ff909fe21f
Implement rte_memzone_free which, as its name implies, would free a memzone. Currently memzone are tracked in an array and cannot be free. To be able to reuse the same array to track memzones, we have to change how we keep track of reserved memzones. With this patch, any memzone with addr NULL is not used, so we also need to change how we look for the next memzone entry free. Add new unit test for rte_memzone_free API. Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
880 lines
24 KiB
C
880 lines
24 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_random.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_common.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_malloc.h>
|
|
#include "../../lib/librte_eal/common/malloc_elem.h"
|
|
|
|
#include "test.h"
|
|
|
|
/*
|
|
* Memzone
|
|
* =======
|
|
*
|
|
* - Search for three reserved zones or reserve them if they do not exist:
|
|
*
|
|
* - One is on any socket id.
|
|
* - The second is on socket 0.
|
|
* - The last one is on socket 1 (if socket 1 exists).
|
|
*
|
|
* - Check that the zones exist.
|
|
*
|
|
* - Check that the zones are cache-aligned.
|
|
*
|
|
* - Check that zones do not overlap.
|
|
*
|
|
* - Check that the zones are on the correct socket id.
|
|
*
|
|
* - Check that a lookup of the first zone returns the same pointer.
|
|
*
|
|
* - Check that it is not possible to create another zone with the
|
|
* same name as an existing zone.
|
|
*
|
|
* - Check flags for specific huge page size reservation
|
|
*/
|
|
|
|
/* Test if memory overlaps: return 1 if true, or 0 if false. */
|
|
static int
|
|
is_memory_overlap(phys_addr_t ptr1, size_t len1, phys_addr_t ptr2, size_t len2)
|
|
{
|
|
if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1)
|
|
return 1;
|
|
else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_memzone_invalid_alignment(void)
|
|
{
|
|
const struct rte_memzone * mz;
|
|
|
|
mz = rte_memzone_lookup("invalid_alignment");
|
|
if (mz != NULL) {
|
|
printf("Zone with invalid alignment has been reserved\n");
|
|
return -1;
|
|
}
|
|
|
|
mz = rte_memzone_reserve_aligned("invalid_alignment", 100,
|
|
SOCKET_ID_ANY, 0, 100);
|
|
if (mz != NULL) {
|
|
printf("Zone with invalid alignment has been reserved\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_memzone_reserving_zone_size_bigger_than_the_maximum(void)
|
|
{
|
|
const struct rte_memzone * mz;
|
|
|
|
mz = rte_memzone_lookup("zone_size_bigger_than_the_maximum");
|
|
if (mz != NULL) {
|
|
printf("zone_size_bigger_than_the_maximum has been reserved\n");
|
|
return -1;
|
|
}
|
|
|
|
mz = rte_memzone_reserve("zone_size_bigger_than_the_maximum", (size_t)-1,
|
|
SOCKET_ID_ANY, 0);
|
|
if (mz != NULL) {
|
|
printf("It is impossible to reserve such big a memzone\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_memzone_reserve_flags(void)
|
|
{
|
|
const struct rte_memzone *mz;
|
|
const struct rte_memseg *ms;
|
|
int hugepage_2MB_avail = 0;
|
|
int hugepage_1GB_avail = 0;
|
|
int hugepage_16MB_avail = 0;
|
|
int hugepage_16GB_avail = 0;
|
|
const size_t size = 100;
|
|
int i = 0;
|
|
ms = rte_eal_get_physmem_layout();
|
|
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
|
|
if (ms[i].hugepage_sz == RTE_PGSIZE_2M)
|
|
hugepage_2MB_avail = 1;
|
|
if (ms[i].hugepage_sz == RTE_PGSIZE_1G)
|
|
hugepage_1GB_avail = 1;
|
|
if (ms[i].hugepage_sz == RTE_PGSIZE_16M)
|
|
hugepage_16MB_avail = 1;
|
|
if (ms[i].hugepage_sz == RTE_PGSIZE_16G)
|
|
hugepage_16GB_avail = 1;
|
|
}
|
|
/* Display the availability of 2MB ,1GB, 16MB, 16GB pages */
|
|
if (hugepage_2MB_avail)
|
|
printf("2MB Huge pages available\n");
|
|
if (hugepage_1GB_avail)
|
|
printf("1GB Huge pages available\n");
|
|
if (hugepage_16MB_avail)
|
|
printf("16MB Huge pages available\n");
|
|
if (hugepage_16GB_avail)
|
|
printf("16GB Huge pages available\n");
|
|
/*
|
|
* If 2MB pages available, check that a small memzone is correctly
|
|
* reserved from 2MB huge pages when requested by the RTE_MEMZONE_2MB flag.
|
|
* Also check that RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an
|
|
* available page size (i.e 1GB ) when 2MB pages are unavailable.
|
|
*/
|
|
if (hugepage_2MB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_2MB);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 2MB\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
|
|
printf("hugepage_sz not equal 2M\n");
|
|
return -1;
|
|
}
|
|
|
|
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 2MB\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
|
|
printf("hugepage_sz not equal 2M\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Check if 1GB huge pages are unavailable, that function fails unless
|
|
* HINT flag is indicated
|
|
*/
|
|
if (!hugepage_1GB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 1GB & HINT\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
|
|
printf("hugepage_sz not equal 2M\n");
|
|
return -1;
|
|
}
|
|
|
|
mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_1GB);
|
|
if (mz != NULL) {
|
|
printf("MEMZONE FLAG 1GB\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*As with 2MB tests above for 1GB huge page requests*/
|
|
if (hugepage_1GB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_1GB);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 1GB\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
|
|
printf("hugepage_sz not equal 1G\n");
|
|
return -1;
|
|
}
|
|
|
|
mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 1GB\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
|
|
printf("hugepage_sz not equal 1G\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Check if 1GB huge pages are unavailable, that function fails unless
|
|
* HINT flag is indicated
|
|
*/
|
|
if (!hugepage_2MB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
|
|
if (mz == NULL){
|
|
printf("MEMZONE FLAG 2MB & HINT\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
|
|
printf("hugepage_sz not equal 1G\n");
|
|
return -1;
|
|
}
|
|
mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_2MB);
|
|
if (mz != NULL) {
|
|
printf("MEMZONE FLAG 2MB\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (hugepage_2MB_avail && hugepage_1GB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_2MB|RTE_MEMZONE_1GB);
|
|
if (mz != NULL) {
|
|
printf("BOTH SIZES SET\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* This option is for IBM Power. If 16MB pages available, check
|
|
* that a small memzone is correctly reserved from 16MB huge pages
|
|
* when requested by the RTE_MEMZONE_16MB flag. Also check that
|
|
* RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an available
|
|
* page size (i.e 16GB ) when 16MB pages are unavailable.
|
|
*/
|
|
if (hugepage_16MB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_16M", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_16MB);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 16MB\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
|
|
printf("hugepage_sz not equal 16M\n");
|
|
return -1;
|
|
}
|
|
|
|
mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
|
|
SOCKET_ID_ANY, RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 2MB\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
|
|
printf("hugepage_sz not equal 16M\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Check if 1GB huge pages are unavailable, that function fails
|
|
* unless HINT flag is indicated
|
|
*/
|
|
if (!hugepage_16GB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_16G_HINT", size,
|
|
SOCKET_ID_ANY,
|
|
RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 16GB & HINT\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
|
|
printf("hugepage_sz not equal 16M\n");
|
|
return -1;
|
|
}
|
|
|
|
mz = rte_memzone_reserve("flag_zone_16G", size,
|
|
SOCKET_ID_ANY, RTE_MEMZONE_16GB);
|
|
if (mz != NULL) {
|
|
printf("MEMZONE FLAG 16GB\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
/*As with 16MB tests above for 16GB huge page requests*/
|
|
if (hugepage_16GB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_16G", size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_16GB);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 16GB\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
|
|
printf("hugepage_sz not equal 16G\n");
|
|
return -1;
|
|
}
|
|
|
|
mz = rte_memzone_reserve("flag_zone_16G_HINT", size,
|
|
SOCKET_ID_ANY, RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 16GB\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
|
|
printf("hugepage_sz not equal 16G\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Check if 1GB huge pages are unavailable, that function fails
|
|
* unless HINT flag is indicated
|
|
*/
|
|
if (!hugepage_16MB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
|
|
SOCKET_ID_ANY,
|
|
RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY);
|
|
if (mz == NULL) {
|
|
printf("MEMZONE FLAG 16MB & HINT\n");
|
|
return -1;
|
|
}
|
|
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
|
|
printf("hugepage_sz not equal 16G\n");
|
|
return -1;
|
|
}
|
|
mz = rte_memzone_reserve("flag_zone_16M", size,
|
|
SOCKET_ID_ANY, RTE_MEMZONE_16MB);
|
|
if (mz != NULL) {
|
|
printf("MEMZONE FLAG 16MB\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (hugepage_16MB_avail && hugepage_16GB_avail) {
|
|
mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
|
|
SOCKET_ID_ANY,
|
|
RTE_MEMZONE_16MB|RTE_MEMZONE_16GB);
|
|
if (mz != NULL) {
|
|
printf("BOTH SIZES SET\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Find the heap with the greatest free block size */
|
|
static size_t
|
|
find_max_block_free_size(const unsigned _align)
|
|
{
|
|
struct rte_malloc_socket_stats stats;
|
|
unsigned i, align = _align;
|
|
size_t len = 0;
|
|
|
|
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
|
|
rte_malloc_get_socket_stats(i, &stats);
|
|
if (stats.greatest_free_size > len)
|
|
len = stats.greatest_free_size;
|
|
}
|
|
|
|
if (align < RTE_CACHE_LINE_SIZE)
|
|
align = RTE_CACHE_LINE_ROUNDUP(align+1);
|
|
|
|
if (len <= MALLOC_ELEM_OVERHEAD + align)
|
|
return 0;
|
|
|
|
return len - MALLOC_ELEM_OVERHEAD - align;
|
|
}
|
|
|
|
static int
|
|
test_memzone_reserve_max(void)
|
|
{
|
|
const struct rte_memzone *mz;
|
|
size_t maxlen;
|
|
|
|
maxlen = find_max_block_free_size(0);
|
|
|
|
if (maxlen == 0) {
|
|
printf("There is no space left!\n");
|
|
return 0;
|
|
}
|
|
|
|
mz = rte_memzone_reserve("max_zone", 0, SOCKET_ID_ANY, 0);
|
|
if (mz == NULL){
|
|
printf("Failed to reserve a big chunk of memory - %s\n",
|
|
rte_strerror(rte_errno));
|
|
rte_dump_physmem_layout(stdout);
|
|
rte_memzone_dump(stdout);
|
|
return -1;
|
|
}
|
|
|
|
if (mz->len != maxlen) {
|
|
printf("Memzone reserve with 0 size did not return bigest block\n");
|
|
printf("Expected size = %zu, actual size = %zu\n", maxlen, mz->len);
|
|
rte_dump_physmem_layout(stdout);
|
|
rte_memzone_dump(stdout);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_memzone_reserve_max_aligned(void)
|
|
{
|
|
const struct rte_memzone *mz;
|
|
size_t maxlen = 0;
|
|
|
|
/* random alignment */
|
|
rte_srand((unsigned)rte_rdtsc());
|
|
const unsigned align = 1 << ((rte_rand() % 8) + 5); /* from 128 up to 4k alignment */
|
|
|
|
maxlen = find_max_block_free_size(align);
|
|
|
|
if (maxlen == 0) {
|
|
printf("There is no space left for biggest %u-aligned memzone!\n", align);
|
|
return 0;
|
|
}
|
|
|
|
mz = rte_memzone_reserve_aligned("max_zone_aligned", 0,
|
|
SOCKET_ID_ANY, 0, align);
|
|
if (mz == NULL){
|
|
printf("Failed to reserve a big chunk of memory - %s\n",
|
|
rte_strerror(rte_errno));
|
|
rte_dump_physmem_layout(stdout);
|
|
rte_memzone_dump(stdout);
|
|
return -1;
|
|
}
|
|
|
|
if (mz->len != maxlen) {
|
|
printf("Memzone reserve with 0 size and alignment %u did not return"
|
|
" bigest block\n", align);
|
|
printf("Expected size = %zu, actual size = %zu\n",
|
|
maxlen, mz->len);
|
|
rte_dump_physmem_layout(stdout);
|
|
rte_memzone_dump(stdout);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_memzone_aligned(void)
|
|
{
|
|
const struct rte_memzone *memzone_aligned_32;
|
|
const struct rte_memzone *memzone_aligned_128;
|
|
const struct rte_memzone *memzone_aligned_256;
|
|
const struct rte_memzone *memzone_aligned_512;
|
|
const struct rte_memzone *memzone_aligned_1024;
|
|
|
|
/* memzone that should automatically be adjusted to align on 64 bytes */
|
|
memzone_aligned_32 = rte_memzone_reserve_aligned("aligned_32", 100,
|
|
SOCKET_ID_ANY, 0, 32);
|
|
|
|
/* memzone that is supposed to be aligned on a 128 byte boundary */
|
|
memzone_aligned_128 = rte_memzone_reserve_aligned("aligned_128", 100,
|
|
SOCKET_ID_ANY, 0, 128);
|
|
|
|
/* memzone that is supposed to be aligned on a 256 byte boundary */
|
|
memzone_aligned_256 = rte_memzone_reserve_aligned("aligned_256", 100,
|
|
SOCKET_ID_ANY, 0, 256);
|
|
|
|
/* memzone that is supposed to be aligned on a 512 byte boundary */
|
|
memzone_aligned_512 = rte_memzone_reserve_aligned("aligned_512", 100,
|
|
SOCKET_ID_ANY, 0, 512);
|
|
|
|
/* memzone that is supposed to be aligned on a 1024 byte boundary */
|
|
memzone_aligned_1024 = rte_memzone_reserve_aligned("aligned_1024", 100,
|
|
SOCKET_ID_ANY, 0, 1024);
|
|
|
|
printf("check alignments and lengths\n");
|
|
if (memzone_aligned_32 == NULL) {
|
|
printf("Unable to reserve 64-byte aligned memzone!\n");
|
|
return -1;
|
|
}
|
|
if ((memzone_aligned_32->phys_addr & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
if (((uintptr_t) memzone_aligned_32->addr & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
if ((memzone_aligned_32->len & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
|
|
if (memzone_aligned_128 == NULL) {
|
|
printf("Unable to reserve 128-byte aligned memzone!\n");
|
|
return -1;
|
|
}
|
|
if ((memzone_aligned_128->phys_addr & 127) != 0)
|
|
return -1;
|
|
if (((uintptr_t) memzone_aligned_128->addr & 127) != 0)
|
|
return -1;
|
|
if ((memzone_aligned_128->len & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
|
|
if (memzone_aligned_256 == NULL) {
|
|
printf("Unable to reserve 256-byte aligned memzone!\n");
|
|
return -1;
|
|
}
|
|
if ((memzone_aligned_256->phys_addr & 255) != 0)
|
|
return -1;
|
|
if (((uintptr_t) memzone_aligned_256->addr & 255) != 0)
|
|
return -1;
|
|
if ((memzone_aligned_256->len & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
|
|
if (memzone_aligned_512 == NULL) {
|
|
printf("Unable to reserve 512-byte aligned memzone!\n");
|
|
return -1;
|
|
}
|
|
if ((memzone_aligned_512->phys_addr & 511) != 0)
|
|
return -1;
|
|
if (((uintptr_t) memzone_aligned_512->addr & 511) != 0)
|
|
return -1;
|
|
if ((memzone_aligned_512->len & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
|
|
if (memzone_aligned_1024 == NULL) {
|
|
printf("Unable to reserve 1024-byte aligned memzone!\n");
|
|
return -1;
|
|
}
|
|
if ((memzone_aligned_1024->phys_addr & 1023) != 0)
|
|
return -1;
|
|
if (((uintptr_t) memzone_aligned_1024->addr & 1023) != 0)
|
|
return -1;
|
|
if ((memzone_aligned_1024->len & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
|
|
/* check that zones don't overlap */
|
|
printf("check overlapping\n");
|
|
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
|
|
memzone_aligned_128->phys_addr, memzone_aligned_128->len))
|
|
return -1;
|
|
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
|
|
memzone_aligned_256->phys_addr, memzone_aligned_256->len))
|
|
return -1;
|
|
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
|
|
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
|
|
return -1;
|
|
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
|
|
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
|
|
return -1;
|
|
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
|
|
memzone_aligned_256->phys_addr, memzone_aligned_256->len))
|
|
return -1;
|
|
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
|
|
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
|
|
return -1;
|
|
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
|
|
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
|
|
return -1;
|
|
if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
|
|
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
|
|
return -1;
|
|
if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
|
|
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
|
|
return -1;
|
|
if (is_memory_overlap(memzone_aligned_512->phys_addr, memzone_aligned_512->len,
|
|
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
check_memzone_bounded(const char *name, uint32_t len, uint32_t align,
|
|
uint32_t bound)
|
|
{
|
|
const struct rte_memzone *mz;
|
|
phys_addr_t bmask;
|
|
|
|
bmask = ~((phys_addr_t)bound - 1);
|
|
|
|
if ((mz = rte_memzone_reserve_bounded(name, len, SOCKET_ID_ANY, 0,
|
|
align, bound)) == NULL) {
|
|
printf("%s(%s): memzone creation failed\n",
|
|
__func__, name);
|
|
return (-1);
|
|
}
|
|
|
|
if ((mz->phys_addr & ((phys_addr_t)align - 1)) != 0) {
|
|
printf("%s(%s): invalid phys addr alignment\n",
|
|
__func__, mz->name);
|
|
return (-1);
|
|
}
|
|
|
|
if (((uintptr_t) mz->addr & ((uintptr_t)align - 1)) != 0) {
|
|
printf("%s(%s): invalid virtual addr alignment\n",
|
|
__func__, mz->name);
|
|
return (-1);
|
|
}
|
|
|
|
if ((mz->len & RTE_CACHE_LINE_MASK) != 0 || mz->len < len ||
|
|
mz->len < RTE_CACHE_LINE_SIZE) {
|
|
printf("%s(%s): invalid length\n",
|
|
__func__, mz->name);
|
|
return (-1);
|
|
}
|
|
|
|
if ((mz->phys_addr & bmask) !=
|
|
((mz->phys_addr + mz->len - 1) & bmask)) {
|
|
printf("%s(%s): invalid memzone boundary %u crossed\n",
|
|
__func__, mz->name, bound);
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
test_memzone_bounded(void)
|
|
{
|
|
const struct rte_memzone *memzone_err;
|
|
const char *name;
|
|
int rc;
|
|
|
|
/* should fail as boundary is not power of two */
|
|
name = "bounded_error_31";
|
|
if ((memzone_err = rte_memzone_reserve_bounded(name,
|
|
100, SOCKET_ID_ANY, 0, 32, UINT32_MAX)) != NULL) {
|
|
printf("%s(%s)created a memzone with invalid boundary "
|
|
"conditions\n", __func__, memzone_err->name);
|
|
return (-1);
|
|
}
|
|
|
|
/* should fail as len is greater then boundary */
|
|
name = "bounded_error_32";
|
|
if ((memzone_err = rte_memzone_reserve_bounded(name,
|
|
100, SOCKET_ID_ANY, 0, 32, 32)) != NULL) {
|
|
printf("%s(%s)created a memzone with invalid boundary "
|
|
"conditions\n", __func__, memzone_err->name);
|
|
return (-1);
|
|
}
|
|
|
|
if ((rc = check_memzone_bounded("bounded_128", 100, 128, 128)) != 0)
|
|
return (rc);
|
|
|
|
if ((rc = check_memzone_bounded("bounded_256", 100, 256, 128)) != 0)
|
|
return (rc);
|
|
|
|
if ((rc = check_memzone_bounded("bounded_1K", 100, 64, 1024)) != 0)
|
|
return (rc);
|
|
|
|
if ((rc = check_memzone_bounded("bounded_1K_MAX", 0, 64, 1024)) != 0)
|
|
return (rc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_memzone_free(void)
|
|
{
|
|
const struct rte_memzone *mz[RTE_MAX_MEMZONE];
|
|
int i;
|
|
char name[20];
|
|
|
|
mz[0] = rte_memzone_reserve("tempzone0", 2000, SOCKET_ID_ANY, 0);
|
|
mz[1] = rte_memzone_reserve("tempzone1", 4000, SOCKET_ID_ANY, 0);
|
|
|
|
if (mz[0] > mz[1])
|
|
return -1;
|
|
if (!rte_memzone_lookup("tempzone0"))
|
|
return -1;
|
|
if (!rte_memzone_lookup("tempzone1"))
|
|
return -1;
|
|
|
|
if (rte_memzone_free(mz[0])) {
|
|
printf("Fail memzone free - tempzone0\n");
|
|
return -1;
|
|
}
|
|
if (rte_memzone_lookup("tempzone0")) {
|
|
printf("Found previously free memzone - tempzone0\n");
|
|
return -1;
|
|
}
|
|
mz[2] = rte_memzone_reserve("tempzone2", 2000, SOCKET_ID_ANY, 0);
|
|
|
|
if (mz[2] > mz[1]) {
|
|
printf("tempzone2 should have gotten the free entry from tempzone0\n");
|
|
return -1;
|
|
}
|
|
if (rte_memzone_free(mz[2])) {
|
|
printf("Fail memzone free - tempzone2\n");
|
|
return -1;
|
|
}
|
|
if (rte_memzone_lookup("tempzone2")) {
|
|
printf("Found previously free memzone - tempzone2\n");
|
|
return -1;
|
|
}
|
|
if (rte_memzone_free(mz[1])) {
|
|
printf("Fail memzone free - tempzone1\n");
|
|
return -1;
|
|
}
|
|
if (rte_memzone_lookup("tempzone1")) {
|
|
printf("Found previously free memzone - tempzone1\n");
|
|
return -1;
|
|
}
|
|
|
|
i = 0;
|
|
do {
|
|
snprintf(name, sizeof(name), "tempzone%u", i);
|
|
mz[i] = rte_memzone_reserve(name, 1, SOCKET_ID_ANY, 0);
|
|
} while (mz[i++] != NULL);
|
|
|
|
if (rte_memzone_free(mz[0])) {
|
|
printf("Fail memzone free - tempzone0\n");
|
|
return -1;
|
|
}
|
|
mz[0] = rte_memzone_reserve("tempzone0new", 0, SOCKET_ID_ANY, 0);
|
|
|
|
if (mz[0] == NULL) {
|
|
printf("Fail to create memzone - tempzone0new - when MAX memzones were "
|
|
"created and one was free\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = i - 2; i >= 0; i--) {
|
|
if (rte_memzone_free(mz[i])) {
|
|
printf("Fail memzone free - tempzone%d\n", i);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_memzone(void)
|
|
{
|
|
const struct rte_memzone *memzone1;
|
|
const struct rte_memzone *memzone2;
|
|
const struct rte_memzone *memzone3;
|
|
const struct rte_memzone *memzone4;
|
|
const struct rte_memzone *mz;
|
|
|
|
memzone1 = rte_memzone_reserve("testzone1", 100,
|
|
SOCKET_ID_ANY, 0);
|
|
|
|
memzone2 = rte_memzone_reserve("testzone2", 1000,
|
|
0, 0);
|
|
|
|
memzone3 = rte_memzone_reserve("testzone3", 1000,
|
|
1, 0);
|
|
|
|
memzone4 = rte_memzone_reserve("testzone4", 1024,
|
|
SOCKET_ID_ANY, 0);
|
|
|
|
/* memzone3 may be NULL if we don't have NUMA */
|
|
if (memzone1 == NULL || memzone2 == NULL || memzone4 == NULL)
|
|
return -1;
|
|
|
|
rte_memzone_dump(stdout);
|
|
|
|
/* check cache-line alignments */
|
|
printf("check alignments and lengths\n");
|
|
|
|
if ((memzone1->phys_addr & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
if ((memzone2->phys_addr & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
if (memzone3 != NULL && (memzone3->phys_addr & RTE_CACHE_LINE_MASK) != 0)
|
|
return -1;
|
|
if ((memzone1->len & RTE_CACHE_LINE_MASK) != 0 || memzone1->len == 0)
|
|
return -1;
|
|
if ((memzone2->len & RTE_CACHE_LINE_MASK) != 0 || memzone2->len == 0)
|
|
return -1;
|
|
if (memzone3 != NULL && ((memzone3->len & RTE_CACHE_LINE_MASK) != 0 ||
|
|
memzone3->len == 0))
|
|
return -1;
|
|
if (memzone4->len != 1024)
|
|
return -1;
|
|
|
|
/* check that zones don't overlap */
|
|
printf("check overlapping\n");
|
|
|
|
if (is_memory_overlap(memzone1->phys_addr, memzone1->len,
|
|
memzone2->phys_addr, memzone2->len))
|
|
return -1;
|
|
if (memzone3 != NULL &&
|
|
is_memory_overlap(memzone1->phys_addr, memzone1->len,
|
|
memzone3->phys_addr, memzone3->len))
|
|
return -1;
|
|
if (memzone3 != NULL &&
|
|
is_memory_overlap(memzone2->phys_addr, memzone2->len,
|
|
memzone3->phys_addr, memzone3->len))
|
|
return -1;
|
|
|
|
printf("check socket ID\n");
|
|
|
|
/* memzone2 must be on socket id 0 and memzone3 on socket 1 */
|
|
if (memzone2->socket_id != 0)
|
|
return -1;
|
|
if (memzone3 != NULL && memzone3->socket_id != 1)
|
|
return -1;
|
|
|
|
printf("test zone lookup\n");
|
|
mz = rte_memzone_lookup("testzone1");
|
|
if (mz != memzone1)
|
|
return -1;
|
|
|
|
printf("test duplcate zone name\n");
|
|
mz = rte_memzone_reserve("testzone1", 100,
|
|
SOCKET_ID_ANY, 0);
|
|
if (mz != NULL)
|
|
return -1;
|
|
|
|
printf("test free memzone\n");
|
|
if (test_memzone_free() < 0)
|
|
return -1;
|
|
|
|
printf("test reserving memzone with bigger size than the maximum\n");
|
|
if (test_memzone_reserving_zone_size_bigger_than_the_maximum() < 0)
|
|
return -1;
|
|
|
|
printf("test memzone_reserve flags\n");
|
|
if (test_memzone_reserve_flags() < 0)
|
|
return -1;
|
|
|
|
printf("test alignment for memzone_reserve\n");
|
|
if (test_memzone_aligned() < 0)
|
|
return -1;
|
|
|
|
printf("test boundary alignment for memzone_reserve\n");
|
|
if (test_memzone_bounded() < 0)
|
|
return -1;
|
|
|
|
printf("test invalid alignment for memzone_reserve\n");
|
|
if (test_memzone_invalid_alignment() < 0)
|
|
return -1;
|
|
|
|
printf("test reserving the largest size memzone possible\n");
|
|
if (test_memzone_reserve_max() < 0)
|
|
return -1;
|
|
|
|
printf("test reserving the largest size aligned memzone possible\n");
|
|
if (test_memzone_reserve_max_aligned() < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct test_command memzone_cmd = {
|
|
.command = "memzone_autotest",
|
|
.callback = test_memzone,
|
|
};
|
|
REGISTER_TEST_COMMAND(memzone_cmd);
|