b3bbd9e5f2
Change crypto device's session management to make it device independent and simplify architecture when session is intended to be used on more than one device. Sessions private data is agnostic to underlying device by adding an indirection in the sessions private data using the crypto driver identifier. A single session can contain indirections to multiple device types. New function rte_cryptodev_sym_session_init has been created, to initialize the driver private session data per driver to be used on a same session, and rte_cryptodev_sym_session_clear to clear this data before calling rte_cryptodev_sym_session_free. Signed-off-by: Slawomir Mrozowicz <slawomirx.mrozowicz@intel.com> Signed-off-by: Pablo de Lara <pablo.de.lara.guarch@intel.com> Acked-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
585 lines
16 KiB
C
585 lines
16 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_crypto.h>
|
|
#include <rte_cryptodev.h>
|
|
|
|
#include "cperf_test_latency.h"
|
|
#include "cperf_ops.h"
|
|
|
|
|
|
struct cperf_op_result {
|
|
uint64_t tsc_start;
|
|
uint64_t tsc_end;
|
|
enum rte_crypto_op_status status;
|
|
};
|
|
|
|
struct cperf_latency_ctx {
|
|
uint8_t dev_id;
|
|
uint16_t qp_id;
|
|
uint8_t lcore_id;
|
|
|
|
struct rte_mempool *pkt_mbuf_pool_in;
|
|
struct rte_mempool *pkt_mbuf_pool_out;
|
|
struct rte_mbuf **mbufs_in;
|
|
struct rte_mbuf **mbufs_out;
|
|
|
|
struct rte_mempool *crypto_op_pool;
|
|
|
|
struct rte_cryptodev_sym_session *sess;
|
|
|
|
cperf_populate_ops_t populate_ops;
|
|
|
|
const struct cperf_options *options;
|
|
const struct cperf_test_vector *test_vector;
|
|
struct cperf_op_result *res;
|
|
};
|
|
|
|
struct priv_op_data {
|
|
struct cperf_op_result *result;
|
|
};
|
|
|
|
#define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b)
|
|
#define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b)
|
|
|
|
static void
|
|
cperf_latency_test_free(struct cperf_latency_ctx *ctx, uint32_t mbuf_nb)
|
|
{
|
|
uint32_t i;
|
|
|
|
if (ctx) {
|
|
if (ctx->sess) {
|
|
rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
|
|
rte_cryptodev_sym_session_free(ctx->sess);
|
|
}
|
|
|
|
if (ctx->mbufs_in) {
|
|
for (i = 0; i < mbuf_nb; i++)
|
|
rte_pktmbuf_free(ctx->mbufs_in[i]);
|
|
|
|
rte_free(ctx->mbufs_in);
|
|
}
|
|
|
|
if (ctx->mbufs_out) {
|
|
for (i = 0; i < mbuf_nb; i++) {
|
|
if (ctx->mbufs_out[i] != NULL)
|
|
rte_pktmbuf_free(ctx->mbufs_out[i]);
|
|
}
|
|
|
|
rte_free(ctx->mbufs_out);
|
|
}
|
|
|
|
if (ctx->pkt_mbuf_pool_in)
|
|
rte_mempool_free(ctx->pkt_mbuf_pool_in);
|
|
|
|
if (ctx->pkt_mbuf_pool_out)
|
|
rte_mempool_free(ctx->pkt_mbuf_pool_out);
|
|
|
|
if (ctx->crypto_op_pool)
|
|
rte_mempool_free(ctx->crypto_op_pool);
|
|
|
|
rte_free(ctx->res);
|
|
rte_free(ctx);
|
|
}
|
|
}
|
|
|
|
static struct rte_mbuf *
|
|
cperf_mbuf_create(struct rte_mempool *mempool,
|
|
uint32_t segments_nb,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector)
|
|
{
|
|
struct rte_mbuf *mbuf;
|
|
uint32_t segment_sz = options->max_buffer_size / segments_nb;
|
|
uint32_t last_sz = options->max_buffer_size % segments_nb;
|
|
uint8_t *mbuf_data;
|
|
uint8_t *test_data =
|
|
(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
|
|
test_vector->plaintext.data :
|
|
test_vector->ciphertext.data;
|
|
|
|
mbuf = rte_pktmbuf_alloc(mempool);
|
|
if (mbuf == NULL)
|
|
goto error;
|
|
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
memcpy(mbuf_data, test_data, segment_sz);
|
|
test_data += segment_sz;
|
|
segments_nb--;
|
|
|
|
while (segments_nb) {
|
|
struct rte_mbuf *m;
|
|
|
|
m = rte_pktmbuf_alloc(mempool);
|
|
if (m == NULL)
|
|
goto error;
|
|
|
|
rte_pktmbuf_chain(mbuf, m);
|
|
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
memcpy(mbuf_data, test_data, segment_sz);
|
|
test_data += segment_sz;
|
|
segments_nb--;
|
|
}
|
|
|
|
if (last_sz) {
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
memcpy(mbuf_data, test_data, last_sz);
|
|
}
|
|
|
|
if (options->op_type != CPERF_CIPHER_ONLY) {
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
|
|
options->digest_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
}
|
|
|
|
if (options->op_type == CPERF_AEAD) {
|
|
uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
|
|
RTE_ALIGN_CEIL(options->aead_aad_sz, 16));
|
|
|
|
if (aead == NULL)
|
|
goto error;
|
|
|
|
memcpy(aead, test_vector->aad.data, test_vector->aad.length);
|
|
}
|
|
|
|
return mbuf;
|
|
error:
|
|
if (mbuf != NULL)
|
|
rte_pktmbuf_free(mbuf);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void *
|
|
cperf_latency_test_constructor(struct rte_mempool *sess_mp,
|
|
uint8_t dev_id, uint16_t qp_id,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector,
|
|
const struct cperf_op_fns *op_fns)
|
|
{
|
|
struct cperf_latency_ctx *ctx = NULL;
|
|
unsigned int mbuf_idx = 0;
|
|
char pool_name[32] = "";
|
|
|
|
ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
ctx->dev_id = dev_id;
|
|
ctx->qp_id = qp_id;
|
|
|
|
ctx->populate_ops = op_fns->populate_ops;
|
|
ctx->options = options;
|
|
ctx->test_vector = test_vector;
|
|
|
|
/* IV goes at the end of the crypto operation */
|
|
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op) +
|
|
sizeof(struct cperf_op_result *);
|
|
|
|
ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
|
|
iv_offset);
|
|
if (ctx->sess == NULL)
|
|
goto err;
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
|
|
dev_id);
|
|
|
|
ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
|
|
options->pool_sz * options->segments_nb, 0, 0,
|
|
RTE_PKTMBUF_HEADROOM +
|
|
RTE_CACHE_LINE_ROUNDUP(
|
|
(options->max_buffer_size / options->segments_nb) +
|
|
(options->max_buffer_size % options->segments_nb) +
|
|
options->digest_sz),
|
|
rte_socket_id());
|
|
|
|
if (ctx->pkt_mbuf_pool_in == NULL)
|
|
goto err;
|
|
|
|
/* Generate mbufs_in with plaintext populated for test */
|
|
ctx->mbufs_in = rte_malloc(NULL,
|
|
(sizeof(struct rte_mbuf *) *
|
|
ctx->options->pool_sz), 0);
|
|
|
|
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
|
|
ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
|
|
ctx->pkt_mbuf_pool_in, options->segments_nb,
|
|
options, test_vector);
|
|
if (ctx->mbufs_in[mbuf_idx] == NULL)
|
|
goto err;
|
|
}
|
|
|
|
if (options->out_of_place == 1) {
|
|
|
|
snprintf(pool_name, sizeof(pool_name),
|
|
"cperf_pool_out_cdev_%d",
|
|
dev_id);
|
|
|
|
ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
|
|
pool_name, options->pool_sz, 0, 0,
|
|
RTE_PKTMBUF_HEADROOM +
|
|
RTE_CACHE_LINE_ROUNDUP(
|
|
options->max_buffer_size +
|
|
options->digest_sz),
|
|
rte_socket_id());
|
|
|
|
if (ctx->pkt_mbuf_pool_out == NULL)
|
|
goto err;
|
|
}
|
|
|
|
ctx->mbufs_out = rte_malloc(NULL,
|
|
(sizeof(struct rte_mbuf *) *
|
|
ctx->options->pool_sz), 0);
|
|
|
|
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
|
|
if (options->out_of_place == 1) {
|
|
ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
|
|
ctx->pkt_mbuf_pool_out, 1,
|
|
options, test_vector);
|
|
if (ctx->mbufs_out[mbuf_idx] == NULL)
|
|
goto err;
|
|
} else {
|
|
ctx->mbufs_out[mbuf_idx] = NULL;
|
|
}
|
|
}
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
|
|
dev_id);
|
|
|
|
uint16_t priv_size = sizeof(struct priv_op_data) +
|
|
test_vector->cipher_iv.length +
|
|
test_vector->auth_iv.length;
|
|
ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz,
|
|
512, priv_size, rte_socket_id());
|
|
|
|
if (ctx->crypto_op_pool == NULL)
|
|
goto err;
|
|
|
|
ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
|
|
ctx->options->total_ops, 0);
|
|
|
|
if (ctx->res == NULL)
|
|
goto err;
|
|
|
|
return ctx;
|
|
err:
|
|
cperf_latency_test_free(ctx, mbuf_idx);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void
|
|
store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
|
|
{
|
|
struct priv_op_data *priv_data;
|
|
|
|
priv_data = (struct priv_op_data *) (op->sym + 1);
|
|
priv_data->result->status = op->status;
|
|
priv_data->result->tsc_end = timestamp;
|
|
}
|
|
|
|
int
|
|
cperf_latency_test_runner(void *arg)
|
|
{
|
|
struct cperf_latency_ctx *ctx = arg;
|
|
uint16_t test_burst_size;
|
|
uint8_t burst_size_idx = 0;
|
|
|
|
static int only_once;
|
|
|
|
if (ctx == NULL)
|
|
return 0;
|
|
|
|
struct rte_crypto_op *ops[ctx->options->max_burst_size];
|
|
struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
|
|
uint64_t i;
|
|
struct priv_op_data *priv_data;
|
|
|
|
uint32_t lcore = rte_lcore_id();
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
struct rte_cryptodev_info dev_info;
|
|
int linearize = 0;
|
|
|
|
/* Check if source mbufs require coalescing */
|
|
if (ctx->options->segments_nb > 1) {
|
|
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
|
|
if ((dev_info.feature_flags &
|
|
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
|
|
linearize = 1;
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
ctx->lcore_id = lcore;
|
|
|
|
/* Warm up the host CPU before starting the test */
|
|
for (i = 0; i < ctx->options->total_ops; i++)
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* Get first size from range or list */
|
|
if (ctx->options->inc_burst_size != 0)
|
|
test_burst_size = ctx->options->min_burst_size;
|
|
else
|
|
test_burst_size = ctx->options->burst_size_list[0];
|
|
|
|
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op) +
|
|
sizeof(struct cperf_op_result *);
|
|
|
|
while (test_burst_size <= ctx->options->max_burst_size) {
|
|
uint64_t ops_enqd = 0, ops_deqd = 0;
|
|
uint64_t m_idx = 0, b_idx = 0;
|
|
|
|
uint64_t tsc_val, tsc_end, tsc_start;
|
|
uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
|
|
uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
|
|
uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
|
|
|
|
while (enqd_tot < ctx->options->total_ops) {
|
|
|
|
uint16_t burst_size = ((enqd_tot + test_burst_size)
|
|
<= ctx->options->total_ops) ?
|
|
test_burst_size :
|
|
ctx->options->total_ops -
|
|
enqd_tot;
|
|
|
|
/* Allocate crypto ops from pool */
|
|
if (burst_size != rte_crypto_op_bulk_alloc(
|
|
ctx->crypto_op_pool,
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
|
|
ops, burst_size))
|
|
return -1;
|
|
|
|
/* Setup crypto op, attach mbuf etc */
|
|
(ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
|
|
&ctx->mbufs_out[m_idx],
|
|
burst_size, ctx->sess, ctx->options,
|
|
ctx->test_vector, iv_offset);
|
|
|
|
tsc_start = rte_rdtsc_precise();
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
if (linearize) {
|
|
/* PMD doesn't support scatter-gather and source buffer
|
|
* is segmented.
|
|
* We need to linearize it before enqueuing.
|
|
*/
|
|
for (i = 0; i < burst_size; i++)
|
|
rte_pktmbuf_linearize(ops[i]->sym->m_src);
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
/* Enqueue burst of ops on crypto device */
|
|
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops, burst_size);
|
|
|
|
/* Dequeue processed burst of ops from crypto device */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, test_burst_size);
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
|
|
/* Free memory for not enqueued operations */
|
|
if (ops_enqd != burst_size)
|
|
rte_mempool_put_bulk(ctx->crypto_op_pool,
|
|
(void **)&ops_processed[ops_enqd],
|
|
burst_size - ops_enqd);
|
|
|
|
for (i = 0; i < ops_enqd; i++) {
|
|
ctx->res[tsc_idx].tsc_start = tsc_start;
|
|
/*
|
|
* Private data structure starts after the end of the
|
|
* rte_crypto_sym_op structure.
|
|
*/
|
|
priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
|
|
priv_data->result = (void *)&ctx->res[tsc_idx];
|
|
tsc_idx++;
|
|
}
|
|
|
|
if (likely(ops_deqd)) {
|
|
/*
|
|
* free crypto ops so they can be reused. We don't free
|
|
* the mbufs here as we don't want to reuse them as
|
|
* the crypto operation will change the data and cause
|
|
* failures.
|
|
*/
|
|
for (i = 0; i < ops_deqd; i++)
|
|
store_timestamp(ops_processed[i], tsc_end);
|
|
|
|
rte_mempool_put_bulk(ctx->crypto_op_pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
|
|
deqd_tot += ops_deqd;
|
|
deqd_max = max(ops_deqd, deqd_max);
|
|
deqd_min = min(ops_deqd, deqd_min);
|
|
}
|
|
|
|
enqd_tot += ops_enqd;
|
|
enqd_max = max(ops_enqd, enqd_max);
|
|
enqd_min = min(ops_enqd, enqd_min);
|
|
|
|
m_idx += ops_enqd;
|
|
m_idx = m_idx + test_burst_size > ctx->options->pool_sz ?
|
|
0 : m_idx;
|
|
b_idx++;
|
|
}
|
|
|
|
/* Dequeue any operations still in the crypto device */
|
|
while (deqd_tot < ctx->options->total_ops) {
|
|
/* Sending 0 length burst to flush sw crypto device */
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* dequeue burst */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, test_burst_size);
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
|
|
if (ops_deqd != 0) {
|
|
for (i = 0; i < ops_deqd; i++)
|
|
store_timestamp(ops_processed[i], tsc_end);
|
|
|
|
rte_mempool_put_bulk(ctx->crypto_op_pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
|
|
deqd_tot += ops_deqd;
|
|
deqd_max = max(ops_deqd, deqd_max);
|
|
deqd_min = min(ops_deqd, deqd_min);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < tsc_idx; i++) {
|
|
tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
|
|
tsc_max = max(tsc_val, tsc_max);
|
|
tsc_min = min(tsc_val, tsc_min);
|
|
tsc_tot += tsc_val;
|
|
}
|
|
|
|
double time_tot, time_avg, time_max, time_min;
|
|
|
|
const uint64_t tunit = 1000000; /* us */
|
|
const uint64_t tsc_hz = rte_get_tsc_hz();
|
|
|
|
uint64_t enqd_avg = enqd_tot / b_idx;
|
|
uint64_t deqd_avg = deqd_tot / b_idx;
|
|
uint64_t tsc_avg = tsc_tot / tsc_idx;
|
|
|
|
time_tot = tunit*(double)(tsc_tot) / tsc_hz;
|
|
time_avg = tunit*(double)(tsc_avg) / tsc_hz;
|
|
time_max = tunit*(double)(tsc_max) / tsc_hz;
|
|
time_min = tunit*(double)(tsc_min) / tsc_hz;
|
|
|
|
if (ctx->options->csv) {
|
|
if (!only_once)
|
|
printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
|
|
"Packet Size, cycles, time (us)");
|
|
|
|
for (i = 0; i < ctx->options->total_ops; i++) {
|
|
|
|
printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f",
|
|
ctx->lcore_id, ctx->options->test_buffer_size,
|
|
test_burst_size, i + 1,
|
|
ctx->res[i].tsc_end - ctx->res[i].tsc_start,
|
|
tunit * (double) (ctx->res[i].tsc_end
|
|
- ctx->res[i].tsc_start)
|
|
/ tsc_hz);
|
|
|
|
}
|
|
only_once = 1;
|
|
} else {
|
|
printf("\n# Device %d on lcore %u\n", ctx->dev_id,
|
|
ctx->lcore_id);
|
|
printf("\n# total operations: %u", ctx->options->total_ops);
|
|
printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
|
|
printf("\n# Burst size: %u", test_burst_size);
|
|
printf("\n# Number of bursts: %"PRIu64,
|
|
b_idx);
|
|
|
|
printf("\n#");
|
|
printf("\n# \t Total\t Average\t "
|
|
"Maximum\t Minimum");
|
|
printf("\n# enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
|
|
"%10"PRIu64"\t%10"PRIu64, enqd_tot,
|
|
enqd_avg, enqd_max, enqd_min);
|
|
printf("\n# dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
|
|
"%10"PRIu64"\t%10"PRIu64, deqd_tot,
|
|
deqd_avg, deqd_max, deqd_min);
|
|
printf("\n# cycles\t%12"PRIu64"\t%10"PRIu64"\t"
|
|
"%10"PRIu64"\t%10"PRIu64, tsc_tot,
|
|
tsc_avg, tsc_max, tsc_min);
|
|
printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
|
|
time_tot, time_avg, time_max, time_min);
|
|
printf("\n\n");
|
|
|
|
}
|
|
|
|
/* Get next size from range or list */
|
|
if (ctx->options->inc_burst_size != 0)
|
|
test_burst_size += ctx->options->inc_burst_size;
|
|
else {
|
|
if (++burst_size_idx == ctx->options->burst_size_count)
|
|
break;
|
|
test_burst_size =
|
|
ctx->options->burst_size_list[burst_size_idx];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cperf_latency_test_destructor(void *arg)
|
|
{
|
|
struct cperf_latency_ctx *ctx = arg;
|
|
|
|
if (ctx == NULL)
|
|
return;
|
|
|
|
cperf_latency_test_free(ctx, ctx->options->pool_sz);
|
|
|
|
}
|