numam-dpdk/drivers/net/thunderx/nicvf_ethdev.c
Santosh Shukla df6e0a06a3 drivers/net: rename physical address type to IOVA
Renamed data type from phys_addr_t to rte_iova_t.

Signed-off-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Reviewed-by: Anatoly Burakov <anatoly.burakov@intel.com>
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
2017-11-06 22:44:26 +01:00

2194 lines
58 KiB
C

/*
* BSD LICENSE
*
* Copyright (C) Cavium, Inc. 2016.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Cavium, Inc nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <sys/queue.h>
#include <rte_alarm.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_debug.h>
#include <rte_dev.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ethdev_pci.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_tailq.h>
#include "base/nicvf_plat.h"
#include "nicvf_ethdev.h"
#include "nicvf_rxtx.h"
#include "nicvf_svf.h"
#include "nicvf_logs.h"
static void nicvf_dev_stop(struct rte_eth_dev *dev);
static void nicvf_dev_stop_cleanup(struct rte_eth_dev *dev, bool cleanup);
static void nicvf_vf_stop(struct rte_eth_dev *dev, struct nicvf *nic,
bool cleanup);
static inline int
nicvf_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &dev->data->dev_link;
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static inline void
nicvf_set_eth_link_status(struct nicvf *nic, struct rte_eth_link *link)
{
link->link_status = nic->link_up;
link->link_duplex = ETH_LINK_AUTONEG;
if (nic->duplex == NICVF_HALF_DUPLEX)
link->link_duplex = ETH_LINK_HALF_DUPLEX;
else if (nic->duplex == NICVF_FULL_DUPLEX)
link->link_duplex = ETH_LINK_FULL_DUPLEX;
link->link_speed = nic->speed;
link->link_autoneg = ETH_LINK_SPEED_AUTONEG;
}
static void
nicvf_interrupt(void *arg)
{
struct rte_eth_dev *dev = arg;
struct nicvf *nic = nicvf_pmd_priv(dev);
if (nicvf_reg_poll_interrupts(nic) == NIC_MBOX_MSG_BGX_LINK_CHANGE) {
if (dev->data->dev_conf.intr_conf.lsc)
nicvf_set_eth_link_status(nic, &dev->data->dev_link);
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
NULL, NULL);
}
rte_eal_alarm_set(NICVF_INTR_POLL_INTERVAL_MS * 1000,
nicvf_interrupt, dev);
}
static void
nicvf_vf_interrupt(void *arg)
{
struct nicvf *nic = arg;
nicvf_reg_poll_interrupts(nic);
rte_eal_alarm_set(NICVF_INTR_POLL_INTERVAL_MS * 1000,
nicvf_vf_interrupt, nic);
}
static int
nicvf_periodic_alarm_start(void (fn)(void *), void *arg)
{
return rte_eal_alarm_set(NICVF_INTR_POLL_INTERVAL_MS * 1000, fn, arg);
}
static int
nicvf_periodic_alarm_stop(void (fn)(void *), void *arg)
{
return rte_eal_alarm_cancel(fn, arg);
}
/*
* Return 0 means link status changed, -1 means not changed
*/
static int
nicvf_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
struct rte_eth_link link;
struct nicvf *nic = nicvf_pmd_priv(dev);
int i;
PMD_INIT_FUNC_TRACE();
if (wait_to_complete) {
/* rte_eth_link_get() might need to wait up to 9 seconds */
for (i = 0; i < MAX_CHECK_TIME; i++) {
memset(&link, 0, sizeof(link));
nicvf_set_eth_link_status(nic, &link);
if (link.link_status)
break;
rte_delay_ms(CHECK_INTERVAL);
}
} else {
memset(&link, 0, sizeof(link));
nicvf_set_eth_link_status(nic, &link);
}
return nicvf_atomic_write_link_status(dev, &link);
}
static int
nicvf_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
uint32_t buffsz, frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
size_t i;
PMD_INIT_FUNC_TRACE();
if (frame_size > NIC_HW_MAX_FRS)
return -EINVAL;
if (frame_size < NIC_HW_MIN_FRS)
return -EINVAL;
buffsz = dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM;
/*
* Refuse mtu that requires the support of scattered packets
* when this feature has not been enabled before.
*/
if (!dev->data->scattered_rx &&
(frame_size + 2 * VLAN_TAG_SIZE > buffsz))
return -EINVAL;
/* check <seg size> * <max_seg> >= max_frame */
if (dev->data->scattered_rx &&
(frame_size + 2 * VLAN_TAG_SIZE > buffsz * NIC_HW_MAX_SEGS))
return -EINVAL;
if (frame_size > ETHER_MAX_LEN)
dev->data->dev_conf.rxmode.jumbo_frame = 1;
else
dev->data->dev_conf.rxmode.jumbo_frame = 0;
if (nicvf_mbox_update_hw_max_frs(nic, frame_size))
return -EINVAL;
/* Update max frame size */
dev->data->dev_conf.rxmode.max_rx_pkt_len = (uint32_t)frame_size;
nic->mtu = mtu;
for (i = 0; i < nic->sqs_count; i++)
nic->snicvf[i]->mtu = mtu;
return 0;
}
static int
nicvf_dev_get_regs(struct rte_eth_dev *dev, struct rte_dev_reg_info *regs)
{
uint64_t *data = regs->data;
struct nicvf *nic = nicvf_pmd_priv(dev);
if (data == NULL) {
regs->length = nicvf_reg_get_count();
regs->width = THUNDERX_REG_BYTES;
return 0;
}
/* Support only full register dump */
if ((regs->length == 0) ||
(regs->length == (uint32_t)nicvf_reg_get_count())) {
regs->version = nic->vendor_id << 16 | nic->device_id;
nicvf_reg_dump(nic, data);
return 0;
}
return -ENOTSUP;
}
static int
nicvf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
uint16_t qidx;
struct nicvf_hw_rx_qstats rx_qstats;
struct nicvf_hw_tx_qstats tx_qstats;
struct nicvf_hw_stats port_stats;
struct nicvf *nic = nicvf_pmd_priv(dev);
uint16_t rx_start, rx_end;
uint16_t tx_start, tx_end;
size_t i;
/* RX queue indices for the first VF */
nicvf_rx_range(dev, nic, &rx_start, &rx_end);
/* Reading per RX ring stats */
for (qidx = rx_start; qidx <= rx_end; qidx++) {
if (qidx >= RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
nicvf_hw_get_rx_qstats(nic, &rx_qstats, qidx);
stats->q_ibytes[qidx] = rx_qstats.q_rx_bytes;
stats->q_ipackets[qidx] = rx_qstats.q_rx_packets;
}
/* TX queue indices for the first VF */
nicvf_tx_range(dev, nic, &tx_start, &tx_end);
/* Reading per TX ring stats */
for (qidx = tx_start; qidx <= tx_end; qidx++) {
if (qidx >= RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
nicvf_hw_get_tx_qstats(nic, &tx_qstats, qidx);
stats->q_obytes[qidx] = tx_qstats.q_tx_bytes;
stats->q_opackets[qidx] = tx_qstats.q_tx_packets;
}
for (i = 0; i < nic->sqs_count; i++) {
struct nicvf *snic = nic->snicvf[i];
if (snic == NULL)
break;
/* RX queue indices for a secondary VF */
nicvf_rx_range(dev, snic, &rx_start, &rx_end);
/* Reading per RX ring stats */
for (qidx = rx_start; qidx <= rx_end; qidx++) {
if (qidx >= RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
nicvf_hw_get_rx_qstats(snic, &rx_qstats,
qidx % MAX_RCV_QUEUES_PER_QS);
stats->q_ibytes[qidx] = rx_qstats.q_rx_bytes;
stats->q_ipackets[qidx] = rx_qstats.q_rx_packets;
}
/* TX queue indices for a secondary VF */
nicvf_tx_range(dev, snic, &tx_start, &tx_end);
/* Reading per TX ring stats */
for (qidx = tx_start; qidx <= tx_end; qidx++) {
if (qidx >= RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
nicvf_hw_get_tx_qstats(snic, &tx_qstats,
qidx % MAX_SND_QUEUES_PER_QS);
stats->q_obytes[qidx] = tx_qstats.q_tx_bytes;
stats->q_opackets[qidx] = tx_qstats.q_tx_packets;
}
}
nicvf_hw_get_stats(nic, &port_stats);
stats->ibytes = port_stats.rx_bytes;
stats->ipackets = port_stats.rx_ucast_frames;
stats->ipackets += port_stats.rx_bcast_frames;
stats->ipackets += port_stats.rx_mcast_frames;
stats->ierrors = port_stats.rx_l2_errors;
stats->imissed = port_stats.rx_drop_red;
stats->imissed += port_stats.rx_drop_overrun;
stats->imissed += port_stats.rx_drop_bcast;
stats->imissed += port_stats.rx_drop_mcast;
stats->imissed += port_stats.rx_drop_l3_bcast;
stats->imissed += port_stats.rx_drop_l3_mcast;
stats->obytes = port_stats.tx_bytes_ok;
stats->opackets = port_stats.tx_ucast_frames_ok;
stats->opackets += port_stats.tx_bcast_frames_ok;
stats->opackets += port_stats.tx_mcast_frames_ok;
stats->oerrors = port_stats.tx_drops;
return 0;
}
static const uint32_t *
nicvf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
size_t copied;
static uint32_t ptypes[32];
struct nicvf *nic = nicvf_pmd_priv(dev);
static const uint32_t ptypes_common[] = {
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_L4_FRAG,
};
static const uint32_t ptypes_tunnel[] = {
RTE_PTYPE_TUNNEL_GRE,
RTE_PTYPE_TUNNEL_GENEVE,
RTE_PTYPE_TUNNEL_VXLAN,
RTE_PTYPE_TUNNEL_NVGRE,
};
static const uint32_t ptypes_end = RTE_PTYPE_UNKNOWN;
copied = sizeof(ptypes_common);
memcpy(ptypes, ptypes_common, copied);
if (nicvf_hw_cap(nic) & NICVF_CAP_TUNNEL_PARSING) {
memcpy((char *)ptypes + copied, ptypes_tunnel,
sizeof(ptypes_tunnel));
copied += sizeof(ptypes_tunnel);
}
memcpy((char *)ptypes + copied, &ptypes_end, sizeof(ptypes_end));
if (dev->rx_pkt_burst == nicvf_recv_pkts ||
dev->rx_pkt_burst == nicvf_recv_pkts_multiseg)
return ptypes;
return NULL;
}
static void
nicvf_dev_stats_reset(struct rte_eth_dev *dev)
{
int i;
uint16_t rxqs = 0, txqs = 0;
struct nicvf *nic = nicvf_pmd_priv(dev);
uint16_t rx_start, rx_end;
uint16_t tx_start, tx_end;
/* Reset all primary nic counters */
nicvf_rx_range(dev, nic, &rx_start, &rx_end);
for (i = rx_start; i <= rx_end; i++)
rxqs |= (0x3 << (i * 2));
nicvf_tx_range(dev, nic, &tx_start, &tx_end);
for (i = tx_start; i <= tx_end; i++)
txqs |= (0x3 << (i * 2));
nicvf_mbox_reset_stat_counters(nic, 0x3FFF, 0x1F, rxqs, txqs);
/* Reset secondary nic queue counters */
for (i = 0; i < nic->sqs_count; i++) {
struct nicvf *snic = nic->snicvf[i];
if (snic == NULL)
break;
nicvf_rx_range(dev, snic, &rx_start, &rx_end);
for (i = rx_start; i <= rx_end; i++)
rxqs |= (0x3 << ((i % MAX_CMP_QUEUES_PER_QS) * 2));
nicvf_tx_range(dev, snic, &tx_start, &tx_end);
for (i = tx_start; i <= tx_end; i++)
txqs |= (0x3 << ((i % MAX_SND_QUEUES_PER_QS) * 2));
nicvf_mbox_reset_stat_counters(snic, 0, 0, rxqs, txqs);
}
}
/* Promiscuous mode enabled by default in LMAC to VF 1:1 map configuration */
static void
nicvf_dev_promisc_enable(struct rte_eth_dev *dev __rte_unused)
{
}
static inline uint64_t
nicvf_rss_ethdev_to_nic(struct nicvf *nic, uint64_t ethdev_rss)
{
uint64_t nic_rss = 0;
if (ethdev_rss & ETH_RSS_IPV4)
nic_rss |= RSS_IP_ENA;
if (ethdev_rss & ETH_RSS_IPV6)
nic_rss |= RSS_IP_ENA;
if (ethdev_rss & ETH_RSS_NONFRAG_IPV4_UDP)
nic_rss |= (RSS_IP_ENA | RSS_UDP_ENA);
if (ethdev_rss & ETH_RSS_NONFRAG_IPV4_TCP)
nic_rss |= (RSS_IP_ENA | RSS_TCP_ENA);
if (ethdev_rss & ETH_RSS_NONFRAG_IPV6_UDP)
nic_rss |= (RSS_IP_ENA | RSS_UDP_ENA);
if (ethdev_rss & ETH_RSS_NONFRAG_IPV6_TCP)
nic_rss |= (RSS_IP_ENA | RSS_TCP_ENA);
if (ethdev_rss & ETH_RSS_PORT)
nic_rss |= RSS_L2_EXTENDED_HASH_ENA;
if (nicvf_hw_cap(nic) & NICVF_CAP_TUNNEL_PARSING) {
if (ethdev_rss & ETH_RSS_VXLAN)
nic_rss |= RSS_TUN_VXLAN_ENA;
if (ethdev_rss & ETH_RSS_GENEVE)
nic_rss |= RSS_TUN_GENEVE_ENA;
if (ethdev_rss & ETH_RSS_NVGRE)
nic_rss |= RSS_TUN_NVGRE_ENA;
}
return nic_rss;
}
static inline uint64_t
nicvf_rss_nic_to_ethdev(struct nicvf *nic, uint64_t nic_rss)
{
uint64_t ethdev_rss = 0;
if (nic_rss & RSS_IP_ENA)
ethdev_rss |= (ETH_RSS_IPV4 | ETH_RSS_IPV6);
if ((nic_rss & RSS_IP_ENA) && (nic_rss & RSS_TCP_ENA))
ethdev_rss |= (ETH_RSS_NONFRAG_IPV4_TCP |
ETH_RSS_NONFRAG_IPV6_TCP);
if ((nic_rss & RSS_IP_ENA) && (nic_rss & RSS_UDP_ENA))
ethdev_rss |= (ETH_RSS_NONFRAG_IPV4_UDP |
ETH_RSS_NONFRAG_IPV6_UDP);
if (nic_rss & RSS_L2_EXTENDED_HASH_ENA)
ethdev_rss |= ETH_RSS_PORT;
if (nicvf_hw_cap(nic) & NICVF_CAP_TUNNEL_PARSING) {
if (nic_rss & RSS_TUN_VXLAN_ENA)
ethdev_rss |= ETH_RSS_VXLAN;
if (nic_rss & RSS_TUN_GENEVE_ENA)
ethdev_rss |= ETH_RSS_GENEVE;
if (nic_rss & RSS_TUN_NVGRE_ENA)
ethdev_rss |= ETH_RSS_NVGRE;
}
return ethdev_rss;
}
static int
nicvf_dev_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
uint8_t tbl[NIC_MAX_RSS_IDR_TBL_SIZE];
int ret, i, j;
if (reta_size != NIC_MAX_RSS_IDR_TBL_SIZE) {
RTE_LOG(ERR, PMD, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, NIC_MAX_RSS_IDR_TBL_SIZE);
return -EINVAL;
}
ret = nicvf_rss_reta_query(nic, tbl, NIC_MAX_RSS_IDR_TBL_SIZE);
if (ret)
return ret;
/* Copy RETA table */
for (i = 0; i < (NIC_MAX_RSS_IDR_TBL_SIZE / RTE_RETA_GROUP_SIZE); i++) {
for (j = 0; j < RTE_RETA_GROUP_SIZE; j++)
if ((reta_conf[i].mask >> j) & 0x01)
reta_conf[i].reta[j] = tbl[j];
}
return 0;
}
static int
nicvf_dev_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
uint8_t tbl[NIC_MAX_RSS_IDR_TBL_SIZE];
int ret, i, j;
if (reta_size != NIC_MAX_RSS_IDR_TBL_SIZE) {
RTE_LOG(ERR, PMD, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, NIC_MAX_RSS_IDR_TBL_SIZE);
return -EINVAL;
}
ret = nicvf_rss_reta_query(nic, tbl, NIC_MAX_RSS_IDR_TBL_SIZE);
if (ret)
return ret;
/* Copy RETA table */
for (i = 0; i < (NIC_MAX_RSS_IDR_TBL_SIZE / RTE_RETA_GROUP_SIZE); i++) {
for (j = 0; j < RTE_RETA_GROUP_SIZE; j++)
if ((reta_conf[i].mask >> j) & 0x01)
tbl[j] = reta_conf[i].reta[j];
}
return nicvf_rss_reta_update(nic, tbl, NIC_MAX_RSS_IDR_TBL_SIZE);
}
static int
nicvf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
if (rss_conf->rss_key)
nicvf_rss_get_key(nic, rss_conf->rss_key);
rss_conf->rss_key_len = RSS_HASH_KEY_BYTE_SIZE;
rss_conf->rss_hf = nicvf_rss_nic_to_ethdev(nic, nicvf_rss_get_cfg(nic));
return 0;
}
static int
nicvf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
uint64_t nic_rss;
if (rss_conf->rss_key &&
rss_conf->rss_key_len != RSS_HASH_KEY_BYTE_SIZE) {
RTE_LOG(ERR, PMD, "Hash key size mismatch %d",
rss_conf->rss_key_len);
return -EINVAL;
}
if (rss_conf->rss_key)
nicvf_rss_set_key(nic, rss_conf->rss_key);
nic_rss = nicvf_rss_ethdev_to_nic(nic, rss_conf->rss_hf);
nicvf_rss_set_cfg(nic, nic_rss);
return 0;
}
static int
nicvf_qset_cq_alloc(struct rte_eth_dev *dev, struct nicvf *nic,
struct nicvf_rxq *rxq, uint16_t qidx, uint32_t desc_cnt)
{
const struct rte_memzone *rz;
uint32_t ring_size = CMP_QUEUE_SZ_MAX * sizeof(union cq_entry_t);
rz = rte_eth_dma_zone_reserve(dev, "cq_ring",
nicvf_netdev_qidx(nic, qidx), ring_size,
NICVF_CQ_BASE_ALIGN_BYTES, nic->node);
if (rz == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate mem for cq hw ring");
return -ENOMEM;
}
memset(rz->addr, 0, ring_size);
rxq->phys = rz->iova;
rxq->desc = rz->addr;
rxq->qlen_mask = desc_cnt - 1;
return 0;
}
static int
nicvf_qset_sq_alloc(struct rte_eth_dev *dev, struct nicvf *nic,
struct nicvf_txq *sq, uint16_t qidx, uint32_t desc_cnt)
{
const struct rte_memzone *rz;
uint32_t ring_size = SND_QUEUE_SZ_MAX * sizeof(union sq_entry_t);
rz = rte_eth_dma_zone_reserve(dev, "sq",
nicvf_netdev_qidx(nic, qidx), ring_size,
NICVF_SQ_BASE_ALIGN_BYTES, nic->node);
if (rz == NULL) {
PMD_INIT_LOG(ERR, "Failed allocate mem for sq hw ring");
return -ENOMEM;
}
memset(rz->addr, 0, ring_size);
sq->phys = rz->iova;
sq->desc = rz->addr;
sq->qlen_mask = desc_cnt - 1;
return 0;
}
static int
nicvf_qset_rbdr_alloc(struct rte_eth_dev *dev, struct nicvf *nic,
uint32_t desc_cnt, uint32_t buffsz)
{
struct nicvf_rbdr *rbdr;
const struct rte_memzone *rz;
uint32_t ring_size;
assert(nic->rbdr == NULL);
rbdr = rte_zmalloc_socket("rbdr", sizeof(struct nicvf_rbdr),
RTE_CACHE_LINE_SIZE, nic->node);
if (rbdr == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate mem for rbdr");
return -ENOMEM;
}
ring_size = sizeof(struct rbdr_entry_t) * RBDR_QUEUE_SZ_MAX;
rz = rte_eth_dma_zone_reserve(dev, "rbdr",
nicvf_netdev_qidx(nic, 0), ring_size,
NICVF_RBDR_BASE_ALIGN_BYTES, nic->node);
if (rz == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate mem for rbdr desc ring");
return -ENOMEM;
}
memset(rz->addr, 0, ring_size);
rbdr->phys = rz->iova;
rbdr->tail = 0;
rbdr->next_tail = 0;
rbdr->desc = rz->addr;
rbdr->buffsz = buffsz;
rbdr->qlen_mask = desc_cnt - 1;
rbdr->rbdr_status =
nicvf_qset_base(nic, 0) + NIC_QSET_RBDR_0_1_STATUS0;
rbdr->rbdr_door =
nicvf_qset_base(nic, 0) + NIC_QSET_RBDR_0_1_DOOR;
nic->rbdr = rbdr;
return 0;
}
static void
nicvf_rbdr_release_mbuf(struct rte_eth_dev *dev, struct nicvf *nic,
nicvf_iova_addr_t phy)
{
uint16_t qidx;
void *obj;
struct nicvf_rxq *rxq;
uint16_t rx_start, rx_end;
/* Get queue ranges for this VF */
nicvf_rx_range(dev, nic, &rx_start, &rx_end);
for (qidx = rx_start; qidx <= rx_end; qidx++) {
rxq = dev->data->rx_queues[qidx];
if (rxq->precharge_cnt) {
obj = (void *)nicvf_mbuff_phy2virt(phy,
rxq->mbuf_phys_off);
rte_mempool_put(rxq->pool, obj);
rxq->precharge_cnt--;
break;
}
}
}
static inline void
nicvf_rbdr_release_mbufs(struct rte_eth_dev *dev, struct nicvf *nic)
{
uint32_t qlen_mask, head;
struct rbdr_entry_t *entry;
struct nicvf_rbdr *rbdr = nic->rbdr;
qlen_mask = rbdr->qlen_mask;
head = rbdr->head;
while (head != rbdr->tail) {
entry = rbdr->desc + head;
nicvf_rbdr_release_mbuf(dev, nic, entry->full_addr);
head++;
head = head & qlen_mask;
}
}
static inline void
nicvf_tx_queue_release_mbufs(struct nicvf_txq *txq)
{
uint32_t head;
head = txq->head;
while (head != txq->tail) {
if (txq->txbuffs[head]) {
rte_pktmbuf_free_seg(txq->txbuffs[head]);
txq->txbuffs[head] = NULL;
}
head++;
head = head & txq->qlen_mask;
}
}
static void
nicvf_tx_queue_reset(struct nicvf_txq *txq)
{
uint32_t txq_desc_cnt = txq->qlen_mask + 1;
memset(txq->desc, 0, sizeof(union sq_entry_t) * txq_desc_cnt);
memset(txq->txbuffs, 0, sizeof(struct rte_mbuf *) * txq_desc_cnt);
txq->tail = 0;
txq->head = 0;
txq->xmit_bufs = 0;
}
static inline int
nicvf_vf_start_tx_queue(struct rte_eth_dev *dev, struct nicvf *nic,
uint16_t qidx)
{
struct nicvf_txq *txq;
int ret;
assert(qidx < MAX_SND_QUEUES_PER_QS);
if (dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] ==
RTE_ETH_QUEUE_STATE_STARTED)
return 0;
txq = dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)];
txq->pool = NULL;
ret = nicvf_qset_sq_config(nic, qidx, txq);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to configure sq VF%d %d %d",
nic->vf_id, qidx, ret);
goto config_sq_error;
}
dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] =
RTE_ETH_QUEUE_STATE_STARTED;
return ret;
config_sq_error:
nicvf_qset_sq_reclaim(nic, qidx);
return ret;
}
static inline int
nicvf_vf_stop_tx_queue(struct rte_eth_dev *dev, struct nicvf *nic,
uint16_t qidx)
{
struct nicvf_txq *txq;
int ret;
assert(qidx < MAX_SND_QUEUES_PER_QS);
if (dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] ==
RTE_ETH_QUEUE_STATE_STOPPED)
return 0;
ret = nicvf_qset_sq_reclaim(nic, qidx);
if (ret)
PMD_INIT_LOG(ERR, "Failed to reclaim sq VF%d %d %d",
nic->vf_id, qidx, ret);
txq = dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)];
nicvf_tx_queue_release_mbufs(txq);
nicvf_tx_queue_reset(txq);
dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] =
RTE_ETH_QUEUE_STATE_STOPPED;
return ret;
}
static inline int
nicvf_configure_cpi(struct rte_eth_dev *dev)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
uint16_t qidx, qcnt;
int ret;
/* Count started rx queues */
for (qidx = qcnt = 0; qidx < dev->data->nb_rx_queues; qidx++)
if (dev->data->rx_queue_state[qidx] ==
RTE_ETH_QUEUE_STATE_STARTED)
qcnt++;
nic->cpi_alg = CPI_ALG_NONE;
ret = nicvf_mbox_config_cpi(nic, qcnt);
if (ret)
PMD_INIT_LOG(ERR, "Failed to configure CPI %d", ret);
return ret;
}
static inline int
nicvf_configure_rss(struct rte_eth_dev *dev)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
uint64_t rsshf;
int ret = -EINVAL;
rsshf = nicvf_rss_ethdev_to_nic(nic,
dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf);
PMD_DRV_LOG(INFO, "mode=%d rx_queues=%d loopback=%d rsshf=0x%" PRIx64,
dev->data->dev_conf.rxmode.mq_mode,
dev->data->nb_rx_queues,
dev->data->dev_conf.lpbk_mode, rsshf);
if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_NONE)
ret = nicvf_rss_term(nic);
else if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_RSS)
ret = nicvf_rss_config(nic, dev->data->nb_rx_queues, rsshf);
if (ret)
PMD_INIT_LOG(ERR, "Failed to configure RSS %d", ret);
return ret;
}
static int
nicvf_configure_rss_reta(struct rte_eth_dev *dev)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
unsigned int idx, qmap_size;
uint8_t qmap[RTE_MAX_QUEUES_PER_PORT];
uint8_t default_reta[NIC_MAX_RSS_IDR_TBL_SIZE];
if (nic->cpi_alg != CPI_ALG_NONE)
return -EINVAL;
/* Prepare queue map */
for (idx = 0, qmap_size = 0; idx < dev->data->nb_rx_queues; idx++) {
if (dev->data->rx_queue_state[idx] ==
RTE_ETH_QUEUE_STATE_STARTED)
qmap[qmap_size++] = idx;
}
/* Update default RSS RETA */
for (idx = 0; idx < NIC_MAX_RSS_IDR_TBL_SIZE; idx++)
default_reta[idx] = qmap[idx % qmap_size];
return nicvf_rss_reta_update(nic, default_reta,
NIC_MAX_RSS_IDR_TBL_SIZE);
}
static void
nicvf_dev_tx_queue_release(void *sq)
{
struct nicvf_txq *txq;
PMD_INIT_FUNC_TRACE();
txq = (struct nicvf_txq *)sq;
if (txq) {
if (txq->txbuffs != NULL) {
nicvf_tx_queue_release_mbufs(txq);
rte_free(txq->txbuffs);
txq->txbuffs = NULL;
}
rte_free(txq);
}
}
static void
nicvf_set_tx_function(struct rte_eth_dev *dev)
{
struct nicvf_txq *txq;
size_t i;
bool multiseg = false;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if ((txq->txq_flags & ETH_TXQ_FLAGS_NOMULTSEGS) == 0) {
multiseg = true;
break;
}
}
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
if (multiseg) {
PMD_DRV_LOG(DEBUG, "Using multi-segment tx callback");
dev->tx_pkt_burst = nicvf_xmit_pkts_multiseg;
} else {
PMD_DRV_LOG(DEBUG, "Using single-segment tx callback");
dev->tx_pkt_burst = nicvf_xmit_pkts;
}
if (txq->pool_free == nicvf_single_pool_free_xmited_buffers)
PMD_DRV_LOG(DEBUG, "Using single-mempool tx free method");
else
PMD_DRV_LOG(DEBUG, "Using multi-mempool tx free method");
}
static void
nicvf_set_rx_function(struct rte_eth_dev *dev)
{
if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG, "Using multi-segment rx callback");
dev->rx_pkt_burst = nicvf_recv_pkts_multiseg;
} else {
PMD_DRV_LOG(DEBUG, "Using single-segment rx callback");
dev->rx_pkt_burst = nicvf_recv_pkts;
}
}
static int
nicvf_dev_tx_queue_setup(struct rte_eth_dev *dev, uint16_t qidx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
uint16_t tx_free_thresh;
uint8_t is_single_pool;
struct nicvf_txq *txq;
struct nicvf *nic = nicvf_pmd_priv(dev);
PMD_INIT_FUNC_TRACE();
if (qidx >= MAX_SND_QUEUES_PER_QS)
nic = nic->snicvf[qidx / MAX_SND_QUEUES_PER_QS - 1];
qidx = qidx % MAX_SND_QUEUES_PER_QS;
/* Socket id check */
if (socket_id != (unsigned int)SOCKET_ID_ANY && socket_id != nic->node)
PMD_DRV_LOG(WARNING, "socket_id expected %d, configured %d",
socket_id, nic->node);
/* Tx deferred start is not supported */
if (tx_conf->tx_deferred_start) {
PMD_INIT_LOG(ERR, "Tx deferred start not supported");
return -EINVAL;
}
/* Roundup nb_desc to available qsize and validate max number of desc */
nb_desc = nicvf_qsize_sq_roundup(nb_desc);
if (nb_desc == 0) {
PMD_INIT_LOG(ERR, "Value of nb_desc beyond available sq qsize");
return -EINVAL;
}
/* Validate tx_free_thresh */
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh :
NICVF_DEFAULT_TX_FREE_THRESH);
if (tx_free_thresh > (nb_desc) ||
tx_free_thresh > NICVF_MAX_TX_FREE_THRESH) {
PMD_INIT_LOG(ERR,
"tx_free_thresh must be less than the number of TX "
"descriptors. (tx_free_thresh=%u port=%d "
"queue=%d)", (unsigned int)tx_free_thresh,
(int)dev->data->port_id, (int)qidx);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed. */
if (dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)] != NULL) {
PMD_TX_LOG(DEBUG, "Freeing memory prior to re-allocation %d",
nicvf_netdev_qidx(nic, qidx));
nicvf_dev_tx_queue_release(
dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)]);
dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)] = NULL;
}
/* Allocating tx queue data structure */
txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct nicvf_txq),
RTE_CACHE_LINE_SIZE, nic->node);
if (txq == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate txq=%d",
nicvf_netdev_qidx(nic, qidx));
return -ENOMEM;
}
txq->nic = nic;
txq->queue_id = qidx;
txq->tx_free_thresh = tx_free_thresh;
txq->txq_flags = tx_conf->txq_flags;
txq->sq_head = nicvf_qset_base(nic, qidx) + NIC_QSET_SQ_0_7_HEAD;
txq->sq_door = nicvf_qset_base(nic, qidx) + NIC_QSET_SQ_0_7_DOOR;
is_single_pool = (txq->txq_flags & ETH_TXQ_FLAGS_NOREFCOUNT &&
txq->txq_flags & ETH_TXQ_FLAGS_NOMULTMEMP);
/* Choose optimum free threshold value for multipool case */
if (!is_single_pool) {
txq->tx_free_thresh = (uint16_t)
(tx_conf->tx_free_thresh == NICVF_DEFAULT_TX_FREE_THRESH ?
NICVF_TX_FREE_MPOOL_THRESH :
tx_conf->tx_free_thresh);
txq->pool_free = nicvf_multi_pool_free_xmited_buffers;
} else {
txq->pool_free = nicvf_single_pool_free_xmited_buffers;
}
/* Allocate software ring */
txq->txbuffs = rte_zmalloc_socket("txq->txbuffs",
nb_desc * sizeof(struct rte_mbuf *),
RTE_CACHE_LINE_SIZE, nic->node);
if (txq->txbuffs == NULL) {
nicvf_dev_tx_queue_release(txq);
return -ENOMEM;
}
if (nicvf_qset_sq_alloc(dev, nic, txq, qidx, nb_desc)) {
PMD_INIT_LOG(ERR, "Failed to allocate mem for sq %d", qidx);
nicvf_dev_tx_queue_release(txq);
return -ENOMEM;
}
nicvf_tx_queue_reset(txq);
PMD_TX_LOG(DEBUG, "[%d] txq=%p nb_desc=%d desc=%p phys=0x%" PRIx64,
nicvf_netdev_qidx(nic, qidx), txq, nb_desc, txq->desc,
txq->phys);
dev->data->tx_queues[nicvf_netdev_qidx(nic, qidx)] = txq;
dev->data->tx_queue_state[nicvf_netdev_qidx(nic, qidx)] =
RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static inline void
nicvf_rx_queue_release_mbufs(struct rte_eth_dev *dev, struct nicvf_rxq *rxq)
{
uint32_t rxq_cnt;
uint32_t nb_pkts, released_pkts = 0;
uint32_t refill_cnt = 0;
struct rte_mbuf *rx_pkts[NICVF_MAX_RX_FREE_THRESH];
if (dev->rx_pkt_burst == NULL)
return;
while ((rxq_cnt = nicvf_dev_rx_queue_count(dev,
nicvf_netdev_qidx(rxq->nic, rxq->queue_id)))) {
nb_pkts = dev->rx_pkt_burst(rxq, rx_pkts,
NICVF_MAX_RX_FREE_THRESH);
PMD_DRV_LOG(INFO, "nb_pkts=%d rxq_cnt=%d", nb_pkts, rxq_cnt);
while (nb_pkts) {
rte_pktmbuf_free_seg(rx_pkts[--nb_pkts]);
released_pkts++;
}
}
refill_cnt += nicvf_dev_rbdr_refill(dev,
nicvf_netdev_qidx(rxq->nic, rxq->queue_id));
PMD_DRV_LOG(INFO, "free_cnt=%d refill_cnt=%d",
released_pkts, refill_cnt);
}
static void
nicvf_rx_queue_reset(struct nicvf_rxq *rxq)
{
rxq->head = 0;
rxq->available_space = 0;
rxq->recv_buffers = 0;
}
static inline int
nicvf_vf_start_rx_queue(struct rte_eth_dev *dev, struct nicvf *nic,
uint16_t qidx)
{
struct nicvf_rxq *rxq;
int ret;
assert(qidx < MAX_RCV_QUEUES_PER_QS);
if (dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] ==
RTE_ETH_QUEUE_STATE_STARTED)
return 0;
/* Update rbdr pointer to all rxq */
rxq = dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)];
rxq->shared_rbdr = nic->rbdr;
ret = nicvf_qset_rq_config(nic, qidx, rxq);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to configure rq VF%d %d %d",
nic->vf_id, qidx, ret);
goto config_rq_error;
}
ret = nicvf_qset_cq_config(nic, qidx, rxq);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to configure cq VF%d %d %d",
nic->vf_id, qidx, ret);
goto config_cq_error;
}
dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] =
RTE_ETH_QUEUE_STATE_STARTED;
return 0;
config_cq_error:
nicvf_qset_cq_reclaim(nic, qidx);
config_rq_error:
nicvf_qset_rq_reclaim(nic, qidx);
return ret;
}
static inline int
nicvf_vf_stop_rx_queue(struct rte_eth_dev *dev, struct nicvf *nic,
uint16_t qidx)
{
struct nicvf_rxq *rxq;
int ret, other_error;
if (dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] ==
RTE_ETH_QUEUE_STATE_STOPPED)
return 0;
ret = nicvf_qset_rq_reclaim(nic, qidx);
if (ret)
PMD_INIT_LOG(ERR, "Failed to reclaim rq VF%d %d %d",
nic->vf_id, qidx, ret);
other_error = ret;
rxq = dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)];
nicvf_rx_queue_release_mbufs(dev, rxq);
nicvf_rx_queue_reset(rxq);
ret = nicvf_qset_cq_reclaim(nic, qidx);
if (ret)
PMD_INIT_LOG(ERR, "Failed to reclaim cq VF%d %d %d",
nic->vf_id, qidx, ret);
other_error |= ret;
dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] =
RTE_ETH_QUEUE_STATE_STOPPED;
return other_error;
}
static void
nicvf_dev_rx_queue_release(void *rx_queue)
{
PMD_INIT_FUNC_TRACE();
rte_free(rx_queue);
}
static int
nicvf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t qidx)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
int ret;
if (qidx >= MAX_RCV_QUEUES_PER_QS)
nic = nic->snicvf[(qidx / MAX_RCV_QUEUES_PER_QS - 1)];
qidx = qidx % MAX_RCV_QUEUES_PER_QS;
ret = nicvf_vf_start_rx_queue(dev, nic, qidx);
if (ret)
return ret;
ret = nicvf_configure_cpi(dev);
if (ret)
return ret;
return nicvf_configure_rss_reta(dev);
}
static int
nicvf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t qidx)
{
int ret;
struct nicvf *nic = nicvf_pmd_priv(dev);
if (qidx >= MAX_SND_QUEUES_PER_QS)
nic = nic->snicvf[(qidx / MAX_SND_QUEUES_PER_QS - 1)];
qidx = qidx % MAX_RCV_QUEUES_PER_QS;
ret = nicvf_vf_stop_rx_queue(dev, nic, qidx);
ret |= nicvf_configure_cpi(dev);
ret |= nicvf_configure_rss_reta(dev);
return ret;
}
static int
nicvf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t qidx)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
if (qidx >= MAX_SND_QUEUES_PER_QS)
nic = nic->snicvf[(qidx / MAX_SND_QUEUES_PER_QS - 1)];
qidx = qidx % MAX_SND_QUEUES_PER_QS;
return nicvf_vf_start_tx_queue(dev, nic, qidx);
}
static int
nicvf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t qidx)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
if (qidx >= MAX_SND_QUEUES_PER_QS)
nic = nic->snicvf[(qidx / MAX_SND_QUEUES_PER_QS - 1)];
qidx = qidx % MAX_SND_QUEUES_PER_QS;
return nicvf_vf_stop_tx_queue(dev, nic, qidx);
}
static inline void
nicvf_rxq_mbuf_setup(struct nicvf_rxq *rxq)
{
uintptr_t p;
struct rte_mbuf mb_def;
RTE_BUILD_BUG_ON(sizeof(union mbuf_initializer) != 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) % 8 != 0);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, refcnt) -
offsetof(struct rte_mbuf, data_off) != 2);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, nb_segs) -
offsetof(struct rte_mbuf, data_off) != 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, port) -
offsetof(struct rte_mbuf, data_off) != 6);
mb_def.nb_segs = 1;
mb_def.data_off = RTE_PKTMBUF_HEADROOM;
mb_def.port = rxq->port_id;
rte_mbuf_refcnt_set(&mb_def, 1);
/* Prevent compiler reordering: rearm_data covers previous fields */
rte_compiler_barrier();
p = (uintptr_t)&mb_def.rearm_data;
rxq->mbuf_initializer.value = *(uint64_t *)p;
}
static int
nicvf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qidx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
uint16_t rx_free_thresh;
struct nicvf_rxq *rxq;
struct nicvf *nic = nicvf_pmd_priv(dev);
PMD_INIT_FUNC_TRACE();
if (qidx >= MAX_RCV_QUEUES_PER_QS)
nic = nic->snicvf[qidx / MAX_RCV_QUEUES_PER_QS - 1];
qidx = qidx % MAX_RCV_QUEUES_PER_QS;
/* Socket id check */
if (socket_id != (unsigned int)SOCKET_ID_ANY && socket_id != nic->node)
PMD_DRV_LOG(WARNING, "socket_id expected %d, configured %d",
socket_id, nic->node);
/* Mempool memory must be contiguous, so must be one memory segment*/
if (mp->nb_mem_chunks != 1) {
PMD_INIT_LOG(ERR, "Non-contiguous mempool, add more huge pages");
return -EINVAL;
}
/* Mempool memory must be physically contiguous */
if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG) {
PMD_INIT_LOG(ERR, "Mempool memory must be physically contiguous");
return -EINVAL;
}
/* Rx deferred start is not supported */
if (rx_conf->rx_deferred_start) {
PMD_INIT_LOG(ERR, "Rx deferred start not supported");
return -EINVAL;
}
/* Roundup nb_desc to available qsize and validate max number of desc */
nb_desc = nicvf_qsize_cq_roundup(nb_desc);
if (nb_desc == 0) {
PMD_INIT_LOG(ERR, "Value nb_desc beyond available hw cq qsize");
return -EINVAL;
}
/* Check rx_free_thresh upper bound */
rx_free_thresh = (uint16_t)((rx_conf->rx_free_thresh) ?
rx_conf->rx_free_thresh :
NICVF_DEFAULT_RX_FREE_THRESH);
if (rx_free_thresh > NICVF_MAX_RX_FREE_THRESH ||
rx_free_thresh >= nb_desc * .75) {
PMD_INIT_LOG(ERR, "rx_free_thresh greater than expected %d",
rx_free_thresh);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed */
if (dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)] != NULL) {
PMD_RX_LOG(DEBUG, "Freeing memory prior to re-allocation %d",
nicvf_netdev_qidx(nic, qidx));
nicvf_dev_rx_queue_release(
dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)]);
dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)] = NULL;
}
/* Allocate rxq memory */
rxq = rte_zmalloc_socket("ethdev rx queue", sizeof(struct nicvf_rxq),
RTE_CACHE_LINE_SIZE, nic->node);
if (rxq == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate rxq=%d",
nicvf_netdev_qidx(nic, qidx));
return -ENOMEM;
}
rxq->nic = nic;
rxq->pool = mp;
rxq->queue_id = qidx;
rxq->port_id = dev->data->port_id;
rxq->rx_free_thresh = rx_free_thresh;
rxq->rx_drop_en = rx_conf->rx_drop_en;
rxq->cq_status = nicvf_qset_base(nic, qidx) + NIC_QSET_CQ_0_7_STATUS;
rxq->cq_door = nicvf_qset_base(nic, qidx) + NIC_QSET_CQ_0_7_DOOR;
rxq->precharge_cnt = 0;
if (nicvf_hw_cap(nic) & NICVF_CAP_CQE_RX2)
rxq->rbptr_offset = NICVF_CQE_RX2_RBPTR_WORD;
else
rxq->rbptr_offset = NICVF_CQE_RBPTR_WORD;
nicvf_rxq_mbuf_setup(rxq);
/* Alloc completion queue */
if (nicvf_qset_cq_alloc(dev, nic, rxq, rxq->queue_id, nb_desc)) {
PMD_INIT_LOG(ERR, "failed to allocate cq %u", rxq->queue_id);
nicvf_dev_rx_queue_release(rxq);
return -ENOMEM;
}
nicvf_rx_queue_reset(rxq);
PMD_RX_LOG(DEBUG, "[%d] rxq=%p pool=%s nb_desc=(%d/%d) phy=%" PRIx64,
nicvf_netdev_qidx(nic, qidx), rxq, mp->name, nb_desc,
rte_mempool_avail_count(mp), rxq->phys);
dev->data->rx_queues[nicvf_netdev_qidx(nic, qidx)] = rxq;
dev->data->rx_queue_state[nicvf_netdev_qidx(nic, qidx)] =
RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static void
nicvf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct nicvf *nic = nicvf_pmd_priv(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
PMD_INIT_FUNC_TRACE();
dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
/* Autonegotiation may be disabled */
dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
dev_info->speed_capa |= ETH_LINK_SPEED_10M | ETH_LINK_SPEED_100M |
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_10G;
if (nicvf_hw_version(nic) != PCI_SUB_DEVICE_ID_CN81XX_NICVF)
dev_info->speed_capa |= ETH_LINK_SPEED_40G;
dev_info->min_rx_bufsize = ETHER_MIN_MTU;
dev_info->max_rx_pktlen = NIC_HW_MAX_FRS;
dev_info->max_rx_queues =
(uint16_t)MAX_RCV_QUEUES_PER_QS * (MAX_SQS_PER_VF + 1);
dev_info->max_tx_queues =
(uint16_t)MAX_SND_QUEUES_PER_QS * (MAX_SQS_PER_VF + 1);
dev_info->max_mac_addrs = 1;
dev_info->max_vfs = pci_dev->max_vfs;
dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
dev_info->reta_size = nic->rss_info.rss_size;
dev_info->hash_key_size = RSS_HASH_KEY_BYTE_SIZE;
dev_info->flow_type_rss_offloads = NICVF_RSS_OFFLOAD_PASS1;
if (nicvf_hw_cap(nic) & NICVF_CAP_TUNNEL_PARSING)
dev_info->flow_type_rss_offloads |= NICVF_RSS_OFFLOAD_TUNNEL;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_free_thresh = NICVF_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_free_thresh = NICVF_DEFAULT_TX_FREE_THRESH,
.txq_flags =
ETH_TXQ_FLAGS_NOMULTSEGS |
ETH_TXQ_FLAGS_NOREFCOUNT |
ETH_TXQ_FLAGS_NOMULTMEMP |
ETH_TXQ_FLAGS_NOVLANOFFL |
ETH_TXQ_FLAGS_NOXSUMSCTP,
};
}
static nicvf_iova_addr_t
rbdr_rte_mempool_get(void *dev, void *opaque)
{
uint16_t qidx;
uintptr_t mbuf;
struct nicvf_rxq *rxq;
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)dev;
struct nicvf *nic = (struct nicvf *)opaque;
uint16_t rx_start, rx_end;
/* Get queue ranges for this VF */
nicvf_rx_range(eth_dev, nic, &rx_start, &rx_end);
for (qidx = rx_start; qidx <= rx_end; qidx++) {
rxq = eth_dev->data->rx_queues[qidx];
/* Maintain equal buffer count across all pools */
if (rxq->precharge_cnt >= rxq->qlen_mask)
continue;
rxq->precharge_cnt++;
mbuf = (uintptr_t)rte_pktmbuf_alloc(rxq->pool);
if (mbuf)
return nicvf_mbuff_virt2phy(mbuf, rxq->mbuf_phys_off);
}
return 0;
}
static int
nicvf_vf_start(struct rte_eth_dev *dev, struct nicvf *nic, uint32_t rbdrsz)
{
int ret;
uint16_t qidx, data_off;
uint32_t total_rxq_desc, nb_rbdr_desc, exp_buffs;
uint64_t mbuf_phys_off = 0;
struct nicvf_rxq *rxq;
struct rte_mbuf *mbuf;
uint16_t rx_start, rx_end;
uint16_t tx_start, tx_end;
PMD_INIT_FUNC_TRACE();
/* Userspace process exited without proper shutdown in last run */
if (nicvf_qset_rbdr_active(nic, 0))
nicvf_vf_stop(dev, nic, false);
/* Get queue ranges for this VF */
nicvf_rx_range(dev, nic, &rx_start, &rx_end);
/*
* Thunderx nicvf PMD can support more than one pool per port only when
* 1) Data payload size is same across all the pools in given port
* AND
* 2) All mbuffs in the pools are from the same hugepage
* AND
* 3) Mbuff metadata size is same across all the pools in given port
*
* This is to support existing application that uses multiple pool/port.
* But, the purpose of using multipool for QoS will not be addressed.
*
*/
/* Validate mempool attributes */
for (qidx = rx_start; qidx <= rx_end; qidx++) {
rxq = dev->data->rx_queues[qidx];
rxq->mbuf_phys_off = nicvf_mempool_phy_offset(rxq->pool);
mbuf = rte_pktmbuf_alloc(rxq->pool);
if (mbuf == NULL) {
PMD_INIT_LOG(ERR, "Failed allocate mbuf VF%d qid=%d "
"pool=%s",
nic->vf_id, qidx, rxq->pool->name);
return -ENOMEM;
}
data_off = nicvf_mbuff_meta_length(mbuf);
data_off += RTE_PKTMBUF_HEADROOM;
rte_pktmbuf_free(mbuf);
if (data_off % RTE_CACHE_LINE_SIZE) {
PMD_INIT_LOG(ERR, "%s: unaligned data_off=%d delta=%d",
rxq->pool->name, data_off,
data_off % RTE_CACHE_LINE_SIZE);
return -EINVAL;
}
rxq->mbuf_phys_off -= data_off;
if (mbuf_phys_off == 0)
mbuf_phys_off = rxq->mbuf_phys_off;
if (mbuf_phys_off != rxq->mbuf_phys_off) {
PMD_INIT_LOG(ERR, "pool params not same,%s VF%d %"
PRIx64, rxq->pool->name, nic->vf_id,
mbuf_phys_off);
return -EINVAL;
}
}
/* Check the level of buffers in the pool */
total_rxq_desc = 0;
for (qidx = rx_start; qidx <= rx_end; qidx++) {
rxq = dev->data->rx_queues[qidx];
/* Count total numbers of rxq descs */
total_rxq_desc += rxq->qlen_mask + 1;
exp_buffs = RTE_MEMPOOL_CACHE_MAX_SIZE + rxq->rx_free_thresh;
exp_buffs *= dev->data->nb_rx_queues;
if (rte_mempool_avail_count(rxq->pool) < exp_buffs) {
PMD_INIT_LOG(ERR, "Buff shortage in pool=%s (%d/%d)",
rxq->pool->name,
rte_mempool_avail_count(rxq->pool),
exp_buffs);
return -ENOENT;
}
}
/* Check RBDR desc overflow */
ret = nicvf_qsize_rbdr_roundup(total_rxq_desc);
if (ret == 0) {
PMD_INIT_LOG(ERR, "Reached RBDR desc limit, reduce nr desc "
"VF%d", nic->vf_id);
return -ENOMEM;
}
/* Enable qset */
ret = nicvf_qset_config(nic);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to enable qset %d VF%d", ret,
nic->vf_id);
return ret;
}
/* Allocate RBDR and RBDR ring desc */
nb_rbdr_desc = nicvf_qsize_rbdr_roundup(total_rxq_desc);
ret = nicvf_qset_rbdr_alloc(dev, nic, nb_rbdr_desc, rbdrsz);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for rbdr alloc "
"VF%d", nic->vf_id);
goto qset_reclaim;
}
/* Enable and configure RBDR registers */
ret = nicvf_qset_rbdr_config(nic, 0);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to configure rbdr %d VF%d", ret,
nic->vf_id);
goto qset_rbdr_free;
}
/* Fill rte_mempool buffers in RBDR pool and precharge it */
ret = nicvf_qset_rbdr_precharge(dev, nic, 0, rbdr_rte_mempool_get,
total_rxq_desc);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to fill rbdr %d VF%d", ret,
nic->vf_id);
goto qset_rbdr_reclaim;
}
PMD_DRV_LOG(INFO, "Filled %d out of %d entries in RBDR VF%d",
nic->rbdr->tail, nb_rbdr_desc, nic->vf_id);
/* Configure VLAN Strip */
nicvf_vlan_hw_strip(nic, dev->data->dev_conf.rxmode.hw_vlan_strip);
/* Based on the packet type(IPv4 or IPv6), the nicvf HW aligns L3 data
* to the 64bit memory address.
* The alignment creates a hole in mbuf(between the end of headroom and
* packet data start). The new revision of the HW provides an option to
* disable the L3 alignment feature and make mbuf layout looks
* more like other NICs. For better application compatibility, disabling
* l3 alignment feature on the hardware revisions it supports
*/
nicvf_apad_config(nic, false);
/* Get queue ranges for this VF */
nicvf_tx_range(dev, nic, &tx_start, &tx_end);
/* Configure TX queues */
for (qidx = tx_start; qidx <= tx_end; qidx++) {
ret = nicvf_vf_start_tx_queue(dev, nic,
qidx % MAX_SND_QUEUES_PER_QS);
if (ret)
goto start_txq_error;
}
/* Configure RX queues */
for (qidx = rx_start; qidx <= rx_end; qidx++) {
ret = nicvf_vf_start_rx_queue(dev, nic,
qidx % MAX_RCV_QUEUES_PER_QS);
if (ret)
goto start_rxq_error;
}
if (!nic->sqs_mode) {
/* Configure CPI algorithm */
ret = nicvf_configure_cpi(dev);
if (ret)
goto start_txq_error;
ret = nicvf_mbox_get_rss_size(nic);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to get rss table size");
goto qset_rss_error;
}
/* Configure RSS */
ret = nicvf_configure_rss(dev);
if (ret)
goto qset_rss_error;
}
/* Done; Let PF make the BGX's RX and TX switches to ON position */
nicvf_mbox_cfg_done(nic);
return 0;
qset_rss_error:
nicvf_rss_term(nic);
start_rxq_error:
for (qidx = rx_start; qidx <= rx_end; qidx++)
nicvf_vf_stop_rx_queue(dev, nic, qidx % MAX_RCV_QUEUES_PER_QS);
start_txq_error:
for (qidx = tx_start; qidx <= tx_end; qidx++)
nicvf_vf_stop_tx_queue(dev, nic, qidx % MAX_SND_QUEUES_PER_QS);
qset_rbdr_reclaim:
nicvf_qset_rbdr_reclaim(nic, 0);
nicvf_rbdr_release_mbufs(dev, nic);
qset_rbdr_free:
if (nic->rbdr) {
rte_free(nic->rbdr);
nic->rbdr = NULL;
}
qset_reclaim:
nicvf_qset_reclaim(nic);
return ret;
}
static int
nicvf_dev_start(struct rte_eth_dev *dev)
{
uint16_t qidx;
int ret;
size_t i;
struct nicvf *nic = nicvf_pmd_priv(dev);
struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
uint16_t mtu;
uint32_t buffsz = 0, rbdrsz = 0;
struct rte_pktmbuf_pool_private *mbp_priv;
struct nicvf_rxq *rxq;
PMD_INIT_FUNC_TRACE();
/* This function must be called for a primary device */
assert_primary(nic);
/* Validate RBDR buff size */
for (qidx = 0; qidx < dev->data->nb_rx_queues; qidx++) {
rxq = dev->data->rx_queues[qidx];
mbp_priv = rte_mempool_get_priv(rxq->pool);
buffsz = mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM;
if (buffsz % 128) {
PMD_INIT_LOG(ERR, "rxbuf size must be multiply of 128");
return -EINVAL;
}
if (rbdrsz == 0)
rbdrsz = buffsz;
if (rbdrsz != buffsz) {
PMD_INIT_LOG(ERR, "buffsz not same, qidx=%d (%d/%d)",
qidx, rbdrsz, buffsz);
return -EINVAL;
}
}
/* Configure loopback */
ret = nicvf_loopback_config(nic, dev->data->dev_conf.lpbk_mode);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to configure loopback %d", ret);
return ret;
}
/* Reset all statistics counters attached to this port */
ret = nicvf_mbox_reset_stat_counters(nic, 0x3FFF, 0x1F, 0xFFFF, 0xFFFF);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to reset stat counters %d", ret);
return ret;
}
/* Setup scatter mode if needed by jumbo */
if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * VLAN_TAG_SIZE > buffsz)
dev->data->scattered_rx = 1;
if (rx_conf->enable_scatter)
dev->data->scattered_rx = 1;
/* Setup MTU based on max_rx_pkt_len or default */
mtu = dev->data->dev_conf.rxmode.jumbo_frame ?
dev->data->dev_conf.rxmode.max_rx_pkt_len
- ETHER_HDR_LEN - ETHER_CRC_LEN
: ETHER_MTU;
if (nicvf_dev_set_mtu(dev, mtu)) {
PMD_INIT_LOG(ERR, "Failed to set default mtu size");
return -EBUSY;
}
ret = nicvf_vf_start(dev, nic, rbdrsz);
if (ret != 0)
return ret;
for (i = 0; i < nic->sqs_count; i++) {
assert(nic->snicvf[i]);
ret = nicvf_vf_start(dev, nic->snicvf[i], rbdrsz);
if (ret != 0)
return ret;
}
/* Configure callbacks based on scatter mode */
nicvf_set_tx_function(dev);
nicvf_set_rx_function(dev);
return 0;
}
static void
nicvf_dev_stop_cleanup(struct rte_eth_dev *dev, bool cleanup)
{
size_t i;
int ret;
struct nicvf *nic = nicvf_pmd_priv(dev);
PMD_INIT_FUNC_TRACE();
/* Teardown secondary vf first */
for (i = 0; i < nic->sqs_count; i++) {
if (!nic->snicvf[i])
continue;
nicvf_vf_stop(dev, nic->snicvf[i], cleanup);
}
/* Stop the primary VF now */
nicvf_vf_stop(dev, nic, cleanup);
/* Disable loopback */
ret = nicvf_loopback_config(nic, 0);
if (ret)
PMD_INIT_LOG(ERR, "Failed to disable loopback %d", ret);
/* Reclaim CPI configuration */
ret = nicvf_mbox_config_cpi(nic, 0);
if (ret)
PMD_INIT_LOG(ERR, "Failed to reclaim CPI config %d", ret);
}
static void
nicvf_dev_stop(struct rte_eth_dev *dev)
{
PMD_INIT_FUNC_TRACE();
nicvf_dev_stop_cleanup(dev, false);
}
static void
nicvf_vf_stop(struct rte_eth_dev *dev, struct nicvf *nic, bool cleanup)
{
int ret;
uint16_t qidx;
uint16_t tx_start, tx_end;
uint16_t rx_start, rx_end;
PMD_INIT_FUNC_TRACE();
if (cleanup) {
/* Let PF make the BGX's RX and TX switches to OFF position */
nicvf_mbox_shutdown(nic);
}
/* Disable VLAN Strip */
nicvf_vlan_hw_strip(nic, 0);
/* Get queue ranges for this VF */
nicvf_tx_range(dev, nic, &tx_start, &tx_end);
for (qidx = tx_start; qidx <= tx_end; qidx++)
nicvf_vf_stop_tx_queue(dev, nic, qidx % MAX_SND_QUEUES_PER_QS);
/* Get queue ranges for this VF */
nicvf_rx_range(dev, nic, &rx_start, &rx_end);
/* Reclaim rq */
for (qidx = rx_start; qidx <= rx_end; qidx++)
nicvf_vf_stop_rx_queue(dev, nic, qidx % MAX_RCV_QUEUES_PER_QS);
/* Reclaim RBDR */
ret = nicvf_qset_rbdr_reclaim(nic, 0);
if (ret)
PMD_INIT_LOG(ERR, "Failed to reclaim RBDR %d", ret);
/* Move all charged buffers in RBDR back to pool */
if (nic->rbdr != NULL)
nicvf_rbdr_release_mbufs(dev, nic);
/* Disable qset */
ret = nicvf_qset_reclaim(nic);
if (ret)
PMD_INIT_LOG(ERR, "Failed to disable qset %d", ret);
/* Disable all interrupts */
nicvf_disable_all_interrupts(nic);
/* Free RBDR SW structure */
if (nic->rbdr) {
rte_free(nic->rbdr);
nic->rbdr = NULL;
}
}
static void
nicvf_dev_close(struct rte_eth_dev *dev)
{
size_t i;
struct nicvf *nic = nicvf_pmd_priv(dev);
PMD_INIT_FUNC_TRACE();
nicvf_dev_stop_cleanup(dev, true);
nicvf_periodic_alarm_stop(nicvf_interrupt, dev);
for (i = 0; i < nic->sqs_count; i++) {
if (!nic->snicvf[i])
continue;
nicvf_periodic_alarm_stop(nicvf_vf_interrupt, nic->snicvf[i]);
}
}
static int
nicvf_request_sqs(struct nicvf *nic)
{
size_t i;
assert_primary(nic);
assert(nic->sqs_count > 0);
assert(nic->sqs_count <= MAX_SQS_PER_VF);
/* Set no of Rx/Tx queues in each of the SQsets */
for (i = 0; i < nic->sqs_count; i++) {
if (nicvf_svf_empty())
rte_panic("Cannot assign sufficient number of "
"secondary queues to primary VF%" PRIu8 "\n",
nic->vf_id);
nic->snicvf[i] = nicvf_svf_pop();
nic->snicvf[i]->sqs_id = i;
}
return nicvf_mbox_request_sqs(nic);
}
static int
nicvf_dev_configure(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *data = dev->data;
struct rte_eth_conf *conf = &data->dev_conf;
struct rte_eth_rxmode *rxmode = &conf->rxmode;
struct rte_eth_txmode *txmode = &conf->txmode;
struct nicvf *nic = nicvf_pmd_priv(dev);
uint8_t cqcount;
PMD_INIT_FUNC_TRACE();
if (!rte_eal_has_hugepages()) {
PMD_INIT_LOG(INFO, "Huge page is not configured");
return -EINVAL;
}
if (txmode->mq_mode) {
PMD_INIT_LOG(INFO, "Tx mq_mode DCB or VMDq not supported");
return -EINVAL;
}
if (rxmode->mq_mode != ETH_MQ_RX_NONE &&
rxmode->mq_mode != ETH_MQ_RX_RSS) {
PMD_INIT_LOG(INFO, "Unsupported rx qmode %d", rxmode->mq_mode);
return -EINVAL;
}
if (!rxmode->hw_strip_crc) {
PMD_INIT_LOG(NOTICE, "Can't disable hw crc strip");
rxmode->hw_strip_crc = 1;
}
if (rxmode->hw_ip_checksum) {
PMD_INIT_LOG(NOTICE, "Rxcksum not supported");
rxmode->hw_ip_checksum = 0;
}
if (rxmode->split_hdr_size) {
PMD_INIT_LOG(INFO, "Rxmode does not support split header");
return -EINVAL;
}
if (rxmode->hw_vlan_filter) {
PMD_INIT_LOG(INFO, "VLAN filter not supported");
return -EINVAL;
}
if (rxmode->hw_vlan_extend) {
PMD_INIT_LOG(INFO, "VLAN extended not supported");
return -EINVAL;
}
if (rxmode->enable_lro) {
PMD_INIT_LOG(INFO, "LRO not supported");
return -EINVAL;
}
if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
PMD_INIT_LOG(INFO, "Setting link speed/duplex not supported");
return -EINVAL;
}
if (conf->dcb_capability_en) {
PMD_INIT_LOG(INFO, "DCB enable not supported");
return -EINVAL;
}
if (conf->fdir_conf.mode != RTE_FDIR_MODE_NONE) {
PMD_INIT_LOG(INFO, "Flow director not supported");
return -EINVAL;
}
assert_primary(nic);
NICVF_STATIC_ASSERT(MAX_RCV_QUEUES_PER_QS == MAX_SND_QUEUES_PER_QS);
cqcount = RTE_MAX(data->nb_tx_queues, data->nb_rx_queues);
if (cqcount > MAX_RCV_QUEUES_PER_QS) {
nic->sqs_count = RTE_ALIGN_CEIL(cqcount, MAX_RCV_QUEUES_PER_QS);
nic->sqs_count = (nic->sqs_count / MAX_RCV_QUEUES_PER_QS) - 1;
} else {
nic->sqs_count = 0;
}
assert(nic->sqs_count <= MAX_SQS_PER_VF);
if (nic->sqs_count > 0) {
if (nicvf_request_sqs(nic)) {
rte_panic("Cannot assign sufficient number of "
"secondary queues to PORT%d VF%" PRIu8 "\n",
dev->data->port_id, nic->vf_id);
}
}
PMD_INIT_LOG(DEBUG, "Configured ethdev port%d hwcap=0x%" PRIx64,
dev->data->port_id, nicvf_hw_cap(nic));
return 0;
}
/* Initialize and register driver with DPDK Application */
static const struct eth_dev_ops nicvf_eth_dev_ops = {
.dev_configure = nicvf_dev_configure,
.dev_start = nicvf_dev_start,
.dev_stop = nicvf_dev_stop,
.link_update = nicvf_dev_link_update,
.dev_close = nicvf_dev_close,
.stats_get = nicvf_dev_stats_get,
.stats_reset = nicvf_dev_stats_reset,
.promiscuous_enable = nicvf_dev_promisc_enable,
.dev_infos_get = nicvf_dev_info_get,
.dev_supported_ptypes_get = nicvf_dev_supported_ptypes_get,
.mtu_set = nicvf_dev_set_mtu,
.reta_update = nicvf_dev_reta_update,
.reta_query = nicvf_dev_reta_query,
.rss_hash_update = nicvf_dev_rss_hash_update,
.rss_hash_conf_get = nicvf_dev_rss_hash_conf_get,
.rx_queue_start = nicvf_dev_rx_queue_start,
.rx_queue_stop = nicvf_dev_rx_queue_stop,
.tx_queue_start = nicvf_dev_tx_queue_start,
.tx_queue_stop = nicvf_dev_tx_queue_stop,
.rx_queue_setup = nicvf_dev_rx_queue_setup,
.rx_queue_release = nicvf_dev_rx_queue_release,
.rx_queue_count = nicvf_dev_rx_queue_count,
.tx_queue_setup = nicvf_dev_tx_queue_setup,
.tx_queue_release = nicvf_dev_tx_queue_release,
.get_reg = nicvf_dev_get_regs,
};
static int
nicvf_eth_dev_init(struct rte_eth_dev *eth_dev)
{
int ret;
struct rte_pci_device *pci_dev;
struct nicvf *nic = nicvf_pmd_priv(eth_dev);
PMD_INIT_FUNC_TRACE();
eth_dev->dev_ops = &nicvf_eth_dev_ops;
/* For secondary processes, the primary has done all the work */
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
if (nic) {
/* Setup callbacks for secondary process */
nicvf_set_tx_function(eth_dev);
nicvf_set_rx_function(eth_dev);
return 0;
} else {
/* If nic == NULL than it is secondary function
* so ethdev need to be released by caller */
return ENOTSUP;
}
}
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
rte_eth_copy_pci_info(eth_dev, pci_dev);
nic->device_id = pci_dev->id.device_id;
nic->vendor_id = pci_dev->id.vendor_id;
nic->subsystem_device_id = pci_dev->id.subsystem_device_id;
nic->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
PMD_INIT_LOG(DEBUG, "nicvf: device (%x:%x) %u:%u:%u:%u",
pci_dev->id.vendor_id, pci_dev->id.device_id,
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function);
nic->reg_base = (uintptr_t)pci_dev->mem_resource[0].addr;
if (!nic->reg_base) {
PMD_INIT_LOG(ERR, "Failed to map BAR0");
ret = -ENODEV;
goto fail;
}
nicvf_disable_all_interrupts(nic);
ret = nicvf_periodic_alarm_start(nicvf_interrupt, eth_dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to start period alarm");
goto fail;
}
ret = nicvf_mbox_check_pf_ready(nic);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to get ready message from PF");
goto alarm_fail;
} else {
PMD_INIT_LOG(INFO,
"node=%d vf=%d mode=%s sqs=%s loopback_supported=%s",
nic->node, nic->vf_id,
nic->tns_mode == NIC_TNS_MODE ? "tns" : "tns-bypass",
nic->sqs_mode ? "true" : "false",
nic->loopback_supported ? "true" : "false"
);
}
ret = nicvf_base_init(nic);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to execute nicvf_base_init");
goto malloc_fail;
}
if (nic->sqs_mode) {
/* Push nic to stack of secondary vfs */
nicvf_svf_push(nic);
/* Steal nic pointer from the device for further reuse */
eth_dev->data->dev_private = NULL;
nicvf_periodic_alarm_stop(nicvf_interrupt, eth_dev);
ret = nicvf_periodic_alarm_start(nicvf_vf_interrupt, nic);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to start period alarm");
goto fail;
}
/* Detach port by returning positive error number */
return ENOTSUP;
}
eth_dev->data->mac_addrs = rte_zmalloc("mac_addr", ETHER_ADDR_LEN, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for mac addr");
ret = -ENOMEM;
goto alarm_fail;
}
if (is_zero_ether_addr((struct ether_addr *)nic->mac_addr))
eth_random_addr(&nic->mac_addr[0]);
ether_addr_copy((struct ether_addr *)nic->mac_addr,
&eth_dev->data->mac_addrs[0]);
ret = nicvf_mbox_set_mac_addr(nic, nic->mac_addr);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to set mac addr");
goto malloc_fail;
}
PMD_INIT_LOG(INFO, "Port %d (%x:%x) mac=%02x:%02x:%02x:%02x:%02x:%02x",
eth_dev->data->port_id, nic->vendor_id, nic->device_id,
nic->mac_addr[0], nic->mac_addr[1], nic->mac_addr[2],
nic->mac_addr[3], nic->mac_addr[4], nic->mac_addr[5]);
return 0;
malloc_fail:
rte_free(eth_dev->data->mac_addrs);
alarm_fail:
nicvf_periodic_alarm_stop(nicvf_interrupt, eth_dev);
fail:
return ret;
}
static const struct rte_pci_id pci_id_nicvf_map[] = {
{
.class_id = RTE_CLASS_ANY_ID,
.vendor_id = PCI_VENDOR_ID_CAVIUM,
.device_id = PCI_DEVICE_ID_THUNDERX_CN88XX_PASS1_NICVF,
.subsystem_vendor_id = PCI_VENDOR_ID_CAVIUM,
.subsystem_device_id = PCI_SUB_DEVICE_ID_CN88XX_PASS1_NICVF,
},
{
.class_id = RTE_CLASS_ANY_ID,
.vendor_id = PCI_VENDOR_ID_CAVIUM,
.device_id = PCI_DEVICE_ID_THUNDERX_NICVF,
.subsystem_vendor_id = PCI_VENDOR_ID_CAVIUM,
.subsystem_device_id = PCI_SUB_DEVICE_ID_CN88XX_PASS2_NICVF,
},
{
.class_id = RTE_CLASS_ANY_ID,
.vendor_id = PCI_VENDOR_ID_CAVIUM,
.device_id = PCI_DEVICE_ID_THUNDERX_NICVF,
.subsystem_vendor_id = PCI_VENDOR_ID_CAVIUM,
.subsystem_device_id = PCI_SUB_DEVICE_ID_CN81XX_NICVF,
},
{
.class_id = RTE_CLASS_ANY_ID,
.vendor_id = PCI_VENDOR_ID_CAVIUM,
.device_id = PCI_DEVICE_ID_THUNDERX_NICVF,
.subsystem_vendor_id = PCI_VENDOR_ID_CAVIUM,
.subsystem_device_id = PCI_SUB_DEVICE_ID_CN83XX_NICVF,
},
{
.vendor_id = 0,
},
};
static int nicvf_eth_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct nicvf),
nicvf_eth_dev_init);
}
static int nicvf_eth_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
}
static struct rte_pci_driver rte_nicvf_pmd = {
.id_table = pci_id_nicvf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_KEEP_MAPPED_RES |
RTE_PCI_DRV_INTR_LSC,
.probe = nicvf_eth_pci_probe,
.remove = nicvf_eth_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_thunderx, rte_nicvf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_thunderx, pci_id_nicvf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_thunderx, "* igb_uio | uio_pci_generic | vfio-pci");