numam-dpdk/lib/librte_ip_frag/rte_ip_frag.h
Piotr Azarewicz 4f8e575f89 ip_frag: fix bit-fields in ipv6 fragment extension
Previous implementation won't work on every environment. The order of
allocation of bit-fields within a unit (high-order to low-order or
low-order to high-order) is implementation-defined.
Solution: used bytes instead of bit fields.

Signed-off-by: Piotr Azarewicz <piotrx.t.azarewicz@intel.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
2015-10-08 13:15:17 +02:00

364 lines
12 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_IP_FRAG_H_
#define _RTE_IP_FRAG_H_
/**
* @file
* RTE IP Fragmentation and Reassembly
*
* Implementation of IP packet fragmentation and reassembly.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdio.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_ip.h>
#include <rte_byteorder.h>
struct rte_mbuf;
enum {
IP_LAST_FRAG_IDX, /**< index of last fragment */
IP_FIRST_FRAG_IDX, /**< index of first fragment */
IP_MIN_FRAG_NUM, /**< minimum number of fragments */
IP_MAX_FRAG_NUM = RTE_LIBRTE_IP_FRAG_MAX_FRAG,
/**< maximum number of fragments per packet */
};
/** @internal fragmented mbuf */
struct ip_frag {
uint16_t ofs; /**< offset into the packet */
uint16_t len; /**< length of fragment */
struct rte_mbuf *mb; /**< fragment mbuf */
};
/** @internal <src addr, dst_addr, id> to uniquely indetify fragmented datagram. */
struct ip_frag_key {
uint64_t src_dst[4]; /**< src address, first 8 bytes used for IPv4 */
uint32_t id; /**< dst address */
uint32_t key_len; /**< src/dst key length */
};
/*
* @internal Fragmented packet to reassemble.
* First two entries in the frags[] array are for the last and first fragments.
*/
struct ip_frag_pkt {
TAILQ_ENTRY(ip_frag_pkt) lru; /**< LRU list */
struct ip_frag_key key; /**< fragmentation key */
uint64_t start; /**< creation timestamp */
uint32_t total_size; /**< expected reassembled size */
uint32_t frag_size; /**< size of fragments received */
uint32_t last_idx; /**< index of next entry to fill */
struct ip_frag frags[IP_MAX_FRAG_NUM]; /**< fragments */
} __rte_cache_aligned;
#define IP_FRAG_DEATH_ROW_LEN 32 /**< death row size (in packets) */
/** mbuf death row (packets to be freed) */
struct rte_ip_frag_death_row {
uint32_t cnt; /**< number of mbufs currently on death row */
struct rte_mbuf *row[IP_FRAG_DEATH_ROW_LEN * (IP_MAX_FRAG_NUM + 1)];
/**< mbufs to be freed */
};
TAILQ_HEAD(ip_pkt_list, ip_frag_pkt); /**< @internal fragments tailq */
/** fragmentation table statistics */
struct ip_frag_tbl_stat {
uint64_t find_num; /**< total # of find/insert attempts. */
uint64_t add_num; /**< # of add ops. */
uint64_t del_num; /**< # of del ops. */
uint64_t reuse_num; /**< # of reuse (del/add) ops. */
uint64_t fail_total; /**< total # of add failures. */
uint64_t fail_nospace; /**< # of 'no space' add failures. */
} __rte_cache_aligned;
/** fragmentation table */
struct rte_ip_frag_tbl {
uint64_t max_cycles; /**< ttl for table entries. */
uint32_t entry_mask; /**< hash value mask. */
uint32_t max_entries; /**< max entries allowed. */
uint32_t use_entries; /**< entries in use. */
uint32_t bucket_entries; /**< hash assocaitivity. */
uint32_t nb_entries; /**< total size of the table. */
uint32_t nb_buckets; /**< num of associativity lines. */
struct ip_frag_pkt *last; /**< last used entry. */
struct ip_pkt_list lru; /**< LRU list for table entries. */
struct ip_frag_tbl_stat stat; /**< statistics counters. */
struct ip_frag_pkt pkt[0]; /**< hash table. */
};
/** IPv6 fragment extension header */
#define RTE_IPV6_EHDR_MF_SHIFT 0
#define RTE_IPV6_EHDR_MF_MASK 1
#define RTE_IPV6_EHDR_FO_SHIFT 3
#define RTE_IPV6_EHDR_FO_MASK (~((1 << RTE_IPV6_EHDR_FO_SHIFT) - 1))
#define RTE_IPV6_FRAG_USED_MASK \
(RTE_IPV6_EHDR_MF_MASK | RTE_IPV6_EHDR_FO_MASK)
#define RTE_IPV6_GET_MF(x) ((x) & RTE_IPV6_EHDR_MF_MASK)
#define RTE_IPV6_GET_FO(x) ((x) >> RTE_IPV6_EHDR_FO_SHIFT)
#define RTE_IPV6_SET_FRAG_DATA(fo, mf) \
(((fo) & RTE_IPV6_EHDR_FO_MASK) | ((mf) & RTE_IPV6_EHDR_MF_MASK))
struct ipv6_extension_fragment {
uint8_t next_header; /**< Next header type */
uint8_t reserved; /**< Reserved */
uint16_t frag_data; /**< All fragmentation data */
uint32_t id; /**< Packet ID */
} __attribute__((__packed__));
/*
* Create a new IP fragmentation table.
*
* @param bucket_num
* Number of buckets in the hash table.
* @param bucket_entries
* Number of entries per bucket (e.g. hash associativity).
* Should be power of two.
* @param max_entries
* Maximum number of entries that could be stored in the table.
* The value should be less or equal then bucket_num * bucket_entries.
* @param max_cycles
* Maximum TTL in cycles for each fragmented packet.
* @param socket_id
* The *socket_id* argument is the socket identifier in the case of
* NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA constraints.
* @return
* The pointer to the new allocated fragmentation table, on success. NULL on error.
*/
struct rte_ip_frag_tbl * rte_ip_frag_table_create(uint32_t bucket_num,
uint32_t bucket_entries, uint32_t max_entries,
uint64_t max_cycles, int socket_id);
/*
* Free allocated IP fragmentation table.
*
* @param btl
* Fragmentation table to free.
*/
static inline void
rte_ip_frag_table_destroy( struct rte_ip_frag_tbl *tbl)
{
rte_free(tbl);
}
/**
* This function implements the fragmentation of IPv6 packets.
*
* @param pkt_in
* The input packet.
* @param pkts_out
* Array storing the output fragments.
* @param nb_pkts_out
* Number of fragments.
* @param mtu_size
* Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv6
* datagrams. This value includes the size of the IPv6 header.
* @param pool_direct
* MBUF pool used for allocating direct buffers for the output fragments.
* @param pool_indirect
* MBUF pool used for allocating indirect buffers for the output fragments.
* @return
* Upon successful completion - number of output fragments placed
* in the pkts_out array.
* Otherwise - (-1) * errno.
*/
int32_t
rte_ipv6_fragment_packet(struct rte_mbuf *pkt_in,
struct rte_mbuf **pkts_out,
uint16_t nb_pkts_out,
uint16_t mtu_size,
struct rte_mempool *pool_direct,
struct rte_mempool *pool_indirect);
/*
* This function implements reassembly of fragmented IPv6 packets.
* Incoming mbuf should have its l2_len/l3_len fields setup correctly.
*
* @param tbl
* Table where to lookup/add the fragmented packet.
* @param dr
* Death row to free buffers to
* @param mb
* Incoming mbuf with IPv6 fragment.
* @param tms
* Fragment arrival timestamp.
* @param ip_hdr
* Pointer to the IPv6 header.
* @param frag_hdr
* Pointer to the IPv6 fragment extension header.
* @return
* Pointer to mbuf for reassembled packet, or NULL if:
* - an error occured.
* - not all fragments of the packet are collected yet.
*/
struct rte_mbuf *rte_ipv6_frag_reassemble_packet(struct rte_ip_frag_tbl *tbl,
struct rte_ip_frag_death_row *dr,
struct rte_mbuf *mb, uint64_t tms, struct ipv6_hdr *ip_hdr,
struct ipv6_extension_fragment *frag_hdr);
/*
* Return a pointer to the packet's fragment header, if found.
* It only looks at the extension header that's right after the fixed IPv6
* header, and doesn't follow the whole chain of extension headers.
*
* @param hdr
* Pointer to the IPv6 header.
* @return
* Pointer to the IPv6 fragment extension header, or NULL if it's not
* present.
*/
static inline struct ipv6_extension_fragment *
rte_ipv6_frag_get_ipv6_fragment_header(struct ipv6_hdr *hdr)
{
if (hdr->proto == IPPROTO_FRAGMENT) {
return (struct ipv6_extension_fragment *) ++hdr;
}
else
return NULL;
}
/**
* IPv4 fragmentation.
*
* This function implements the fragmentation of IPv4 packets.
*
* @param pkt_in
* The input packet.
* @param pkts_out
* Array storing the output fragments.
* @param nb_pkts_out
* Number of fragments.
* @param mtu_size
* Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv4
* datagrams. This value includes the size of the IPv4 header.
* @param pool_direct
* MBUF pool used for allocating direct buffers for the output fragments.
* @param pool_indirect
* MBUF pool used for allocating indirect buffers for the output fragments.
* @return
* Upon successful completion - number of output fragments placed
* in the pkts_out array.
* Otherwise - (-1) * errno.
*/
int32_t rte_ipv4_fragment_packet(struct rte_mbuf *pkt_in,
struct rte_mbuf **pkts_out,
uint16_t nb_pkts_out, uint16_t mtu_size,
struct rte_mempool *pool_direct,
struct rte_mempool *pool_indirect);
/*
* This function implements reassembly of fragmented IPv4 packets.
* Incoming mbufs should have its l2_len/l3_len fields setup correclty.
*
* @param tbl
* Table where to lookup/add the fragmented packet.
* @param dr
* Death row to free buffers to
* @param mb
* Incoming mbuf with IPv4 fragment.
* @param tms
* Fragment arrival timestamp.
* @param ip_hdr
* Pointer to the IPV4 header inside the fragment.
* @return
* Pointer to mbuf for reassebled packet, or NULL if:
* - an error occured.
* - not all fragments of the packet are collected yet.
*/
struct rte_mbuf * rte_ipv4_frag_reassemble_packet(struct rte_ip_frag_tbl *tbl,
struct rte_ip_frag_death_row *dr,
struct rte_mbuf *mb, uint64_t tms, struct ipv4_hdr *ip_hdr);
/*
* Check if the IPv4 packet is fragmented
*
* @param hdr
* IPv4 header of the packet
* @return
* 1 if fragmented, 0 if not fragmented
*/
static inline int
rte_ipv4_frag_pkt_is_fragmented(const struct ipv4_hdr * hdr) {
uint16_t flag_offset, ip_flag, ip_ofs;
flag_offset = rte_be_to_cpu_16(hdr->fragment_offset);
ip_ofs = (uint16_t)(flag_offset & IPV4_HDR_OFFSET_MASK);
ip_flag = (uint16_t)(flag_offset & IPV4_HDR_MF_FLAG);
return ip_flag != 0 || ip_ofs != 0;
}
/*
* Free mbufs on a given death row.
*
* @param dr
* Death row to free mbufs in.
* @param prefetch
* How many buffers to prefetch before freeing.
*/
void rte_ip_frag_free_death_row(struct rte_ip_frag_death_row *dr,
uint32_t prefetch);
/*
* Dump fragmentation table statistics to file.
*
* @param f
* File to dump statistics to
* @param tbl
* Fragmentation table to dump statistics from
*/
void
rte_ip_frag_table_statistics_dump(FILE * f, const struct rte_ip_frag_tbl *tbl);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_IP_FRAG_H_ */