numam-dpdk/lib/gro/gro_udp4.h
Bruce Richardson 99a2dd955f lib: remove librte_ prefix from directory names
There is no reason for the DPDK libraries to all have 'librte_' prefix on
the directory names. This prefix makes the directory names longer and also
makes it awkward to add features referring to individual libraries in the
build - should the lib names be specified with or without the prefix.
Therefore, we can just remove the library prefix and use the library's
unique name as the directory name, i.e. 'eal' rather than 'librte_eal'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2021-04-21 14:04:09 +02:00

283 lines
7.1 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Inspur Corporation
*/
#ifndef _GRO_UDP4_H_
#define _GRO_UDP4_H_
#include <rte_ip.h>
#include <rte_udp.h>
#include <rte_vxlan.h>
#define INVALID_ARRAY_INDEX 0xffffffffUL
#define GRO_UDP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL)
/*
* The max length of a IPv4 packet, which includes the length of the L3
* header, the L4 header and the data payload.
*/
#define MAX_IPV4_PKT_LENGTH UINT16_MAX
/* Header fields representing a UDP/IPv4 flow */
struct udp4_flow_key {
struct rte_ether_addr eth_saddr;
struct rte_ether_addr eth_daddr;
uint32_t ip_src_addr;
uint32_t ip_dst_addr;
/* IP fragment for UDP does not contain UDP header
* except the first one. But IP ID must be same.
*/
uint16_t ip_id;
};
struct gro_udp4_flow {
struct udp4_flow_key key;
/*
* The index of the first packet in the flow.
* INVALID_ARRAY_INDEX indicates an empty flow.
*/
uint32_t start_index;
};
struct gro_udp4_item {
/*
* The first MBUF segment of the packet. If the value
* is NULL, it means the item is empty.
*/
struct rte_mbuf *firstseg;
/* The last MBUF segment of the packet */
struct rte_mbuf *lastseg;
/*
* The time when the first packet is inserted into the table.
* This value won't be updated, even if the packet is merged
* with other packets.
*/
uint64_t start_time;
/*
* next_pkt_idx is used to chain the packets that
* are in the same flow but can't be merged together
* (e.g. caused by packet reordering).
*/
uint32_t next_pkt_idx;
/* offset of IP fragment packet */
uint16_t frag_offset;
/* is last IP fragment? */
uint8_t is_last_frag;
/* the number of merged packets */
uint16_t nb_merged;
};
/*
* UDP/IPv4 reassembly table structure.
*/
struct gro_udp4_tbl {
/* item array */
struct gro_udp4_item *items;
/* flow array */
struct gro_udp4_flow *flows;
/* current item number */
uint32_t item_num;
/* current flow num */
uint32_t flow_num;
/* item array size */
uint32_t max_item_num;
/* flow array size */
uint32_t max_flow_num;
};
/**
* This function creates a UDP/IPv4 reassembly table.
*
* @param socket_id
* Socket index for allocating the UDP/IPv4 reassemble table
* @param max_flow_num
* The maximum number of flows in the UDP/IPv4 GRO table
* @param max_item_per_flow
* The maximum number of packets per flow
*
* @return
* - Return the table pointer on success.
* - Return NULL on failure.
*/
void *gro_udp4_tbl_create(uint16_t socket_id,
uint16_t max_flow_num,
uint16_t max_item_per_flow);
/**
* This function destroys a UDP/IPv4 reassembly table.
*
* @param tbl
* Pointer pointing to the UDP/IPv4 reassembly table.
*/
void gro_udp4_tbl_destroy(void *tbl);
/**
* This function merges a UDP/IPv4 packet.
*
* This function does not check if the packet has correct checksums and
* does not re-calculate checksums for the merged packet. It returns the
* packet if it isn't UDP fragment or there is no available space in
* the table.
*
* @param pkt
* Packet to reassemble
* @param tbl
* Pointer pointing to the UDP/IPv4 reassembly table
* @start_time
* The time when the packet is inserted into the table
*
* @return
* - Return a positive value if the packet is merged.
* - Return zero if the packet isn't merged but stored in the table.
* - Return a negative value for invalid parameters or no available
* space in the table.
*/
int32_t gro_udp4_reassemble(struct rte_mbuf *pkt,
struct gro_udp4_tbl *tbl,
uint64_t start_time);
/**
* This function flushes timeout packets in a UDP/IPv4 reassembly table,
* and without updating checksums.
*
* @param tbl
* UDP/IPv4 reassembly table pointer
* @param flush_timestamp
* Flush packets which are inserted into the table before or at the
* flush_timestamp.
* @param out
* Pointer array used to keep flushed packets
* @param nb_out
* The element number in 'out'. It also determines the maximum number of
* packets that can be flushed finally.
*
* @return
* The number of flushed packets
*/
uint16_t gro_udp4_tbl_timeout_flush(struct gro_udp4_tbl *tbl,
uint64_t flush_timestamp,
struct rte_mbuf **out,
uint16_t nb_out);
/**
* This function returns the number of the packets in a UDP/IPv4
* reassembly table.
*
* @param tbl
* UDP/IPv4 reassembly table pointer
*
* @return
* The number of packets in the table
*/
uint32_t gro_udp4_tbl_pkt_count(void *tbl);
/*
* Check if two UDP/IPv4 packets belong to the same flow.
*/
static inline int
is_same_udp4_flow(struct udp4_flow_key k1, struct udp4_flow_key k2)
{
return (rte_is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) &&
rte_is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) &&
(k1.ip_src_addr == k2.ip_src_addr) &&
(k1.ip_dst_addr == k2.ip_dst_addr) &&
(k1.ip_id == k2.ip_id));
}
/*
* Merge two UDP/IPv4 packets without updating checksums.
* If cmp is larger than 0, append the new packet to the
* original packet. Otherwise, pre-pend the new packet to
* the original packet.
*/
static inline int
merge_two_udp4_packets(struct gro_udp4_item *item,
struct rte_mbuf *pkt,
int cmp,
uint16_t frag_offset,
uint8_t is_last_frag,
uint16_t l2_offset)
{
struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
uint16_t hdr_len, l2_len;
uint32_t ip_len;
if (cmp > 0) {
pkt_head = item->firstseg;
pkt_tail = pkt;
} else {
pkt_head = pkt;
pkt_tail = item->firstseg;
}
/* check if the IPv4 packet length is greater than the max value */
hdr_len = l2_offset + pkt_head->l2_len + pkt_head->l3_len;
l2_len = l2_offset > 0 ? pkt_head->outer_l2_len : pkt_head->l2_len;
ip_len = pkt_head->pkt_len - l2_len
+ pkt_tail->pkt_len - hdr_len;
if (unlikely(ip_len > MAX_IPV4_PKT_LENGTH))
return 0;
/* remove the packet header for the tail packet */
rte_pktmbuf_adj(pkt_tail, hdr_len);
/* chain two packets together */
if (cmp > 0) {
item->lastseg->next = pkt;
item->lastseg = rte_pktmbuf_lastseg(pkt);
} else {
lastseg = rte_pktmbuf_lastseg(pkt);
lastseg->next = item->firstseg;
item->firstseg = pkt;
item->frag_offset = frag_offset;
}
item->nb_merged++;
if (is_last_frag)
item->is_last_frag = is_last_frag;
/* update MBUF metadata for the merged packet */
pkt_head->nb_segs += pkt_tail->nb_segs;
pkt_head->pkt_len += pkt_tail->pkt_len;
return 1;
}
/*
* Check if two UDP/IPv4 packets are neighbors.
*/
static inline int
udp4_check_neighbor(struct gro_udp4_item *item,
uint16_t frag_offset,
uint16_t ip_dl,
uint16_t l2_offset)
{
struct rte_mbuf *pkt_orig = item->firstseg;
uint16_t len;
/* check if the two packets are neighbors */
len = pkt_orig->pkt_len - l2_offset - pkt_orig->l2_len -
pkt_orig->l3_len;
if (frag_offset == item->frag_offset + len)
/* append the new packet */
return 1;
else if (frag_offset + ip_dl == item->frag_offset)
/* pre-pend the new packet */
return -1;
return 0;
}
static inline int
is_ipv4_fragment(const struct rte_ipv4_hdr *hdr)
{
uint16_t flag_offset, ip_flag, ip_ofs;
flag_offset = rte_be_to_cpu_16(hdr->fragment_offset);
ip_ofs = (uint16_t)(flag_offset & RTE_IPV4_HDR_OFFSET_MASK);
ip_flag = (uint16_t)(flag_offset & RTE_IPV4_HDR_MF_FLAG);
return ip_flag != 0 || ip_ofs != 0;
}
#endif