04d43857ea
Definition of `rte_ether_addr` structure used a workaround allowing DPDK and Windows SDK headers to be used in the same file, because Windows SDK defines `s_addr` as a macro. Rename `s_addr` to `src_addr` and `d_addr` to `dst_addr` to avoid the conflict and remove the workaround. Deprecation notice: https://mails.dpdk.org/archives/dev/2021-July/215270.html Signed-off-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com>
434 lines
10 KiB
C
434 lines
10 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2020 Inspur Corporation
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_ethdev.h>
|
|
|
|
#include "gro_udp4.h"
|
|
|
|
void *
|
|
gro_udp4_tbl_create(uint16_t socket_id,
|
|
uint16_t max_flow_num,
|
|
uint16_t max_item_per_flow)
|
|
{
|
|
struct gro_udp4_tbl *tbl;
|
|
size_t size;
|
|
uint32_t entries_num, i;
|
|
|
|
entries_num = max_flow_num * max_item_per_flow;
|
|
entries_num = RTE_MIN(entries_num, GRO_UDP4_TBL_MAX_ITEM_NUM);
|
|
|
|
if (entries_num == 0)
|
|
return NULL;
|
|
|
|
tbl = rte_zmalloc_socket(__func__,
|
|
sizeof(struct gro_udp4_tbl),
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (tbl == NULL)
|
|
return NULL;
|
|
|
|
size = sizeof(struct gro_udp4_item) * entries_num;
|
|
tbl->items = rte_zmalloc_socket(__func__,
|
|
size,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (tbl->items == NULL) {
|
|
rte_free(tbl);
|
|
return NULL;
|
|
}
|
|
tbl->max_item_num = entries_num;
|
|
|
|
size = sizeof(struct gro_udp4_flow) * entries_num;
|
|
tbl->flows = rte_zmalloc_socket(__func__,
|
|
size,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (tbl->flows == NULL) {
|
|
rte_free(tbl->items);
|
|
rte_free(tbl);
|
|
return NULL;
|
|
}
|
|
/* INVALID_ARRAY_INDEX indicates an empty flow */
|
|
for (i = 0; i < entries_num; i++)
|
|
tbl->flows[i].start_index = INVALID_ARRAY_INDEX;
|
|
tbl->max_flow_num = entries_num;
|
|
|
|
return tbl;
|
|
}
|
|
|
|
void
|
|
gro_udp4_tbl_destroy(void *tbl)
|
|
{
|
|
struct gro_udp4_tbl *udp_tbl = tbl;
|
|
|
|
if (udp_tbl) {
|
|
rte_free(udp_tbl->items);
|
|
rte_free(udp_tbl->flows);
|
|
}
|
|
rte_free(udp_tbl);
|
|
}
|
|
|
|
static inline uint32_t
|
|
find_an_empty_item(struct gro_udp4_tbl *tbl)
|
|
{
|
|
uint32_t i;
|
|
uint32_t max_item_num = tbl->max_item_num;
|
|
|
|
for (i = 0; i < max_item_num; i++)
|
|
if (tbl->items[i].firstseg == NULL)
|
|
return i;
|
|
return INVALID_ARRAY_INDEX;
|
|
}
|
|
|
|
static inline uint32_t
|
|
find_an_empty_flow(struct gro_udp4_tbl *tbl)
|
|
{
|
|
uint32_t i;
|
|
uint32_t max_flow_num = tbl->max_flow_num;
|
|
|
|
for (i = 0; i < max_flow_num; i++)
|
|
if (tbl->flows[i].start_index == INVALID_ARRAY_INDEX)
|
|
return i;
|
|
return INVALID_ARRAY_INDEX;
|
|
}
|
|
|
|
static inline uint32_t
|
|
insert_new_item(struct gro_udp4_tbl *tbl,
|
|
struct rte_mbuf *pkt,
|
|
uint64_t start_time,
|
|
uint32_t prev_idx,
|
|
uint16_t frag_offset,
|
|
uint8_t is_last_frag)
|
|
{
|
|
uint32_t item_idx;
|
|
|
|
item_idx = find_an_empty_item(tbl);
|
|
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
|
|
return INVALID_ARRAY_INDEX;
|
|
|
|
tbl->items[item_idx].firstseg = pkt;
|
|
tbl->items[item_idx].lastseg = rte_pktmbuf_lastseg(pkt);
|
|
tbl->items[item_idx].start_time = start_time;
|
|
tbl->items[item_idx].next_pkt_idx = INVALID_ARRAY_INDEX;
|
|
tbl->items[item_idx].frag_offset = frag_offset;
|
|
tbl->items[item_idx].is_last_frag = is_last_frag;
|
|
tbl->items[item_idx].nb_merged = 1;
|
|
tbl->item_num++;
|
|
|
|
/* if the previous packet exists, chain them together. */
|
|
if (prev_idx != INVALID_ARRAY_INDEX) {
|
|
tbl->items[item_idx].next_pkt_idx =
|
|
tbl->items[prev_idx].next_pkt_idx;
|
|
tbl->items[prev_idx].next_pkt_idx = item_idx;
|
|
}
|
|
|
|
return item_idx;
|
|
}
|
|
|
|
static inline uint32_t
|
|
delete_item(struct gro_udp4_tbl *tbl, uint32_t item_idx,
|
|
uint32_t prev_item_idx)
|
|
{
|
|
uint32_t next_idx = tbl->items[item_idx].next_pkt_idx;
|
|
|
|
/* NULL indicates an empty item */
|
|
tbl->items[item_idx].firstseg = NULL;
|
|
tbl->item_num--;
|
|
if (prev_item_idx != INVALID_ARRAY_INDEX)
|
|
tbl->items[prev_item_idx].next_pkt_idx = next_idx;
|
|
|
|
return next_idx;
|
|
}
|
|
|
|
static inline uint32_t
|
|
insert_new_flow(struct gro_udp4_tbl *tbl,
|
|
struct udp4_flow_key *src,
|
|
uint32_t item_idx)
|
|
{
|
|
struct udp4_flow_key *dst;
|
|
uint32_t flow_idx;
|
|
|
|
flow_idx = find_an_empty_flow(tbl);
|
|
if (unlikely(flow_idx == INVALID_ARRAY_INDEX))
|
|
return INVALID_ARRAY_INDEX;
|
|
|
|
dst = &(tbl->flows[flow_idx].key);
|
|
|
|
rte_ether_addr_copy(&(src->eth_saddr), &(dst->eth_saddr));
|
|
rte_ether_addr_copy(&(src->eth_daddr), &(dst->eth_daddr));
|
|
dst->ip_src_addr = src->ip_src_addr;
|
|
dst->ip_dst_addr = src->ip_dst_addr;
|
|
dst->ip_id = src->ip_id;
|
|
|
|
tbl->flows[flow_idx].start_index = item_idx;
|
|
tbl->flow_num++;
|
|
|
|
return flow_idx;
|
|
}
|
|
|
|
/*
|
|
* update the packet length for the flushed packet.
|
|
*/
|
|
static inline void
|
|
update_header(struct gro_udp4_item *item)
|
|
{
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
struct rte_mbuf *pkt = item->firstseg;
|
|
uint16_t frag_offset;
|
|
|
|
ipv4_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) +
|
|
pkt->l2_len);
|
|
ipv4_hdr->total_length = rte_cpu_to_be_16(pkt->pkt_len -
|
|
pkt->l2_len);
|
|
|
|
/* Clear MF bit if it is last fragment */
|
|
if (item->is_last_frag) {
|
|
frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
|
|
ipv4_hdr->fragment_offset =
|
|
rte_cpu_to_be_16(frag_offset & ~RTE_IPV4_HDR_MF_FLAG);
|
|
}
|
|
}
|
|
|
|
int32_t
|
|
gro_udp4_reassemble(struct rte_mbuf *pkt,
|
|
struct gro_udp4_tbl *tbl,
|
|
uint64_t start_time)
|
|
{
|
|
struct rte_ether_hdr *eth_hdr;
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
uint16_t ip_dl;
|
|
uint16_t ip_id, hdr_len;
|
|
uint16_t frag_offset = 0;
|
|
uint8_t is_last_frag;
|
|
|
|
struct udp4_flow_key key;
|
|
uint32_t cur_idx, prev_idx, item_idx;
|
|
uint32_t i, max_flow_num, remaining_flow_num;
|
|
int cmp;
|
|
uint8_t find;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
|
|
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)eth_hdr + pkt->l2_len);
|
|
hdr_len = pkt->l2_len + pkt->l3_len;
|
|
|
|
/*
|
|
* Don't process non-fragment packet.
|
|
*/
|
|
if (!is_ipv4_fragment(ipv4_hdr))
|
|
return -1;
|
|
|
|
/*
|
|
* Don't process the packet whose payload length is less than or
|
|
* equal to 0.
|
|
*/
|
|
if (pkt->pkt_len <= hdr_len)
|
|
return -1;
|
|
|
|
ip_dl = rte_be_to_cpu_16(ipv4_hdr->total_length);
|
|
if (ip_dl <= pkt->l3_len)
|
|
return -1;
|
|
|
|
ip_dl -= pkt->l3_len;
|
|
ip_id = rte_be_to_cpu_16(ipv4_hdr->packet_id);
|
|
frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
|
|
is_last_frag = ((frag_offset & RTE_IPV4_HDR_MF_FLAG) == 0) ? 1 : 0;
|
|
frag_offset = (uint16_t)(frag_offset & RTE_IPV4_HDR_OFFSET_MASK) << 3;
|
|
|
|
rte_ether_addr_copy(&(eth_hdr->src_addr), &(key.eth_saddr));
|
|
rte_ether_addr_copy(&(eth_hdr->dst_addr), &(key.eth_daddr));
|
|
key.ip_src_addr = ipv4_hdr->src_addr;
|
|
key.ip_dst_addr = ipv4_hdr->dst_addr;
|
|
key.ip_id = ip_id;
|
|
|
|
/* Search for a matched flow. */
|
|
max_flow_num = tbl->max_flow_num;
|
|
remaining_flow_num = tbl->flow_num;
|
|
find = 0;
|
|
for (i = 0; i < max_flow_num && remaining_flow_num; i++) {
|
|
if (tbl->flows[i].start_index != INVALID_ARRAY_INDEX) {
|
|
if (is_same_udp4_flow(tbl->flows[i].key, key)) {
|
|
find = 1;
|
|
break;
|
|
}
|
|
remaining_flow_num--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fail to find a matched flow. Insert a new flow and store the
|
|
* packet into the flow.
|
|
*/
|
|
if (find == 0) {
|
|
item_idx = insert_new_item(tbl, pkt, start_time,
|
|
INVALID_ARRAY_INDEX, frag_offset,
|
|
is_last_frag);
|
|
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
|
|
return -1;
|
|
if (insert_new_flow(tbl, &key, item_idx) ==
|
|
INVALID_ARRAY_INDEX) {
|
|
/*
|
|
* Fail to insert a new flow, so delete the
|
|
* stored packet.
|
|
*/
|
|
delete_item(tbl, item_idx, INVALID_ARRAY_INDEX);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check all packets in the flow and try to find a neighbor for
|
|
* the input packet.
|
|
*/
|
|
cur_idx = tbl->flows[i].start_index;
|
|
prev_idx = cur_idx;
|
|
do {
|
|
cmp = udp4_check_neighbor(&(tbl->items[cur_idx]),
|
|
frag_offset, ip_dl, 0);
|
|
if (cmp) {
|
|
if (merge_two_udp4_packets(&(tbl->items[cur_idx]),
|
|
pkt, cmp, frag_offset,
|
|
is_last_frag, 0))
|
|
return 1;
|
|
/*
|
|
* Fail to merge the two packets, as the packet
|
|
* length is greater than the max value. Store
|
|
* the packet into the flow.
|
|
*/
|
|
if (insert_new_item(tbl, pkt, start_time, prev_idx,
|
|
frag_offset, is_last_frag) ==
|
|
INVALID_ARRAY_INDEX)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Ensure inserted items are ordered by frag_offset */
|
|
if (frag_offset
|
|
< tbl->items[cur_idx].frag_offset) {
|
|
break;
|
|
}
|
|
|
|
prev_idx = cur_idx;
|
|
cur_idx = tbl->items[cur_idx].next_pkt_idx;
|
|
} while (cur_idx != INVALID_ARRAY_INDEX);
|
|
|
|
/* Fail to find a neighbor, so store the packet into the flow. */
|
|
if (cur_idx == tbl->flows[i].start_index) {
|
|
/* Insert it before the first packet of the flow */
|
|
item_idx = insert_new_item(tbl, pkt, start_time,
|
|
INVALID_ARRAY_INDEX, frag_offset,
|
|
is_last_frag);
|
|
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
|
|
return -1;
|
|
tbl->items[item_idx].next_pkt_idx = cur_idx;
|
|
tbl->flows[i].start_index = item_idx;
|
|
} else {
|
|
if (insert_new_item(tbl, pkt, start_time, prev_idx,
|
|
frag_offset, is_last_frag)
|
|
== INVALID_ARRAY_INDEX)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gro_udp4_merge_items(struct gro_udp4_tbl *tbl,
|
|
uint32_t start_idx)
|
|
{
|
|
uint16_t frag_offset;
|
|
uint8_t is_last_frag;
|
|
int16_t ip_dl;
|
|
struct rte_mbuf *pkt;
|
|
int cmp;
|
|
uint32_t item_idx;
|
|
uint16_t hdr_len;
|
|
|
|
item_idx = tbl->items[start_idx].next_pkt_idx;
|
|
while (item_idx != INVALID_ARRAY_INDEX) {
|
|
pkt = tbl->items[item_idx].firstseg;
|
|
hdr_len = pkt->l2_len + pkt->l3_len;
|
|
ip_dl = pkt->pkt_len - hdr_len;
|
|
frag_offset = tbl->items[item_idx].frag_offset;
|
|
is_last_frag = tbl->items[item_idx].is_last_frag;
|
|
cmp = udp4_check_neighbor(&(tbl->items[start_idx]),
|
|
frag_offset, ip_dl, 0);
|
|
if (cmp) {
|
|
if (merge_two_udp4_packets(
|
|
&(tbl->items[start_idx]),
|
|
pkt, cmp, frag_offset,
|
|
is_last_frag, 0)) {
|
|
item_idx = delete_item(tbl, item_idx,
|
|
INVALID_ARRAY_INDEX);
|
|
tbl->items[start_idx].next_pkt_idx
|
|
= item_idx;
|
|
} else
|
|
return 0;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint16_t
|
|
gro_udp4_tbl_timeout_flush(struct gro_udp4_tbl *tbl,
|
|
uint64_t flush_timestamp,
|
|
struct rte_mbuf **out,
|
|
uint16_t nb_out)
|
|
{
|
|
uint16_t k = 0;
|
|
uint32_t i, j;
|
|
uint32_t max_flow_num = tbl->max_flow_num;
|
|
|
|
for (i = 0; i < max_flow_num; i++) {
|
|
if (unlikely(tbl->flow_num == 0))
|
|
return k;
|
|
|
|
j = tbl->flows[i].start_index;
|
|
while (j != INVALID_ARRAY_INDEX) {
|
|
if (tbl->items[j].start_time <= flush_timestamp) {
|
|
gro_udp4_merge_items(tbl, j);
|
|
out[k++] = tbl->items[j].firstseg;
|
|
if (tbl->items[j].nb_merged > 1)
|
|
update_header(&(tbl->items[j]));
|
|
/*
|
|
* Delete the packet and get the next
|
|
* packet in the flow.
|
|
*/
|
|
j = delete_item(tbl, j, INVALID_ARRAY_INDEX);
|
|
tbl->flows[i].start_index = j;
|
|
if (j == INVALID_ARRAY_INDEX)
|
|
tbl->flow_num--;
|
|
|
|
if (unlikely(k == nb_out))
|
|
return k;
|
|
} else
|
|
/*
|
|
* Flushing packets does not strictly follow
|
|
* timestamp. It does not flush left packets of
|
|
* the flow this time once it finds one item
|
|
* whose start_time is greater than
|
|
* flush_timestamp. So go to check other flows.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
return k;
|
|
}
|
|
|
|
uint32_t
|
|
gro_udp4_tbl_pkt_count(void *tbl)
|
|
{
|
|
struct gro_udp4_tbl *gro_tbl = tbl;
|
|
|
|
if (gro_tbl)
|
|
return gro_tbl->item_num;
|
|
|
|
return 0;
|
|
}
|