t)1 << pg_shift;
|
|
va = (uintptr_t)vaddr;
|
|
uv = va;
|
|
|
|
if ((n = rte_mempool_obj_iter(vaddr, elt_num, elt_sz, 1,
|
|
paddr, pg_num, pg_shift, mempool_lelem_iter,
|
|
&uv)) != elt_num) {
|
|
return (-n);
|
|
}
|
|
|
|
uv = RTE_ALIGN_CEIL(uv, pg_sz);
|
|
usz = uv - va;
|
|
return (usz);
|
|
}
|
|
|
|
/* create the mempool */
|
|
struct rte_mempool *
|
|
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
|
|
unsigned cache_size, unsigned private_data_size,
|
|
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
|
|
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
|
|
int socket_id, unsigned flags)
|
|
{
|
|
#ifdef RTE_LIBRTE_XEN_DOM0
|
|
return (rte_dom0_mempool_create(name, n, elt_size,
|
|
cache_size, private_data_size,
|
|
mp_init, mp_init_arg,
|
|
obj_init, obj_init_arg,
|
|
socket_id, flags));
|
|
#else
|
|
return (rte_mempool_xmem_create(name, n, elt_size,
|
|
cache_size, private_data_size,
|
|
mp_init, mp_init_arg,
|
|
obj_init, obj_init_arg,
|
|
socket_id, flags,
|
|
NULL, NULL, MEMPOOL_PG_NUM_DEFAULT, MEMPOOL_PG_SHIFT_MAX));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Create the mempool over already allocated chunk of memory.
|
|
* That external memory buffer can consists of physically disjoint pages.
|
|
* Setting vaddr to NULL, makes mempool to fallback to original behaviour
|
|
* and allocate space for mempool and it's elements as one big chunk of
|
|
* physically continuos memory.
|
|
* */
|
|
struct rte_mempool *
|
|
rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size,
|
|
unsigned cache_size, unsigned private_data_size,
|
|
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
|
|
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
|
|
int socket_id, unsigned flags, void *vaddr,
|
|
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
|
|
{
|
|
char mz_name[RTE_MEMZONE_NAMESIZE];
|
|
char rg_name[RTE_RING_NAMESIZE];
|
|
struct rte_mempool_list *mempool_list;
|
|
struct rte_mempool *mp = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_ring *r;
|
|
const struct rte_memzone *mz;
|
|
size_t mempool_size;
|
|
int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
|
|
int rg_flags = 0;
|
|
void *obj;
|
|
struct rte_mempool_objsz objsz;
|
|
void *startaddr;
|
|
int page_size = getpagesize();
|
|
|
|
/* compilation-time checks */
|
|
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
|
|
RTE_CACHE_LINE_MASK) != 0);
|
|
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
|
|
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
|
|
RTE_CACHE_LINE_MASK) != 0);
|
|
RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, local_cache) &
|
|
RTE_CACHE_LINE_MASK) != 0);
|
|
#endif
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
|
|
RTE_CACHE_LINE_MASK) != 0);
|
|
RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
|
|
RTE_CACHE_LINE_MASK) != 0);
|
|
#endif
|
|
|
|
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
|
|
|
|
/* asked cache too big */
|
|
if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
|
|
CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
/* check that we have both VA and PA */
|
|
if (vaddr != NULL && paddr == NULL) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
/* Check that pg_num and pg_shift parameters are valid. */
|
|
if (pg_num < RTE_DIM(mp->elt_pa) || pg_shift > MEMPOOL_PG_SHIFT_MAX) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
/* "no cache align" imply "no spread" */
|
|
if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
|
|
flags |= MEMPOOL_F_NO_SPREAD;
|
|
|
|
/* ring flags */
|
|
if (flags & MEMPOOL_F_SP_PUT)
|
|
rg_flags |= RING_F_SP_ENQ;
|
|
if (flags & MEMPOOL_F_SC_GET)
|
|
rg_flags |= RING_F_SC_DEQ;
|
|
|
|
/* calculate mempool object sizes. */
|
|
if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
/* allocate the ring that will be used to store objects */
|
|
/* Ring functions will return appropriate errors if we are
|
|
* running as a secondary process etc., so no checks made
|
|
* in this function for that condition */
|
|
snprintf(rg_name, sizeof(rg_name), RTE_MEMPOOL_MZ_FORMAT, name);
|
|
r = rte_ring_create(rg_name, rte_align32pow2(n+1), socket_id, rg_flags);
|
|
if (r == NULL)
|
|
goto exit;
|
|
|
|
/*
|
|
* reserve a memory zone for this mempool: private data is
|
|
* cache-aligned
|
|
*/
|
|
private_data_size = (private_data_size +
|
|
RTE_CACHE_LINE_MASK) & (~RTE_CACHE_LINE_MASK);
|
|
|
|
if (! rte_eal_has_hugepages()) {
|
|
/*
|
|
* expand private data size to a whole page, so that the
|
|
* first pool element will start on a new standard page
|
|
*/
|
|
int head = sizeof(struct rte_mempool);
|
|
int new_size = (private_data_size + head) % page_size;
|
|
if (new_size) {
|
|
private_data_size += page_size - new_size;
|
|
}
|
|
}
|
|
|
|
/* try to allocate tailq entry */
|
|
te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
|
|
if (te == NULL) {
|
|
RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* If user provided an external memory buffer, then use it to
|
|
* store mempool objects. Otherwise reserve memzone big enough to
|
|
* hold mempool header and metadata plus mempool objects.
|
|
*/
|
|
mempool_size = MEMPOOL_HEADER_SIZE(mp, pg_num) + private_data_size;
|
|
if (vaddr == NULL)
|
|
mempool_size += (size_t)objsz.total_size * n;
|
|
|
|
if (! rte_eal_has_hugepages()) {
|
|
/*
|
|
* we want the memory pool to start on a page boundary,
|
|
* because pool elements crossing page boundaries would
|
|
* result in discontiguous physical addresses
|
|
*/
|
|
mempool_size += page_size;
|
|
}
|
|
|
|
snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
|
|
|
|
mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
|
|
|
|
/*
|
|
* no more memory: in this case we loose previously reserved
|
|
* space for the as we cannot free it
|
|
*/
|
|
if (mz == NULL) {
|
|
rte_free(te);
|
|
goto exit;
|
|
}
|
|
|
|
if (rte_eal_has_hugepages()) {
|
|
startaddr = (void*)mz->addr;
|
|
} else {
|
|
/* align memory pool start address on a page boundary */
|
|
unsigned long addr = (unsigned long)mz->addr;
|
|
if (addr & (page_size - 1)) {
|
|
addr += page_size;
|
|
addr &= ~(page_size - 1);
|
|
}
|
|
startaddr = (void*)addr;
|
|
}
|
|
|
|
/* init the mempool structure */
|
|
mp = startaddr;
|
|
memset(mp, 0, sizeof(*mp));
|
|
snprintf(mp->name, sizeof(mp->name), "%s", name);
|
|
mp->phys_addr = mz->phys_addr;
|
|
mp->ring = r;
|
|
mp->size = n;
|
|
mp->flags = flags;
|
|
mp->elt_size = objsz.elt_size;
|
|
mp->header_size = objsz.header_size;
|
|
mp->trailer_size = objsz.trailer_size;
|
|
mp->cache_size = cache_size;
|
|
mp->cache_flushthresh = CALC_CACHE_FLUSHTHRESH(cache_size);
|
|
mp->private_data_size = private_data_size;
|
|
|
|
/* calculate address of the first element for continuous mempool. */
|
|
obj = (char *)mp + MEMPOOL_HEADER_SIZE(mp, pg_num) +
|
|
private_data_size;
|
|
|
|
/* populate address translation fields. */
|
|
mp->pg_num = pg_num;
|
|
mp->pg_shift = pg_shift;
|
|
mp->pg_mask = RTE_LEN2MASK(mp->pg_shift, typeof(mp->pg_mask));
|
|
|
|
/* mempool elements allocated together with mempool */
|
|
if (vaddr == NULL) {
|
|
mp->elt_va_start = (uintptr_t)obj;
|
|
mp->elt_pa[0] = mp->phys_addr +
|
|
(mp->elt_va_start - (uintptr_t)mp);
|
|
|
|
/* mempool elements in a separate chunk of memory. */
|
|
} else {
|
|
mp->elt_va_start = (uintptr_t)vaddr;
|
|
memcpy(mp->elt_pa, paddr, sizeof (mp->elt_pa[0]) * pg_num);
|
|
}
|
|
|
|
mp->elt_va_end = mp->elt_va_start;
|
|
|
|
/* call the initializer */
|
|
if (mp_init)
|
|
mp_init(mp, mp_init_arg);
|
|
|
|
mempool_populate(mp, n, 1, obj_init, obj_init_arg);
|
|
|
|
te->data = (void *) mp;
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
TAILQ_INSERT_TAIL(mempool_list, te, next);
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
exit:
|
|
rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
return mp;
|
|
}
|
|
|
|
/* Return the number of entries in the mempool */
|
|
unsigned
|
|
rte_mempool_count(const struct rte_mempool *mp)
|
|
{
|
|
unsigned count;
|
|
|
|
count = rte_ring_count(mp->ring);
|
|
|
|
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
|
|
{
|
|
unsigned lcore_id;
|
|
if (mp->cache_size == 0)
|
|
return count;
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
|
|
count += mp->local_cache[lcore_id].len;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* due to race condition (access to len is not locked), the
|
|
* total can be greater than size... so fix the result
|
|
*/
|
|
if (count > mp->size)
|
|
return mp->size;
|
|
return count;
|
|
}
|
|
|
|
/* dump the cache status */
|
|
static unsigned
|
|
rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
|
|
{
|
|
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
|
|
unsigned lcore_id;
|
|
unsigned count = 0;
|
|
unsigned cache_count;
|
|
|
|
fprintf(f, " cache infos:\n");
|
|
fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size);
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
cache_count = mp->local_cache[lcore_id].len;
|
|
fprintf(f, " cache_count[%u]=%u\n", lcore_id, cache_count);
|
|
count += cache_count;
|
|
}
|
|
fprintf(f, " total_cache_count=%u\n", count);
|
|
return count;
|
|
#else
|
|
RTE_SET_USED(mp);
|
|
fprintf(f, " cache disabled\n");
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
/* check cookies before and after objects */
|
|
#ifndef __INTEL_COMPILER
|
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
struct mempool_audit_arg {
|
|
const struct rte_mempool *mp;
|
|
uintptr_t obj_end;
|
|
uint32_t obj_num;
|
|
};
|
|
|
|
static void
|
|
mempool_obj_audit(void *arg, void *start, void *end, uint32_t idx)
|
|
{
|
|
struct mempool_audit_arg *pa = arg;
|
|
void *obj;
|
|
|
|
obj = (char *)start + pa->mp->header_size;
|
|
pa->obj_end = (uintptr_t)end;
|
|
pa->obj_num = idx + 1;
|
|
__mempool_check_cookies(pa->mp, &obj, 1, 2);
|
|
}
|
|
|
|
static void
|
|
mempool_audit_cookies(const struct rte_mempool *mp)
|
|
{
|
|
uint32_t elt_sz, num;
|
|
struct mempool_audit_arg arg;
|
|
|
|
elt_sz = mp->elt_size + mp->header_size + mp->trailer_size;
|
|
|
|
arg.mp = mp;
|
|
arg.obj_end = mp->elt_va_start;
|
|
arg.obj_num = 0;
|
|
|
|
num = rte_mempool_obj_iter((void *)mp->elt_va_start,
|
|
mp->size, elt_sz, 1,
|
|
mp->elt_pa, mp->pg_num, mp->pg_shift,
|
|
mempool_obj_audit, &arg);
|
|
|
|
if (num != mp->size) {
|
|
rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
|
|
"iterated only over %u elements\n",
|
|
mp, mp->size, num);
|
|
} else if (arg.obj_end != mp->elt_va_end || arg.obj_num != mp->size) {
|
|
rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
|
|
"last callback va_end: %#tx (%#tx expeceted), "
|
|
"num of objects: %u (%u expected)\n",
|
|
mp, mp->size,
|
|
arg.obj_end, mp->elt_va_end,
|
|
arg.obj_num, mp->size);
|
|
}
|
|
}
|
|
|
|
#ifndef __INTEL_COMPILER
|
|
#pragma GCC diagnostic error "-Wcast-qual"
|
|
#endif
|
|
#else
|
|
#define mempool_audit_cookies(mp) do {} while(0)
|
|
#endif
|
|
|
|
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
|
|
/* check cookies before and after objects */
|
|
static void
|
|
mempool_audit_cache(const struct rte_mempool *mp)
|
|
{
|
|
/* check cache size consistency */
|
|
unsigned lcore_id;
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (mp->local_cache[lcore_id].len > mp->cache_flushthresh) {
|
|
RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
|
|
lcore_id);
|
|
rte_panic("MEMPOOL: invalid cache len\n");
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
#define mempool_audit_cache(mp) do {} while(0)
|
|
#endif
|
|
|
|
|
|
/* check the consistency of mempool (size, cookies, ...) */
|
|
void
|
|
rte_mempool_audit(const struct rte_mempool *mp)
|
|
{
|
|
mempool_audit_cache(mp);
|
|
mempool_audit_cookies(mp);
|
|
|
|
/* For case where mempool DEBUG is not set, and cache size is 0 */
|
|
RTE_SET_USED(mp);
|
|
}
|
|
|
|
/* dump the status of the mempool on the console */
|
|
void
|
|
rte_mempool_dump(FILE *f, const struct rte_mempool *mp)
|
|
{
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
struct rte_mempool_debug_stats sum;
|
|
unsigned lcore_id;
|
|
#endif
|
|
unsigned common_count;
|
|
unsigned cache_count;
|
|
|
|
RTE_VERIFY(f != NULL);
|
|
RTE_VERIFY(mp != NULL);
|
|
|
|
fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
|
|
fprintf(f, " flags=%x\n", mp->flags);
|
|
fprintf(f, " ring=<%s>@%p\n", mp->ring->name, mp->ring);
|
|
fprintf(f, " phys_addr=0x%" PRIx64 "\n", mp->phys_addr);
|
|
fprintf(f, " size=%"PRIu32"\n", mp->size);
|
|
fprintf(f, " header_size=%"PRIu32"\n", mp->header_size);
|
|
fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size);
|
|
fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size);
|
|
fprintf(f, " total_obj_size=%"PRIu32"\n",
|
|
mp->header_size + mp->elt_size + mp->trailer_size);
|
|
|
|
fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size);
|
|
fprintf(f, " pg_num=%"PRIu32"\n", mp->pg_num);
|
|
fprintf(f, " pg_shift=%"PRIu32"\n", mp->pg_shift);
|
|
fprintf(f, " pg_mask=%#tx\n", mp->pg_mask);
|
|
fprintf(f, " elt_va_start=%#tx\n", mp->elt_va_start);
|
|
fprintf(f, " elt_va_end=%#tx\n", mp->elt_va_end);
|
|
fprintf(f, " elt_pa[0]=0x%" PRIx64 "\n", mp->elt_pa[0]);
|
|
|
|
if (mp->size != 0)
|
|
fprintf(f, " avg bytes/object=%#Lf\n",
|
|
(long double)(mp->elt_va_end - mp->elt_va_start) /
|
|
mp->size);
|
|
|
|
cache_count = rte_mempool_dump_cache(f, mp);
|
|
common_count = rte_ring_count(mp->ring);
|
|
if ((cache_count + common_count) > mp->size)
|
|
common_count = mp->size - cache_count;
|
|
fprintf(f, " common_pool_count=%u\n", common_count);
|
|
|
|
/* sum and dump statistics */
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
memset(&sum, 0, sizeof(sum));
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
sum.put_bulk += mp->stats[lcore_id].put_bulk;
|
|
sum.put_objs += mp->stats[lcore_id].put_objs;
|
|
sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
|
|
sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
|
|
sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
|
|
sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
|
|
}
|
|
fprintf(f, " stats:\n");
|
|
fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk);
|
|
fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs);
|
|
fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
|
|
fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs);
|
|
fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
|
|
fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
|
|
#else
|
|
fprintf(f, " no statistics available\n");
|
|
#endif
|
|
|
|
rte_mempool_audit(mp);
|
|
}
|
|
|
|
/* dump the status of all mempools on the console */
|
|
void
|
|
rte_mempool_list_dump(FILE *f)
|
|
{
|
|
const struct rte_mempool *mp = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_mempool_list *mempool_list;
|
|
|
|
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
TAILQ_FOREACH(te, mempool_list, next) {
|
|
mp = (struct rte_mempool *) te->data;
|
|
rte_mempool_dump(f, mp);
|
|
}
|
|
|
|
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
}
|
|
|
|
/* search a mempool from its name */
|
|
struct rte_mempool *
|
|
rte_mempool_lookup(const char *name)
|
|
{
|
|
struct rte_mempool *mp = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_mempool_list *mempool_list;
|
|
|
|
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
TAILQ_FOREACH(te, mempool_list, next) {
|
|
mp = (struct rte_mempool *) te->data;
|
|
if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
|
|
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
if (te == NULL) {
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
|
|
return mp;
|
|
}
|
|
|
|
void rte_mempool_walk(void (*func)(const struct rte_mempool *, void *),
|
|
void *arg)
|
|
{
|
|
struct rte_tailq_entry *te = NULL;
|
|
struct rte_mempool_list *mempool_list;
|
|
|
|
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
TAILQ_FOREACH(te, mempool_list, next) {
|
|
(*func)((struct rte_mempool *) te->data, arg);
|
|
}
|
|
|
|
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
}
|