4722743167
Signed-off-by: Intel
1859 lines
54 KiB
C
1859 lines
54 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <endian.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <rte_interrupts.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_string_fns.h>
|
|
|
|
#include "e1000_logs.h"
|
|
#include "igb/e1000_api.h"
|
|
#include "e1000_ethdev.h"
|
|
|
|
static inline struct rte_mbuf *
|
|
rte_rxmbuf_alloc(struct rte_mempool *mp)
|
|
{
|
|
struct rte_mbuf *m;
|
|
|
|
m = __rte_mbuf_raw_alloc(mp);
|
|
__rte_mbuf_sanity_check_raw(m, RTE_MBUF_PKT, 0);
|
|
return (m);
|
|
}
|
|
|
|
#define RTE_MBUF_DATA_DMA_ADDR(mb) \
|
|
(uint64_t) ((mb)->buf_physaddr + \
|
|
(uint64_t) ((char *)((mb)->pkt.data) - \
|
|
(char *)(mb)->buf_addr))
|
|
|
|
#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
|
|
(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
|
|
|
|
/**
|
|
* Structure associated with each descriptor of the RX ring of a RX queue.
|
|
*/
|
|
struct igb_rx_entry {
|
|
struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
|
|
};
|
|
|
|
/**
|
|
* Structure associated with each descriptor of the TX ring of a TX queue.
|
|
*/
|
|
struct igb_tx_entry {
|
|
struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
|
|
uint16_t next_id; /**< Index of next descriptor in ring. */
|
|
uint16_t last_id; /**< Index of last scattered descriptor. */
|
|
};
|
|
|
|
/**
|
|
* Structure associated with each RX queue.
|
|
*/
|
|
struct igb_rx_queue {
|
|
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
|
|
volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
|
|
uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
|
|
volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
|
|
struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
|
|
struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
|
|
struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
|
|
uint16_t nb_rx_desc; /**< number of RX descriptors. */
|
|
uint16_t rx_tail; /**< current value of RDT register. */
|
|
uint16_t nb_rx_hold; /**< number of held free RX desc. */
|
|
uint16_t rx_free_thresh; /**< max free RX desc to hold. */
|
|
uint16_t queue_id; /**< RX queue index. */
|
|
uint8_t port_id; /**< Device port identifier. */
|
|
uint8_t pthresh; /**< Prefetch threshold register. */
|
|
uint8_t hthresh; /**< Host threshold register. */
|
|
uint8_t wthresh; /**< Write-back threshold register. */
|
|
uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
|
|
};
|
|
|
|
/**
|
|
* Hardware context number
|
|
*/
|
|
enum igb_advctx_num {
|
|
IGB_CTX_0 = 0, /**< CTX0 */
|
|
IGB_CTX_1 = 1, /**< CTX1 */
|
|
IGB_CTX_NUM = 2, /**< CTX NUM */
|
|
};
|
|
|
|
/**
|
|
* Strucutre to check if new context need be built
|
|
*/
|
|
struct igb_advctx_info {
|
|
uint16_t flags; /**< ol_flags related to context build. */
|
|
uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */
|
|
uint32_t vlan_macip_lens; /**< vlan, mac.ip length. */
|
|
};
|
|
|
|
/**
|
|
* Structure associated with each TX queue.
|
|
*/
|
|
struct igb_tx_queue {
|
|
volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
|
|
uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
|
|
struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
|
|
volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
|
|
uint32_t txd_type; /**< Device-specific TXD type */
|
|
uint16_t nb_tx_desc; /**< number of TX descriptors. */
|
|
uint16_t tx_tail; /**< Current value of TDT register. */
|
|
uint16_t tx_head; /**< Index of first used TX descriptor. */
|
|
uint16_t queue_id; /**< TX queue index. */
|
|
uint8_t port_id; /**< Device port identifier. */
|
|
uint8_t pthresh; /**< Prefetch threshold register. */
|
|
uint8_t hthresh; /**< Host threshold register. */
|
|
uint8_t wthresh; /**< Write-back threshold register. */
|
|
uint32_t ctx_curr; /**< Current used hardware descriptor. */
|
|
uint32_t ctx_start;/**< Start context position for transmit queue. */
|
|
struct igb_advctx_info ctx_cache[IGB_CTX_NUM]; /**< Hardware context history.*/
|
|
};
|
|
|
|
#if 1
|
|
#define RTE_PMD_USE_PREFETCH
|
|
#endif
|
|
|
|
#ifdef RTE_PMD_USE_PREFETCH
|
|
#define rte_igb_prefetch(p) rte_prefetch0(p)
|
|
#else
|
|
#define rte_igb_prefetch(p) do {} while(0)
|
|
#endif
|
|
|
|
#ifdef RTE_PMD_PACKET_PREFETCH
|
|
#define rte_packet_prefetch(p) rte_prefetch1(p)
|
|
#else
|
|
#define rte_packet_prefetch(p) do {} while(0)
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
*
|
|
* TX function
|
|
*
|
|
**********************************************************************/
|
|
|
|
/*
|
|
* Advanced context descriptor are almost same between igb/ixgbe
|
|
* This is a separate function, looking for optimization opportunity here
|
|
* Rework required to go with the pre-defined values.
|
|
*/
|
|
|
|
static inline void
|
|
igbe_set_xmit_ctx(struct igb_tx_queue* txq,
|
|
volatile struct e1000_adv_tx_context_desc *ctx_txd,
|
|
uint16_t ol_flags, uint32_t vlan_macip_lens)
|
|
{
|
|
uint32_t type_tucmd_mlhl;
|
|
uint32_t mss_l4len_idx;
|
|
uint32_t ctx_idx, ctx_curr;
|
|
uint32_t cmp_mask;
|
|
|
|
ctx_curr = txq->ctx_curr;
|
|
ctx_idx = ctx_curr + txq->ctx_start;
|
|
|
|
cmp_mask = 0;
|
|
type_tucmd_mlhl = 0;
|
|
|
|
if (ol_flags & PKT_TX_VLAN_PKT) {
|
|
cmp_mask |= TX_VLAN_CMP_MASK;
|
|
}
|
|
|
|
if (ol_flags & PKT_TX_IP_CKSUM) {
|
|
type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
|
|
cmp_mask |= TX_MAC_LEN_CMP_MASK;
|
|
}
|
|
|
|
/* Specify which HW CTX to upload. */
|
|
mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
|
|
switch (ol_flags & PKT_TX_L4_MASK) {
|
|
case PKT_TX_UDP_CKSUM:
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
|
|
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
|
|
mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
|
|
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
|
|
break;
|
|
case PKT_TX_TCP_CKSUM:
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
|
|
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
|
|
mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
|
|
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
|
|
break;
|
|
case PKT_TX_SCTP_CKSUM:
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
|
|
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
|
|
mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
|
|
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
|
|
break;
|
|
default:
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
|
|
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
|
|
break;
|
|
}
|
|
|
|
txq->ctx_cache[ctx_curr].flags = ol_flags;
|
|
txq->ctx_cache[ctx_curr].cmp_mask = cmp_mask;
|
|
txq->ctx_cache[ctx_curr].vlan_macip_lens = vlan_macip_lens & cmp_mask;
|
|
|
|
ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
|
|
ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
|
|
ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
|
|
ctx_txd->seqnum_seed = 0;
|
|
}
|
|
|
|
/*
|
|
* Check which hardware context can be used. Use the existing match
|
|
* or create a new context descriptor.
|
|
*/
|
|
static inline uint32_t
|
|
what_advctx_update(struct igb_tx_queue *txq, uint16_t flags,
|
|
uint32_t vlan_macip_lens)
|
|
{
|
|
/* If match with the current context */
|
|
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
|
|
(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens ==
|
|
(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
|
|
return txq->ctx_curr;
|
|
}
|
|
|
|
/* If match with the second context */
|
|
txq->ctx_curr ^= 1;
|
|
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
|
|
(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens ==
|
|
(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
|
|
return txq->ctx_curr;
|
|
}
|
|
|
|
/* Mismatch, use the previous context */
|
|
return (IGB_CTX_NUM);
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_cksum_flags_to_olinfo(uint16_t ol_flags)
|
|
{
|
|
static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
|
|
static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
|
|
uint32_t tmp;
|
|
|
|
tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
|
|
tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
|
|
return tmp;
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_vlan_flags_to_cmdtype(uint16_t ol_flags)
|
|
{
|
|
static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
|
|
return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
|
|
}
|
|
|
|
uint16_t
|
|
eth_igb_xmit_pkts(struct igb_tx_queue *txq, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct igb_tx_entry *sw_ring;
|
|
struct igb_tx_entry *txe, *txn;
|
|
volatile union e1000_adv_tx_desc *txr;
|
|
volatile union e1000_adv_tx_desc *txd;
|
|
struct rte_mbuf *tx_pkt;
|
|
struct rte_mbuf *m_seg;
|
|
uint64_t buf_dma_addr;
|
|
uint32_t olinfo_status;
|
|
uint32_t cmd_type_len;
|
|
uint32_t pkt_len;
|
|
uint16_t slen;
|
|
uint16_t ol_flags;
|
|
uint16_t tx_end;
|
|
uint16_t tx_id;
|
|
uint16_t tx_last;
|
|
uint16_t nb_tx;
|
|
uint16_t tx_ol_req;
|
|
uint32_t new_ctx;
|
|
uint32_t ctx;
|
|
uint32_t vlan_macip_lens;
|
|
|
|
sw_ring = txq->sw_ring;
|
|
txr = txq->tx_ring;
|
|
tx_id = txq->tx_tail;
|
|
txe = &sw_ring[tx_id];
|
|
|
|
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
|
|
tx_pkt = *tx_pkts++;
|
|
pkt_len = tx_pkt->pkt.pkt_len;
|
|
|
|
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
|
|
|
|
/*
|
|
* The number of descriptors that must be allocated for a
|
|
* packet is the number of segments of that packet, plus 1
|
|
* Context Descriptor for the VLAN Tag Identifier, if any.
|
|
* Determine the last TX descriptor to allocate in the TX ring
|
|
* for the packet, starting from the current position (tx_id)
|
|
* in the ring.
|
|
*/
|
|
tx_last = (uint16_t) (tx_id + tx_pkt->pkt.nb_segs - 1);
|
|
|
|
ol_flags = tx_pkt->ol_flags;
|
|
vlan_macip_lens = (tx_pkt->pkt.vlan_tci << 16) | (tx_pkt->pkt.l2_len << E1000_ADVTXD_MACLEN_SHIFT) | tx_pkt->pkt.l3_len;
|
|
tx_ol_req = (ol_flags & PKT_TX_OFFLOAD_MASK);
|
|
|
|
/* If a Context Descriptor need be built . */
|
|
if (tx_ol_req) {
|
|
ctx = what_advctx_update(txq, tx_ol_req,vlan_macip_lens);
|
|
/* Only allocate context descriptor if required*/
|
|
new_ctx = (ctx == IGB_CTX_NUM);
|
|
ctx = txq->ctx_curr;
|
|
tx_last = (uint16_t) (tx_last + new_ctx);
|
|
}
|
|
if (tx_last >= txq->nb_tx_desc)
|
|
tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
|
|
" tx_first=%u tx_last=%u\n",
|
|
(unsigned) txq->port_id,
|
|
(unsigned) txq->queue_id,
|
|
(unsigned) pkt_len,
|
|
(unsigned) tx_id,
|
|
(unsigned) tx_last);
|
|
|
|
/*
|
|
* Check if there are enough free descriptors in the TX ring
|
|
* to transmit the next packet.
|
|
* This operation is based on the two following rules:
|
|
*
|
|
* 1- Only check that the last needed TX descriptor can be
|
|
* allocated (by construction, if that descriptor is free,
|
|
* all intermediate ones are also free).
|
|
*
|
|
* For this purpose, the index of the last TX descriptor
|
|
* used for a packet (the "last descriptor" of a packet)
|
|
* is recorded in the TX entries (the last one included)
|
|
* that are associated with all TX descriptors allocated
|
|
* for that packet.
|
|
*
|
|
* 2- Avoid to allocate the last free TX descriptor of the
|
|
* ring, in order to never set the TDT register with the
|
|
* same value stored in parallel by the NIC in the TDH
|
|
* register, which makes the TX engine of the NIC enter
|
|
* in a deadlock situation.
|
|
*
|
|
* By extension, avoid to allocate a free descriptor that
|
|
* belongs to the last set of free descriptors allocated
|
|
* to the same packet previously transmitted.
|
|
*/
|
|
|
|
/*
|
|
* The "last descriptor" of the previously sent packet, if any,
|
|
* which used the last descriptor to allocate.
|
|
*/
|
|
tx_end = sw_ring[tx_last].last_id;
|
|
|
|
/*
|
|
* The next descriptor following that "last descriptor" in the
|
|
* ring.
|
|
*/
|
|
tx_end = sw_ring[tx_end].next_id;
|
|
|
|
/*
|
|
* The "last descriptor" associated with that next descriptor.
|
|
*/
|
|
tx_end = sw_ring[tx_end].last_id;
|
|
|
|
/*
|
|
* Check that this descriptor is free.
|
|
*/
|
|
if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
|
|
if (nb_tx == 0)
|
|
return (0);
|
|
goto end_of_tx;
|
|
}
|
|
|
|
/*
|
|
* Set common flags of all TX Data Descriptors.
|
|
*
|
|
* The following bits must be set in all Data Descriptors:
|
|
* - E1000_ADVTXD_DTYP_DATA
|
|
* - E1000_ADVTXD_DCMD_DEXT
|
|
*
|
|
* The following bits must be set in the first Data Descriptor
|
|
* and are ignored in the other ones:
|
|
* - E1000_ADVTXD_DCMD_IFCS
|
|
* - E1000_ADVTXD_MAC_1588
|
|
* - E1000_ADVTXD_DCMD_VLE
|
|
*
|
|
* The following bits must only be set in the last Data
|
|
* Descriptor:
|
|
* - E1000_TXD_CMD_EOP
|
|
*
|
|
* The following bits can be set in any Data Descriptor, but
|
|
* are only set in the last Data Descriptor:
|
|
* - E1000_TXD_CMD_RS
|
|
*/
|
|
cmd_type_len = txq->txd_type |
|
|
E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
|
|
olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
|
|
#if defined(RTE_LIBRTE_IEEE1588)
|
|
if (ol_flags & PKT_TX_IEEE1588_TMST)
|
|
cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
|
|
#endif
|
|
if (tx_ol_req) {
|
|
/* Setup TX Advanced context descriptor if required */
|
|
if (new_ctx) {
|
|
volatile struct e1000_adv_tx_context_desc *
|
|
ctx_txd;
|
|
|
|
ctx_txd = (volatile struct
|
|
e1000_adv_tx_context_desc *)
|
|
&txr[tx_id];
|
|
|
|
txn = &sw_ring[txe->next_id];
|
|
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
|
|
|
|
if (txe->mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = NULL;
|
|
}
|
|
|
|
igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
|
|
vlan_macip_lens);
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
}
|
|
|
|
/* Setup the TX Advanced Data Descriptor */
|
|
cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
|
|
olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
|
|
olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
|
|
}
|
|
|
|
m_seg = tx_pkt;
|
|
do {
|
|
txn = &sw_ring[txe->next_id];
|
|
txd = &txr[tx_id];
|
|
|
|
if (txe->mbuf != NULL)
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = m_seg;
|
|
|
|
/*
|
|
* Set up transmit descriptor.
|
|
*/
|
|
slen = (uint16_t) m_seg->pkt.data_len;
|
|
buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
|
|
txd->read.buffer_addr =
|
|
rte_cpu_to_le_64(buf_dma_addr);
|
|
txd->read.cmd_type_len =
|
|
rte_cpu_to_le_32(cmd_type_len | slen);
|
|
txd->read.olinfo_status =
|
|
rte_cpu_to_le_32(olinfo_status);
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
m_seg = m_seg->pkt.next;
|
|
} while (m_seg != NULL);
|
|
|
|
/*
|
|
* The last packet data descriptor needs End Of Packet (EOP)
|
|
* and Report Status (RS).
|
|
*/
|
|
txd->read.cmd_type_len |=
|
|
rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
|
|
}
|
|
end_of_tx:
|
|
rte_wmb();
|
|
|
|
/*
|
|
* Set the Transmit Descriptor Tail (TDT).
|
|
*/
|
|
E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
(unsigned) txq->port_id, (unsigned) txq->queue_id,
|
|
(unsigned) tx_id, (unsigned) nb_tx);
|
|
txq->tx_tail = tx_id;
|
|
|
|
return (nb_tx);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* RX functions
|
|
*
|
|
**********************************************************************/
|
|
static inline uint16_t
|
|
rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
|
|
{
|
|
uint16_t pkt_flags;
|
|
|
|
static uint16_t ip_pkt_types_map[16] = {
|
|
0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
|
|
PKT_RX_IPV6_HDR, 0, 0, 0,
|
|
PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
|
|
PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
|
|
};
|
|
|
|
#if defined(RTE_LIBRTE_IEEE1588)
|
|
static uint32_t ip_pkt_etqf_map[8] = {
|
|
0, 0, 0, PKT_RX_IEEE1588_PTP,
|
|
0, 0, 0, 0,
|
|
};
|
|
|
|
pkt_flags = (uint16_t) (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
|
|
ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
|
|
ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
|
|
#else
|
|
pkt_flags = (uint16_t) (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
|
|
ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
|
|
#endif
|
|
return pkt_flags | (uint16_t) (((hl_tp_rs & 0x0F) == 0) ? 0 :
|
|
PKT_RX_RSS_HASH);
|
|
}
|
|
|
|
static inline uint16_t
|
|
rx_desc_status_to_pkt_flags(uint32_t rx_status)
|
|
{
|
|
uint16_t pkt_flags;
|
|
|
|
/* Check if VLAN present */
|
|
pkt_flags = (uint16_t) (rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0;
|
|
|
|
#if defined(RTE_LIBRTE_IEEE1588)
|
|
if (rx_status & E1000_RXD_STAT_TMST)
|
|
pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
|
|
#endif
|
|
return pkt_flags;
|
|
}
|
|
|
|
static inline uint16_t
|
|
rx_desc_error_to_pkt_flags(uint32_t rx_status)
|
|
{
|
|
/*
|
|
* Bit 30: IPE, IPv4 checksum error
|
|
* Bit 29: L4I, L4I integrity error
|
|
*/
|
|
|
|
static uint16_t error_to_pkt_flags_map[4] = {
|
|
0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
|
|
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
|
|
};
|
|
return error_to_pkt_flags_map[(rx_status >>
|
|
E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
|
|
}
|
|
|
|
uint16_t
|
|
eth_igb_recv_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile union e1000_adv_rx_desc *rx_ring;
|
|
volatile union e1000_adv_rx_desc *rxdp;
|
|
struct igb_rx_entry *sw_ring;
|
|
struct igb_rx_entry *rxe;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
union e1000_adv_rx_desc rxd;
|
|
uint64_t dma_addr;
|
|
uint32_t staterr;
|
|
uint32_t hlen_type_rss;
|
|
uint16_t pkt_len;
|
|
uint16_t rx_id;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_hold;
|
|
uint16_t pkt_flags;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
while (nb_rx < nb_pkts) {
|
|
/*
|
|
* The order of operations here is important as the DD status
|
|
* bit must not be read after any other descriptor fields.
|
|
* rx_ring and rxdp are pointing to volatile data so the order
|
|
* of accesses cannot be reordered by the compiler. If they were
|
|
* not volatile, they could be reordered which could lead to
|
|
* using invalid descriptor fields when read from rxd.
|
|
*/
|
|
rxdp = &rx_ring[rx_id];
|
|
staterr = rxdp->wb.upper.status_error;
|
|
if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
|
|
break;
|
|
rxd = *rxdp;
|
|
|
|
/*
|
|
* End of packet.
|
|
*
|
|
* If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
|
|
* likely to be invalid and to be dropped by the various
|
|
* validation checks performed by the network stack.
|
|
*
|
|
* Allocate a new mbuf to replenish the RX ring descriptor.
|
|
* If the allocation fails:
|
|
* - arrange for that RX descriptor to be the first one
|
|
* being parsed the next time the receive function is
|
|
* invoked [on the same queue].
|
|
*
|
|
* - Stop parsing the RX ring and return immediately.
|
|
*
|
|
* This policy do not drop the packet received in the RX
|
|
* descriptor for which the allocation of a new mbuf failed.
|
|
* Thus, it allows that packet to be later retrieved if
|
|
* mbuf have been freed in the mean time.
|
|
* As a side effect, holding RX descriptors instead of
|
|
* systematically giving them back to the NIC may lead to
|
|
* RX ring exhaustion situations.
|
|
* However, the NIC can gracefully prevent such situations
|
|
* to happen by sending specific "back-pressure" flow control
|
|
* frames to its peer(s).
|
|
*/
|
|
PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
|
|
"staterr=0x%x pkt_len=%u\n",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) staterr,
|
|
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
|
|
|
|
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u\n", (unsigned) rxq->port_id,
|
|
(unsigned) rxq->queue_id);
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_igb_prefetch(sw_ring[rx_id].mbuf);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_igb_prefetch(&rx_ring[rx_id]);
|
|
rte_igb_prefetch(&sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
|
|
rxdp->read.hdr_addr = dma_addr;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
|
|
/*
|
|
* Initialize the returned mbuf.
|
|
* 1) setup generic mbuf fields:
|
|
* - number of segments,
|
|
* - next segment,
|
|
* - packet length,
|
|
* - RX port identifier.
|
|
* 2) integrate hardware offload data, if any:
|
|
* - RSS flag & hash,
|
|
* - IP checksum flag,
|
|
* - VLAN TCI, if any,
|
|
* - error flags.
|
|
*/
|
|
pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
|
|
rxq->crc_len);
|
|
rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
|
|
rte_packet_prefetch(rxm->pkt.data);
|
|
rxm->pkt.nb_segs = 1;
|
|
rxm->pkt.next = NULL;
|
|
rxm->pkt.pkt_len = pkt_len;
|
|
rxm->pkt.data_len = pkt_len;
|
|
rxm->pkt.in_port = rxq->port_id;
|
|
|
|
rxm->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
|
|
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
|
|
/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
|
|
rxm->pkt.vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
|
|
|
|
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
|
|
pkt_flags = (pkt_flags |
|
|
rx_desc_status_to_pkt_flags(staterr));
|
|
pkt_flags = (pkt_flags |
|
|
rx_desc_error_to_pkt_flags(staterr));
|
|
rxm->ol_flags = pkt_flags;
|
|
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = rxm;
|
|
}
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed RX descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situtation from the
|
|
* hardware point of view...
|
|
*/
|
|
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
"nb_hold=%u nb_rx=%u\n",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) nb_hold,
|
|
(unsigned) nb_rx);
|
|
rx_id = (uint16_t) ((rx_id == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return (nb_rx);
|
|
}
|
|
|
|
uint16_t
|
|
eth_igb_recv_scattered_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile union e1000_adv_rx_desc *rx_ring;
|
|
volatile union e1000_adv_rx_desc *rxdp;
|
|
struct igb_rx_entry *sw_ring;
|
|
struct igb_rx_entry *rxe;
|
|
struct rte_mbuf *first_seg;
|
|
struct rte_mbuf *last_seg;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
union e1000_adv_rx_desc rxd;
|
|
uint64_t dma; /* Physical address of mbuf data buffer */
|
|
uint32_t staterr;
|
|
uint32_t hlen_type_rss;
|
|
uint16_t rx_id;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_hold;
|
|
uint16_t data_len;
|
|
uint16_t pkt_flags;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
|
|
/*
|
|
* Retrieve RX context of current packet, if any.
|
|
*/
|
|
first_seg = rxq->pkt_first_seg;
|
|
last_seg = rxq->pkt_last_seg;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
next_desc:
|
|
/*
|
|
* The order of operations here is important as the DD status
|
|
* bit must not be read after any other descriptor fields.
|
|
* rx_ring and rxdp are pointing to volatile data so the order
|
|
* of accesses cannot be reordered by the compiler. If they were
|
|
* not volatile, they could be reordered which could lead to
|
|
* using invalid descriptor fields when read from rxd.
|
|
*/
|
|
rxdp = &rx_ring[rx_id];
|
|
staterr = rxdp->wb.upper.status_error;
|
|
if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
|
|
break;
|
|
rxd = *rxdp;
|
|
|
|
/*
|
|
* Descriptor done.
|
|
*
|
|
* Allocate a new mbuf to replenish the RX ring descriptor.
|
|
* If the allocation fails:
|
|
* - arrange for that RX descriptor to be the first one
|
|
* being parsed the next time the receive function is
|
|
* invoked [on the same queue].
|
|
*
|
|
* - Stop parsing the RX ring and return immediately.
|
|
*
|
|
* This policy does not drop the packet received in the RX
|
|
* descriptor for which the allocation of a new mbuf failed.
|
|
* Thus, it allows that packet to be later retrieved if
|
|
* mbuf have been freed in the mean time.
|
|
* As a side effect, holding RX descriptors instead of
|
|
* systematically giving them back to the NIC may lead to
|
|
* RX ring exhaustion situations.
|
|
* However, the NIC can gracefully prevent such situations
|
|
* to happen by sending specific "back-pressure" flow control
|
|
* frames to its peer(s).
|
|
*/
|
|
PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
|
|
"staterr=0x%x data_len=%u\n",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) staterr,
|
|
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
|
|
|
|
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u\n", (unsigned) rxq->port_id,
|
|
(unsigned) rxq->queue_id);
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_igb_prefetch(sw_ring[rx_id].mbuf);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_igb_prefetch(&rx_ring[rx_id]);
|
|
rte_igb_prefetch(&sw_ring[rx_id]);
|
|
}
|
|
|
|
/*
|
|
* Update RX descriptor with the physical address of the new
|
|
* data buffer of the new allocated mbuf.
|
|
*/
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
|
|
rxdp->read.pkt_addr = dma;
|
|
rxdp->read.hdr_addr = dma;
|
|
|
|
/*
|
|
* Set data length & data buffer address of mbuf.
|
|
*/
|
|
data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
|
|
rxm->pkt.data_len = data_len;
|
|
rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
|
|
|
|
/*
|
|
* If this is the first buffer of the received packet,
|
|
* set the pointer to the first mbuf of the packet and
|
|
* initialize its context.
|
|
* Otherwise, update the total length and the number of segments
|
|
* of the current scattered packet, and update the pointer to
|
|
* the last mbuf of the current packet.
|
|
*/
|
|
if (first_seg == NULL) {
|
|
first_seg = rxm;
|
|
first_seg->pkt.pkt_len = data_len;
|
|
first_seg->pkt.nb_segs = 1;
|
|
} else {
|
|
first_seg->pkt.pkt_len += data_len;
|
|
first_seg->pkt.nb_segs++;
|
|
last_seg->pkt.next = rxm;
|
|
}
|
|
|
|
/*
|
|
* If this is not the last buffer of the received packet,
|
|
* update the pointer to the last mbuf of the current scattered
|
|
* packet and continue to parse the RX ring.
|
|
*/
|
|
if (! (staterr & E1000_RXD_STAT_EOP)) {
|
|
last_seg = rxm;
|
|
goto next_desc;
|
|
}
|
|
|
|
/*
|
|
* This is the last buffer of the received packet.
|
|
* If the CRC is not stripped by the hardware:
|
|
* - Subtract the CRC length from the total packet length.
|
|
* - If the last buffer only contains the whole CRC or a part
|
|
* of it, free the mbuf associated to the last buffer.
|
|
* If part of the CRC is also contained in the previous
|
|
* mbuf, subtract the length of that CRC part from the
|
|
* data length of the previous mbuf.
|
|
*/
|
|
rxm->pkt.next = NULL;
|
|
if (unlikely(rxq->crc_len > 0)) {
|
|
first_seg->pkt.pkt_len -= ETHER_CRC_LEN;
|
|
if (data_len <= ETHER_CRC_LEN) {
|
|
rte_pktmbuf_free_seg(rxm);
|
|
first_seg->pkt.nb_segs--;
|
|
last_seg->pkt.data_len = (uint16_t)
|
|
(last_seg->pkt.data_len -
|
|
(ETHER_CRC_LEN - data_len));
|
|
last_seg->pkt.next = NULL;
|
|
} else
|
|
rxm->pkt.data_len =
|
|
(uint16_t) (data_len - ETHER_CRC_LEN);
|
|
}
|
|
|
|
/*
|
|
* Initialize the first mbuf of the returned packet:
|
|
* - RX port identifier,
|
|
* - hardware offload data, if any:
|
|
* - RSS flag & hash,
|
|
* - IP checksum flag,
|
|
* - VLAN TCI, if any,
|
|
* - error flags.
|
|
*/
|
|
first_seg->pkt.in_port = rxq->port_id;
|
|
first_seg->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
|
|
|
|
/*
|
|
* The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
|
|
* set in the pkt_flags field.
|
|
*/
|
|
first_seg->pkt.vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
|
|
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
|
|
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
|
|
pkt_flags = (pkt_flags | rx_desc_status_to_pkt_flags(staterr));
|
|
pkt_flags = (pkt_flags | rx_desc_error_to_pkt_flags(staterr));
|
|
first_seg->ol_flags = pkt_flags;
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_packet_prefetch(first_seg->pkt.data);
|
|
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
|
|
/*
|
|
* Setup receipt context for a new packet.
|
|
*/
|
|
first_seg = NULL;
|
|
}
|
|
|
|
/*
|
|
* Record index of the next RX descriptor to probe.
|
|
*/
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* Save receive context.
|
|
*/
|
|
rxq->pkt_first_seg = first_seg;
|
|
rxq->pkt_last_seg = last_seg;
|
|
|
|
/*
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed RX descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situtation from the
|
|
* hardware point of view...
|
|
*/
|
|
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
"nb_hold=%u nb_rx=%u\n",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) nb_hold,
|
|
(unsigned) nb_rx);
|
|
rx_id = (uint16_t) ((rx_id == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return (nb_rx);
|
|
}
|
|
|
|
/*
|
|
* Rings setup and release.
|
|
*
|
|
* TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
|
|
* multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
|
|
* This will also optimize cache line size effect.
|
|
* H/W supports up to cache line size 128.
|
|
*/
|
|
#define IGB_ALIGN 128
|
|
|
|
/*
|
|
* Maximum number of Ring Descriptors.
|
|
*
|
|
* Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
|
|
* desscriptors should meet the following condition:
|
|
* (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
|
|
*/
|
|
#define IGB_MIN_RING_DESC 32
|
|
#define IGB_MAX_RING_DESC 4096
|
|
|
|
static const struct rte_memzone *
|
|
ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
|
|
uint16_t queue_id, uint32_t ring_size, int socket_id)
|
|
{
|
|
char z_name[RTE_MEMZONE_NAMESIZE];
|
|
const struct rte_memzone *mz;
|
|
|
|
rte_snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
|
|
dev->driver->pci_drv.name, ring_name,
|
|
dev->data->port_id, queue_id);
|
|
mz = rte_memzone_lookup(z_name);
|
|
if (mz)
|
|
return mz;
|
|
|
|
return rte_memzone_reserve_aligned(z_name, (uint64_t)ring_size,
|
|
socket_id, 0, IGB_ALIGN);
|
|
}
|
|
|
|
static void
|
|
igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
|
|
{
|
|
unsigned i;
|
|
|
|
if (txq->sw_ring != NULL) {
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
if (txq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
igb_tx_queue_release(struct igb_tx_queue *txq)
|
|
{
|
|
igb_tx_queue_release_mbufs(txq);
|
|
rte_free(txq->sw_ring);
|
|
rte_free(txq);
|
|
}
|
|
|
|
int
|
|
igb_dev_tx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues)
|
|
{
|
|
uint16_t i, old_nb_queues = dev->data->nb_tx_queues;
|
|
struct igb_tx_queue **txq;
|
|
|
|
if (dev->data->tx_queues == NULL) {
|
|
dev->data->tx_queues = rte_zmalloc("ethdev->tx_queues",
|
|
sizeof(struct igb_tx_queue *) * nb_queues,
|
|
CACHE_LINE_SIZE);
|
|
if (dev->data->tx_queues == NULL) {
|
|
dev->data->nb_tx_queues = 0;
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
if (nb_queues < old_nb_queues)
|
|
for (i = nb_queues; i < old_nb_queues; i++)
|
|
igb_tx_queue_release(dev->data->tx_queues[i]);
|
|
|
|
if (nb_queues != old_nb_queues) {
|
|
txq = rte_realloc(dev->data->tx_queues,
|
|
sizeof(struct igb_tx_queue *) * nb_queues,
|
|
CACHE_LINE_SIZE);
|
|
if (txq == NULL)
|
|
return -ENOMEM;
|
|
else
|
|
dev->data->tx_queues = txq;
|
|
if (nb_queues > old_nb_queues)
|
|
memset(&(txq[old_nb_queues]), 0,
|
|
sizeof(struct igb_tx_queue *) *
|
|
(nb_queues - old_nb_queues));
|
|
}
|
|
}
|
|
dev->data->nb_tx_queues = nb_queues;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
|
|
{
|
|
txq->tx_head = 0;
|
|
txq->tx_tail = 0;
|
|
txq->ctx_curr = 0;
|
|
memset((void*)&txq->ctx_cache, 0,
|
|
IGB_CTX_NUM * sizeof(struct igb_advctx_info));
|
|
}
|
|
|
|
static void
|
|
igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
|
|
{
|
|
struct igb_tx_entry *txe = txq->sw_ring;
|
|
uint32_t size;
|
|
uint16_t i, prev;
|
|
struct e1000_hw *hw;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
size = sizeof(union e1000_adv_tx_desc) * txq->nb_tx_desc;
|
|
/* Zero out HW ring memory */
|
|
for (i = 0; i < size; i++) {
|
|
((volatile char *)txq->tx_ring)[i] = 0;
|
|
}
|
|
|
|
/* Initialize ring entries */
|
|
prev = txq->nb_tx_desc - 1;
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
|
|
|
|
txd->wb.status = E1000_TXD_STAT_DD;
|
|
txe[i].mbuf = NULL;
|
|
txe[i].last_id = i;
|
|
txe[prev].next_id = i;
|
|
prev = i;
|
|
}
|
|
|
|
txq->txd_type = E1000_ADVTXD_DTYP_DATA;
|
|
/* 82575 specific, each tx queue will use 2 hw contexts */
|
|
if (hw->mac.type == e1000_82575)
|
|
txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
|
|
|
|
igb_reset_tx_queue_stat(txq);
|
|
}
|
|
|
|
int
|
|
eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
const struct rte_memzone *tz;
|
|
struct igb_tx_queue *txq;
|
|
struct e1000_hw *hw;
|
|
uint32_t size;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/*
|
|
* Validate number of transmit descriptors.
|
|
* It must not exceed hardware maximum, and must be multiple
|
|
* of IGB_ALIGN.
|
|
*/
|
|
if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
|
|
(nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* The tx_free_thresh and tx_rs_thresh values are not used in the 1G
|
|
* driver.
|
|
*/
|
|
if (tx_conf->tx_free_thresh != 0)
|
|
RTE_LOG(WARNING, PMD,
|
|
"The tx_free_thresh parameter is not "
|
|
"used for the 1G driver.");
|
|
if (tx_conf->tx_rs_thresh != 0)
|
|
RTE_LOG(WARNING, PMD,
|
|
"The tx_rs_thresh parameter is not "
|
|
"used for the 1G driver.");
|
|
if (tx_conf->tx_thresh.wthresh == 0)
|
|
RTE_LOG(WARNING, PMD,
|
|
"To improve 1G driver performance, consider setting "
|
|
"the TX WTHRESH value to 4, 8, or 16.");
|
|
|
|
/* Free memory prior to re-allocation if needed */
|
|
if (dev->data->tx_queues[queue_idx] != NULL)
|
|
igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
|
|
|
|
/* First allocate the tx queue data structure */
|
|
txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
|
|
CACHE_LINE_SIZE);
|
|
if (txq == NULL)
|
|
return (-ENOMEM);
|
|
|
|
/*
|
|
* Allocate TX ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
|
|
tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
|
|
size, socket_id);
|
|
if (tz == NULL) {
|
|
igb_tx_queue_release(txq);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
txq->nb_tx_desc = nb_desc;
|
|
txq->pthresh = tx_conf->tx_thresh.pthresh;
|
|
txq->hthresh = tx_conf->tx_thresh.hthresh;
|
|
txq->wthresh = tx_conf->tx_thresh.wthresh;
|
|
txq->queue_id = queue_idx;
|
|
txq->port_id = dev->data->port_id;
|
|
|
|
txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
|
|
txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
|
|
txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
|
|
|
|
size = sizeof(union e1000_adv_tx_desc) * nb_desc;
|
|
|
|
/* Allocate software ring */
|
|
txq->sw_ring = rte_zmalloc("txq->sw_ring",
|
|
sizeof(struct igb_tx_entry) * nb_desc,
|
|
CACHE_LINE_SIZE);
|
|
if (txq->sw_ring == NULL) {
|
|
igb_tx_queue_release(txq);
|
|
return (-ENOMEM);
|
|
}
|
|
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
|
|
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
|
|
|
|
igb_reset_tx_queue(txq, dev);
|
|
dev->tx_pkt_burst = eth_igb_xmit_pkts;
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
|
|
{
|
|
unsigned i;
|
|
|
|
if (rxq->sw_ring != NULL) {
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
|
|
rxq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
igb_rx_queue_release(struct igb_rx_queue *rxq)
|
|
{
|
|
igb_rx_queue_release_mbufs(rxq);
|
|
rte_free(rxq->sw_ring);
|
|
rte_free(rxq);
|
|
}
|
|
|
|
int
|
|
igb_dev_rx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues)
|
|
{
|
|
uint16_t i, old_nb_queues = dev->data->nb_rx_queues;
|
|
struct igb_rx_queue **rxq;
|
|
|
|
if (dev->data->rx_queues == NULL) {
|
|
dev->data->rx_queues = rte_zmalloc("ethdev->rx_queues",
|
|
sizeof(struct igb_rx_queue *) * nb_queues,
|
|
CACHE_LINE_SIZE);
|
|
if (dev->data->rx_queues == NULL) {
|
|
dev->data->nb_rx_queues = 0;
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
for (i = nb_queues; i < old_nb_queues; i++) {
|
|
igb_rx_queue_release(dev->data->rx_queues[i]);
|
|
dev->data->rx_queues[i] = NULL;
|
|
}
|
|
if (nb_queues != old_nb_queues) {
|
|
rxq = rte_realloc(dev->data->rx_queues,
|
|
sizeof(struct igb_rx_queue *) * nb_queues,
|
|
CACHE_LINE_SIZE);
|
|
if (rxq == NULL)
|
|
return -ENOMEM;
|
|
else
|
|
dev->data->rx_queues = rxq;
|
|
if (nb_queues > old_nb_queues)
|
|
memset(&(rxq[old_nb_queues]), 0,
|
|
sizeof(struct igb_rx_queue *) *
|
|
(nb_queues - old_nb_queues));
|
|
}
|
|
}
|
|
dev->data->nb_rx_queues = nb_queues;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
igb_reset_rx_queue(struct igb_rx_queue *rxq)
|
|
{
|
|
unsigned size;
|
|
unsigned i;
|
|
|
|
/* Zero out HW ring memory */
|
|
size = sizeof(union e1000_adv_rx_desc) * rxq->nb_rx_desc;
|
|
for (i = 0; i < size; i++) {
|
|
((volatile char *)rxq->rx_ring)[i] = 0;
|
|
}
|
|
|
|
rxq->rx_tail = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
}
|
|
|
|
int
|
|
eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
const struct rte_memzone *rz;
|
|
struct igb_rx_queue *rxq;
|
|
struct e1000_hw *hw;
|
|
unsigned int size;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/*
|
|
* Validate number of receive descriptors.
|
|
* It must not exceed hardware maximum, and must be multiple
|
|
* of IGB_ALIGN.
|
|
*/
|
|
if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
|
|
(nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
|
|
return (-EINVAL);
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed */
|
|
if (dev->data->rx_queues[queue_idx] != NULL) {
|
|
igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
|
|
dev->data->rx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* First allocate the RX queue data structure. */
|
|
rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
|
|
CACHE_LINE_SIZE);
|
|
if (rxq == NULL)
|
|
return (-ENOMEM);
|
|
rxq->mb_pool = mp;
|
|
rxq->nb_rx_desc = nb_desc;
|
|
rxq->pthresh = rx_conf->rx_thresh.pthresh;
|
|
rxq->hthresh = rx_conf->rx_thresh.hthresh;
|
|
rxq->wthresh = rx_conf->rx_thresh.wthresh;
|
|
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
|
|
rxq->queue_id = queue_idx;
|
|
rxq->port_id = dev->data->port_id;
|
|
rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
|
|
ETHER_CRC_LEN);
|
|
|
|
/*
|
|
* Allocate RX ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
|
|
rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
|
|
if (rz == NULL) {
|
|
igb_rx_queue_release(rxq);
|
|
return (-ENOMEM);
|
|
}
|
|
rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
|
|
rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
|
|
rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
|
|
|
|
/* Allocate software ring. */
|
|
rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
|
|
sizeof(struct igb_rx_entry) * nb_desc,
|
|
CACHE_LINE_SIZE);
|
|
if (rxq->sw_ring == NULL) {
|
|
igb_rx_queue_release(rxq);
|
|
return (-ENOMEM);
|
|
}
|
|
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
|
|
rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
|
|
|
|
dev->data->rx_queues[queue_idx] = rxq;
|
|
igb_reset_rx_queue(rxq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
igb_dev_clear_queues(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
struct igb_tx_queue *txq;
|
|
struct igb_rx_queue *rxq;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
igb_tx_queue_release_mbufs(txq);
|
|
igb_reset_tx_queue(txq, dev);
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
igb_rx_queue_release_mbufs(rxq);
|
|
igb_reset_rx_queue(rxq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Receive Side Scaling (RSS).
|
|
* See section 7.1.1.7 in the following document:
|
|
* "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
|
|
*
|
|
* Principles:
|
|
* The source and destination IP addresses of the IP header and the source and
|
|
* destination ports of TCP/UDP headers, if any, of received packets are hashed
|
|
* against a configurable random key to compute a 32-bit RSS hash result.
|
|
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
|
|
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
|
|
* RSS output index which is used as the RX queue index where to store the
|
|
* received packets.
|
|
* The following output is supplied in the RX write-back descriptor:
|
|
* - 32-bit result of the Microsoft RSS hash function,
|
|
* - 4-bit RSS type field.
|
|
*/
|
|
|
|
/*
|
|
* RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
|
|
* Used as the default key.
|
|
*/
|
|
static uint8_t rss_intel_key[40] = {
|
|
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
|
|
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
|
|
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
|
|
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
|
|
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
|
|
};
|
|
|
|
static void
|
|
igb_rss_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
uint32_t mrqc;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
mrqc = E1000_READ_REG(hw, E1000_MRQC);
|
|
mrqc &= ~E1000_MRQC_ENABLE_MASK;
|
|
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
|
|
}
|
|
|
|
static void
|
|
igb_rss_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
uint8_t *hash_key;
|
|
uint32_t rss_key;
|
|
uint32_t mrqc;
|
|
uint32_t shift;
|
|
uint16_t rss_hf;
|
|
uint16_t i;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
rss_hf = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
|
|
if (rss_hf == 0) /* Disable RSS. */ {
|
|
igb_rss_disable(dev);
|
|
return;
|
|
}
|
|
hash_key = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key;
|
|
if (hash_key == NULL)
|
|
hash_key = rss_intel_key; /* Default hash key. */
|
|
|
|
/* Fill in RSS hash key. */
|
|
for (i = 0; i < 10; i++) {
|
|
rss_key = hash_key[(i * 4)];
|
|
rss_key |= hash_key[(i * 4) + 1] << 8;
|
|
rss_key |= hash_key[(i * 4) + 2] << 16;
|
|
rss_key |= hash_key[(i * 4) + 3] << 24;
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
|
|
}
|
|
|
|
/* Fill in redirection table. */
|
|
shift = (hw->mac.type == e1000_82575) ? 6 : 0;
|
|
for (i = 0; i < 128; i++) {
|
|
union e1000_reta {
|
|
uint32_t dword;
|
|
uint8_t bytes[4];
|
|
} reta;
|
|
uint8_t q_idx;
|
|
|
|
q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
|
|
i % dev->data->nb_rx_queues : 0);
|
|
reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
|
|
if ((i & 3) == 3)
|
|
E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
|
|
}
|
|
|
|
/* Set configured hashing functions in MRQC register. */
|
|
mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
|
|
if (rss_hf & ETH_RSS_IPV4)
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
|
|
if (rss_hf & ETH_RSS_IPV4_TCP)
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
|
|
if (rss_hf & ETH_RSS_IPV6)
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
|
|
if (rss_hf & ETH_RSS_IPV6_EX)
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
|
|
if (rss_hf & ETH_RSS_IPV6_TCP)
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
|
|
if (rss_hf & ETH_RSS_IPV6_TCP_EX)
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
|
|
if (rss_hf & ETH_RSS_IPV4_UDP)
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
|
|
if (rss_hf & ETH_RSS_IPV6_UDP)
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
|
|
if (rss_hf & ETH_RSS_IPV6_UDP_EX)
|
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
|
|
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable receive unit.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
|
|
{
|
|
struct igb_rx_entry *rxe = rxq->sw_ring;
|
|
uint64_t dma_addr;
|
|
unsigned i;
|
|
|
|
/* Initialize software ring entries. */
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
volatile union e1000_adv_rx_desc *rxd;
|
|
struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
|
|
|
|
if (mbuf == NULL) {
|
|
PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
|
|
"queue_id=%hu\n", rxq->queue_id);
|
|
igb_rx_queue_release(rxq);
|
|
return (-ENOMEM);
|
|
}
|
|
dma_addr =
|
|
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
|
|
rxd = &rxq->rx_ring[i];
|
|
rxd->read.hdr_addr = dma_addr;
|
|
rxd->read.pkt_addr = dma_addr;
|
|
rxe[i].mbuf = mbuf;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
eth_igb_rx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
struct igb_rx_queue *rxq;
|
|
struct rte_pktmbuf_pool_private *mbp_priv;
|
|
uint32_t rctl;
|
|
uint32_t rxcsum;
|
|
uint32_t srrctl;
|
|
uint16_t buf_size;
|
|
uint16_t rctl_bsize;
|
|
uint16_t i;
|
|
int ret;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
srrctl = 0;
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the descriptor ring.
|
|
*/
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
|
|
/*
|
|
* Configure support of jumbo frames, if any.
|
|
*/
|
|
if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
|
|
rctl |= E1000_RCTL_LPE;
|
|
|
|
/* Set maximum packet length. */
|
|
E1000_WRITE_REG(hw, E1000_RLPML,
|
|
dev->data->dev_conf.rxmode.max_rx_pkt_len);
|
|
} else
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
|
|
/* Configure and enable each RX queue. */
|
|
rctl_bsize = 0;
|
|
dev->rx_pkt_burst = eth_igb_recv_pkts;
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
uint64_t bus_addr;
|
|
uint32_t rxdctl;
|
|
|
|
rxq = dev->data->rx_queues[i];
|
|
|
|
/* Allocate buffers for descriptor rings and set up queue */
|
|
ret = igb_alloc_rx_queue_mbufs(rxq);
|
|
if (ret) {
|
|
igb_dev_clear_queues(dev);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Reset crc_len in case it was changed after queue setup by a
|
|
* call to configure
|
|
*/
|
|
rxq->crc_len =
|
|
(uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
|
|
0 : ETHER_CRC_LEN);
|
|
|
|
bus_addr = rxq->rx_ring_phys_addr;
|
|
E1000_WRITE_REG(hw, E1000_RDLEN(i),
|
|
rxq->nb_rx_desc *
|
|
sizeof(union e1000_adv_rx_desc));
|
|
E1000_WRITE_REG(hw, E1000_RDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
|
|
|
|
srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
|
|
|
|
/*
|
|
* Configure RX buffer size.
|
|
*/
|
|
mbp_priv = (struct rte_pktmbuf_pool_private *)
|
|
((char *)rxq->mb_pool + sizeof(struct rte_mempool));
|
|
buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
if (buf_size >= 1024) {
|
|
/*
|
|
* Configure the BSIZEPACKET field of the SRRCTL
|
|
* register of the queue.
|
|
* Value is in 1 KB resolution, from 1 KB to 127 KB.
|
|
* If this field is equal to 0b, then RCTL.BSIZE
|
|
* determines the RX packet buffer size.
|
|
*/
|
|
srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
|
|
E1000_SRRCTL_BSIZEPKT_MASK);
|
|
buf_size = (uint16_t) ((srrctl &
|
|
E1000_SRRCTL_BSIZEPKT_MASK) <<
|
|
E1000_SRRCTL_BSIZEPKT_SHIFT);
|
|
|
|
if (dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size){
|
|
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
|
|
dev->data->scattered_rx = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* Use BSIZE field of the device RCTL register.
|
|
*/
|
|
if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
|
|
rctl_bsize = buf_size;
|
|
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
|
|
dev->data->scattered_rx = 1;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
|
|
|
|
/* Enable this RX queue. */
|
|
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
|
|
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
|
|
rxdctl &= 0xFFF00000;
|
|
rxdctl |= (rxq->pthresh & 0x1F);
|
|
rxdctl |= ((rxq->hthresh & 0x1F) << 8);
|
|
rxdctl |= ((rxq->wthresh & 0x1F) << 16);
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
|
|
}
|
|
|
|
/*
|
|
* Setup BSIZE field of RCTL register, if needed.
|
|
* Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
|
|
* register, since the code above configures the SRRCTL register of
|
|
* the RX queue in such a case.
|
|
* All configurable sizes are:
|
|
* 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
|
|
* 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
|
|
* 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
|
|
* 2048: rctl |= E1000_RCTL_SZ_2048;
|
|
* 1024: rctl |= E1000_RCTL_SZ_1024;
|
|
* 512: rctl |= E1000_RCTL_SZ_512;
|
|
* 256: rctl |= E1000_RCTL_SZ_256;
|
|
*/
|
|
if (rctl_bsize > 0) {
|
|
if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
|
|
rctl |= E1000_RCTL_SZ_512;
|
|
else /* 256 <= buf_size < 512 - use 256 */
|
|
rctl |= E1000_RCTL_SZ_256;
|
|
}
|
|
|
|
/*
|
|
* Configure RSS if device configured with multiple RX queues.
|
|
*/
|
|
if (dev->data->nb_rx_queues > 1)
|
|
igb_rss_configure(dev);
|
|
else
|
|
igb_rss_disable(dev);
|
|
|
|
/*
|
|
* Setup the Checksum Register.
|
|
* Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
|
|
*/
|
|
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
|
|
rxcsum |= E1000_RXCSUM_PCSD;
|
|
|
|
/* Enable both L3/L4 rx checksum offload */
|
|
if (dev->data->dev_conf.rxmode.hw_ip_checksum)
|
|
rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
|
|
else
|
|
rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
|
|
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
|
|
|
|
/* Setup the Receive Control Register. */
|
|
if (dev->data->dev_conf.rxmode.hw_strip_crc) {
|
|
rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
|
|
|
|
/* set STRCRC bit in all queues for Powerville */
|
|
if (hw->mac.type == e1000_i350) {
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
uint32_t dvmolr = E1000_READ_REG(hw, E1000_DVMOLR(i));
|
|
dvmolr |= E1000_DVMOLR_STRCRC;
|
|
E1000_WRITE_REG(hw, E1000_DVMOLR(i), dvmolr);
|
|
}
|
|
}
|
|
|
|
} else {
|
|
rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
|
|
|
|
/* clear STRCRC bit in all queues for Powerville */
|
|
if (hw->mac.type == e1000_i350) {
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
uint32_t dvmolr = E1000_READ_REG(hw, E1000_DVMOLR(i));
|
|
dvmolr &= ~E1000_DVMOLR_STRCRC;
|
|
E1000_WRITE_REG(hw, E1000_DVMOLR(i), dvmolr);
|
|
}
|
|
}
|
|
}
|
|
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
|
|
E1000_RCTL_RDMTS_HALF |
|
|
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
/* Make sure VLAN Filters are off. */
|
|
rctl &= ~E1000_RCTL_VFE;
|
|
/* Don't store bad packets. */
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
|
|
/* Enable Receives. */
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
|
|
/*
|
|
* Setup the HW Rx Head and Tail Descriptor Pointers.
|
|
* This needs to be done after enable.
|
|
*/
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
|
|
E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable transmit unit.
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
eth_igb_tx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
struct igb_tx_queue *txq;
|
|
uint32_t tctl;
|
|
uint32_t txdctl;
|
|
uint16_t i;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* Setup the Base and Length of the Tx Descriptor Rings. */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
uint64_t bus_addr;
|
|
txq = dev->data->tx_queues[i];
|
|
bus_addr = txq->tx_ring_phys_addr;
|
|
|
|
E1000_WRITE_REG(hw, E1000_TDLEN(i),
|
|
txq->nb_tx_desc *
|
|
sizeof(union e1000_adv_tx_desc));
|
|
E1000_WRITE_REG(hw, E1000_TDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
|
|
|
|
/* Setup the HW Tx Head and Tail descriptor pointers. */
|
|
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
|
|
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
|
|
|
|
/* Setup Transmit threshold registers. */
|
|
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
|
|
txdctl |= txq->pthresh & 0x1F;
|
|
txdctl |= ((txq->hthresh & 0x1F) << 8);
|
|
txdctl |= ((txq->wthresh & 0x1F) << 16);
|
|
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
|
|
}
|
|
|
|
/* Program the Transmit Control Register. */
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
|
|
|
|
e1000_config_collision_dist(hw);
|
|
|
|
/* This write will effectively turn on the transmit unit. */
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
|
|
}
|
|
|