Jerin Jacob aaf4363e1e drivers: use SPDX tag for Cavium copyright files
Signed-off-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
2018-01-09 16:19:01 +01:00

741 lines
18 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Cavium, Inc
*/
#ifndef _LIO_RXTX_H_
#define _LIO_RXTX_H_
#include <stdio.h>
#include <stdint.h>
#include <rte_spinlock.h>
#include <rte_memory.h>
#include "lio_struct.h"
#ifndef ROUNDUP4
#define ROUNDUP4(val) (((val) + 3) & 0xfffffffc)
#endif
#define LIO_STQUEUE_FIRST_ENTRY(ptr, type, elem) \
(type *)((char *)((ptr)->stqh_first) - offsetof(type, elem))
#define lio_check_timeout(cur_time, chk_time) ((cur_time) > (chk_time))
#define lio_uptime \
(size_t)(rte_get_timer_cycles() / rte_get_timer_hz())
/** Descriptor format.
* The descriptor ring is made of descriptors which have 2 64-bit values:
* -# Physical (bus) address of the data buffer.
* -# Physical (bus) address of a lio_droq_info structure.
* The device DMA's incoming packets and its information at the address
* given by these descriptor fields.
*/
struct lio_droq_desc {
/** The buffer pointer */
uint64_t buffer_ptr;
/** The Info pointer */
uint64_t info_ptr;
};
#define LIO_DROQ_DESC_SIZE (sizeof(struct lio_droq_desc))
/** Information about packet DMA'ed by Octeon.
* The format of the information available at Info Pointer after Octeon
* has posted a packet. Not all descriptors have valid information. Only
* the Info field of the first descriptor for a packet has information
* about the packet.
*/
struct lio_droq_info {
/** The Output Receive Header. */
union octeon_rh rh;
/** The Length of the packet. */
uint64_t length;
};
#define LIO_DROQ_INFO_SIZE (sizeof(struct lio_droq_info))
/** Pointer to data buffer.
* Driver keeps a pointer to the data buffer that it made available to
* the Octeon device. Since the descriptor ring keeps physical (bus)
* addresses, this field is required for the driver to keep track of
* the virtual address pointers.
*/
struct lio_recv_buffer {
/** Packet buffer, including meta data. */
void *buffer;
/** Data in the packet buffer. */
uint8_t *data;
};
#define LIO_DROQ_RECVBUF_SIZE (sizeof(struct lio_recv_buffer))
#define LIO_DROQ_SIZE (sizeof(struct lio_droq))
#define LIO_IQ_SEND_OK 0
#define LIO_IQ_SEND_STOP 1
#define LIO_IQ_SEND_FAILED -1
/* conditions */
#define LIO_REQTYPE_NONE 0
#define LIO_REQTYPE_NORESP_NET 1
#define LIO_REQTYPE_NORESP_NET_SG 2
#define LIO_REQTYPE_SOFT_COMMAND 3
struct lio_request_list {
uint32_t reqtype;
void *buf;
};
/*---------------------- INSTRUCTION FORMAT ----------------------------*/
struct lio_instr3_64B {
/** Pointer where the input data is available. */
uint64_t dptr;
/** Instruction Header. */
uint64_t ih3;
/** Instruction Header. */
uint64_t pki_ih3;
/** Input Request Header. */
uint64_t irh;
/** opcode/subcode specific parameters */
uint64_t ossp[2];
/** Return Data Parameters */
uint64_t rdp;
/** Pointer where the response for a RAW mode packet will be written
* by Octeon.
*/
uint64_t rptr;
};
union lio_instr_64B {
struct lio_instr3_64B cmd3;
};
/** The size of each buffer in soft command buffer pool */
#define LIO_SOFT_COMMAND_BUFFER_SIZE 1536
/** Maximum number of buffers to allocate into soft command buffer pool */
#define LIO_MAX_SOFT_COMMAND_BUFFERS 255
struct lio_soft_command {
/** Soft command buffer info. */
struct lio_stailq_node node;
uint64_t dma_addr;
uint32_t size;
/** Command and return status */
union lio_instr_64B cmd;
#define LIO_COMPLETION_WORD_INIT 0xffffffffffffffffULL
uint64_t *status_word;
/** Data buffer info */
void *virtdptr;
uint64_t dmadptr;
uint32_t datasize;
/** Return buffer info */
void *virtrptr;
uint64_t dmarptr;
uint32_t rdatasize;
/** Context buffer info */
void *ctxptr;
uint32_t ctxsize;
/** Time out and callback */
size_t wait_time;
size_t timeout;
uint32_t iq_no;
void (*callback)(uint32_t, void *);
void *callback_arg;
struct rte_mbuf *mbuf;
};
struct lio_iq_post_status {
int status;
int index;
};
/* wqe
* --------------- 0
* | wqe word0-3 |
* --------------- 32
* | PCI IH |
* --------------- 40
* | RPTR |
* --------------- 48
* | PCI IRH |
* --------------- 56
* | OCTEON_CMD |
* --------------- 64
* | Addtl 8-BData |
* | |
* ---------------
*/
union octeon_cmd {
uint64_t cmd64;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint64_t cmd : 5;
uint64_t more : 6; /* How many udd words follow the command */
uint64_t reserved : 29;
uint64_t param1 : 16;
uint64_t param2 : 8;
#elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
uint64_t param2 : 8;
uint64_t param1 : 16;
uint64_t reserved : 29;
uint64_t more : 6;
uint64_t cmd : 5;
#endif
} s;
};
#define OCTEON_CMD_SIZE (sizeof(union octeon_cmd))
/* Maximum number of 8-byte words can be
* sent in a NIC control message.
*/
#define LIO_MAX_NCTRL_UDD 32
/* Structure of control information passed by driver to the BASE
* layer when sending control commands to Octeon device software.
*/
struct lio_ctrl_pkt {
/** Command to be passed to the Octeon device software. */
union octeon_cmd ncmd;
/** Send buffer */
void *data;
uint64_t dmadata;
/** Response buffer */
void *rdata;
uint64_t dmardata;
/** Additional data that may be needed by some commands. */
uint64_t udd[LIO_MAX_NCTRL_UDD];
/** Input queue to use to send this command. */
uint64_t iq_no;
/** Time to wait for Octeon software to respond to this control command.
* If wait_time is 0, BASE assumes no response is expected.
*/
size_t wait_time;
struct lio_dev_ctrl_cmd *ctrl_cmd;
};
/** Structure of data information passed by driver to the BASE
* layer when forwarding data to Octeon device software.
*/
struct lio_data_pkt {
/** Pointer to information maintained by NIC module for this packet. The
* BASE layer passes this as-is to the driver.
*/
void *buf;
/** Type of buffer passed in "buf" above. */
uint32_t reqtype;
/** Total data bytes to be transferred in this command. */
uint32_t datasize;
/** Command to be passed to the Octeon device software. */
union lio_instr_64B cmd;
/** Input queue to use to send this command. */
uint32_t q_no;
};
/** Structure passed by driver to BASE layer to prepare a command to send
* network data to Octeon.
*/
union lio_cmd_setup {
struct {
uint32_t iq_no : 8;
uint32_t gather : 1;
uint32_t timestamp : 1;
uint32_t ip_csum : 1;
uint32_t transport_csum : 1;
uint32_t tnl_csum : 1;
uint32_t rsvd : 19;
union {
uint32_t datasize;
uint32_t gatherptrs;
} u;
} s;
uint64_t cmd_setup64;
};
/* Instruction Header */
struct octeon_instr_ih3 {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
/** Reserved3 */
uint64_t reserved3 : 1;
/** Gather indicator 1=gather*/
uint64_t gather : 1;
/** Data length OR no. of entries in gather list */
uint64_t dlengsz : 14;
/** Front Data size */
uint64_t fsz : 6;
/** Reserved2 */
uint64_t reserved2 : 4;
/** PKI port kind - PKIND */
uint64_t pkind : 6;
/** Reserved1 */
uint64_t reserved1 : 32;
#elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
/** Reserved1 */
uint64_t reserved1 : 32;
/** PKI port kind - PKIND */
uint64_t pkind : 6;
/** Reserved2 */
uint64_t reserved2 : 4;
/** Front Data size */
uint64_t fsz : 6;
/** Data length OR no. of entries in gather list */
uint64_t dlengsz : 14;
/** Gather indicator 1=gather*/
uint64_t gather : 1;
/** Reserved3 */
uint64_t reserved3 : 1;
#endif
};
/* PKI Instruction Header(PKI IH) */
struct octeon_instr_pki_ih3 {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
/** Wider bit */
uint64_t w : 1;
/** Raw mode indicator 1 = RAW */
uint64_t raw : 1;
/** Use Tag */
uint64_t utag : 1;
/** Use QPG */
uint64_t uqpg : 1;
/** Reserved2 */
uint64_t reserved2 : 1;
/** Parse Mode */
uint64_t pm : 3;
/** Skip Length */
uint64_t sl : 8;
/** Use Tag Type */
uint64_t utt : 1;
/** Tag type */
uint64_t tagtype : 2;
/** Reserved1 */
uint64_t reserved1 : 2;
/** QPG Value */
uint64_t qpg : 11;
/** Tag Value */
uint64_t tag : 32;
#elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
/** Tag Value */
uint64_t tag : 32;
/** QPG Value */
uint64_t qpg : 11;
/** Reserved1 */
uint64_t reserved1 : 2;
/** Tag type */
uint64_t tagtype : 2;
/** Use Tag Type */
uint64_t utt : 1;
/** Skip Length */
uint64_t sl : 8;
/** Parse Mode */
uint64_t pm : 3;
/** Reserved2 */
uint64_t reserved2 : 1;
/** Use QPG */
uint64_t uqpg : 1;
/** Use Tag */
uint64_t utag : 1;
/** Raw mode indicator 1 = RAW */
uint64_t raw : 1;
/** Wider bit */
uint64_t w : 1;
#endif
};
/** Input Request Header */
struct octeon_instr_irh {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint64_t opcode : 4;
uint64_t rflag : 1;
uint64_t subcode : 7;
uint64_t vlan : 12;
uint64_t priority : 3;
uint64_t reserved : 5;
uint64_t ossp : 32; /* opcode/subcode specific parameters */
#elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
uint64_t ossp : 32; /* opcode/subcode specific parameters */
uint64_t reserved : 5;
uint64_t priority : 3;
uint64_t vlan : 12;
uint64_t subcode : 7;
uint64_t rflag : 1;
uint64_t opcode : 4;
#endif
};
/* pkiih3 + irh + ossp[0] + ossp[1] + rdp + rptr = 40 bytes */
#define OCTEON_SOFT_CMD_RESP_IH3 (40 + 8)
/* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
#define OCTEON_PCI_CMD_O3 (24 + 8)
/** Return Data Parameters */
struct octeon_instr_rdp {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint64_t reserved : 49;
uint64_t pcie_port : 3;
uint64_t rlen : 12;
#elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
uint64_t rlen : 12;
uint64_t pcie_port : 3;
uint64_t reserved : 49;
#endif
};
union octeon_packet_params {
uint32_t pkt_params32;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint32_t reserved : 24;
uint32_t ip_csum : 1; /* Perform IP header checksum(s) */
/* Perform Outer transport header checksum */
uint32_t transport_csum : 1;
/* Find tunnel, and perform transport csum. */
uint32_t tnl_csum : 1;
uint32_t tsflag : 1; /* Timestamp this packet */
uint32_t ipsec_ops : 4; /* IPsec operation */
#else
uint32_t ipsec_ops : 4;
uint32_t tsflag : 1;
uint32_t tnl_csum : 1;
uint32_t transport_csum : 1;
uint32_t ip_csum : 1;
uint32_t reserved : 7;
#endif
} s;
};
/** Utility function to prepare a 64B NIC instruction based on a setup command
* @param cmd - pointer to instruction to be filled in.
* @param setup - pointer to the setup structure
* @param q_no - which queue for back pressure
*
* Assumes the cmd instruction is pre-allocated, but no fields are filled in.
*/
static inline void
lio_prepare_pci_cmd(struct lio_device *lio_dev,
union lio_instr_64B *cmd,
union lio_cmd_setup *setup,
uint32_t tag)
{
union octeon_packet_params packet_params;
struct octeon_instr_pki_ih3 *pki_ih3;
struct octeon_instr_irh *irh;
struct octeon_instr_ih3 *ih3;
int port;
memset(cmd, 0, sizeof(union lio_instr_64B));
ih3 = (struct octeon_instr_ih3 *)&cmd->cmd3.ih3;
pki_ih3 = (struct octeon_instr_pki_ih3 *)&cmd->cmd3.pki_ih3;
/* assume that rflag is cleared so therefore front data will only have
* irh and ossp[1] and ossp[2] for a total of 24 bytes
*/
ih3->pkind = lio_dev->instr_queue[setup->s.iq_no]->txpciq.s.pkind;
/* PKI IH */
ih3->fsz = OCTEON_PCI_CMD_O3;
if (!setup->s.gather) {
ih3->dlengsz = setup->s.u.datasize;
} else {
ih3->gather = 1;
ih3->dlengsz = setup->s.u.gatherptrs;
}
pki_ih3->w = 1;
pki_ih3->raw = 0;
pki_ih3->utag = 0;
pki_ih3->utt = 1;
pki_ih3->uqpg = lio_dev->instr_queue[setup->s.iq_no]->txpciq.s.use_qpg;
port = (int)lio_dev->instr_queue[setup->s.iq_no]->txpciq.s.port;
if (tag)
pki_ih3->tag = tag;
else
pki_ih3->tag = LIO_DATA(port);
pki_ih3->tagtype = OCTEON_ORDERED_TAG;
pki_ih3->qpg = lio_dev->instr_queue[setup->s.iq_no]->txpciq.s.qpg;
pki_ih3->pm = 0x0; /* parse from L2 */
pki_ih3->sl = 32; /* sl will be sizeof(pki_ih3) + irh + ossp0 + ossp1*/
irh = (struct octeon_instr_irh *)&cmd->cmd3.irh;
irh->opcode = LIO_OPCODE;
irh->subcode = LIO_OPCODE_NW_DATA;
packet_params.pkt_params32 = 0;
packet_params.s.ip_csum = setup->s.ip_csum;
packet_params.s.transport_csum = setup->s.transport_csum;
packet_params.s.tnl_csum = setup->s.tnl_csum;
packet_params.s.tsflag = setup->s.timestamp;
irh->ossp = packet_params.pkt_params32;
}
int lio_setup_sc_buffer_pool(struct lio_device *lio_dev);
void lio_free_sc_buffer_pool(struct lio_device *lio_dev);
struct lio_soft_command *
lio_alloc_soft_command(struct lio_device *lio_dev,
uint32_t datasize, uint32_t rdatasize,
uint32_t ctxsize);
void lio_prepare_soft_command(struct lio_device *lio_dev,
struct lio_soft_command *sc,
uint8_t opcode, uint8_t subcode,
uint32_t irh_ossp, uint64_t ossp0,
uint64_t ossp1);
int lio_send_soft_command(struct lio_device *lio_dev,
struct lio_soft_command *sc);
void lio_free_soft_command(struct lio_soft_command *sc);
/** Send control packet to the device
* @param lio_dev - lio device pointer
* @param nctrl - control structure with command, timeout, and callback info
*
* @returns IQ_FAILED if it failed to add to the input queue. IQ_STOP if it the
* queue should be stopped, and LIO_IQ_SEND_OK if it sent okay.
*/
int lio_send_ctrl_pkt(struct lio_device *lio_dev,
struct lio_ctrl_pkt *ctrl_pkt);
/** Maximum ordered requests to process in every invocation of
* lio_process_ordered_list(). The function will continue to process requests
* as long as it can find one that has finished processing. If it keeps
* finding requests that have completed, the function can run for ever. The
* value defined here sets an upper limit on the number of requests it can
* process before it returns control to the poll thread.
*/
#define LIO_MAX_ORD_REQS_TO_PROCESS 4096
/** Error codes used in Octeon Host-Core communication.
*
* 31 16 15 0
* ----------------------------
* | | |
* ----------------------------
* Error codes are 32-bit wide. The upper 16-bits, called Major Error Number,
* are reserved to identify the group to which the error code belongs. The
* lower 16-bits, called Minor Error Number, carry the actual code.
*
* So error codes are (MAJOR NUMBER << 16)| MINOR_NUMBER.
*/
/** Status for a request.
* If the request is successfully queued, the driver will return
* a LIO_REQUEST_PENDING status. LIO_REQUEST_TIMEOUT is only returned by
* the driver if the response for request failed to arrive before a
* time-out period or if the request processing * got interrupted due to
* a signal respectively.
*/
enum {
/** A value of 0x00000000 indicates no error i.e. success */
LIO_REQUEST_DONE = 0x00000000,
/** (Major number: 0x0000; Minor Number: 0x0001) */
LIO_REQUEST_PENDING = 0x00000001,
LIO_REQUEST_TIMEOUT = 0x00000003,
};
/*------ Error codes used by firmware (bits 15..0 set by firmware */
#define LIO_FIRMWARE_MAJOR_ERROR_CODE 0x0001
#define LIO_FIRMWARE_STATUS_CODE(status) \
((LIO_FIRMWARE_MAJOR_ERROR_CODE << 16) | (status))
/** Initialize the response lists. The number of response lists to create is
* given by count.
* @param lio_dev - the lio device structure.
*/
void lio_setup_response_list(struct lio_device *lio_dev);
/** Check the status of first entry in the ordered list. If the instruction at
* that entry finished processing or has timed-out, the entry is cleaned.
* @param lio_dev - the lio device structure.
* @return 1 if the ordered list is empty, 0 otherwise.
*/
int lio_process_ordered_list(struct lio_device *lio_dev);
#define LIO_INCR_INSTRQUEUE_PKT_COUNT(lio_dev, iq_no, field, count) \
(((lio_dev)->instr_queue[iq_no]->stats.field) += count)
static inline void
lio_swap_8B_data(uint64_t *data, uint32_t blocks)
{
while (blocks) {
*data = rte_cpu_to_be_64(*data);
blocks--;
data++;
}
}
static inline uint64_t
lio_map_ring(void *buf)
{
rte_iova_t dma_addr;
dma_addr = rte_mbuf_data_iova_default(((struct rte_mbuf *)buf));
return (uint64_t)dma_addr;
}
static inline uint64_t
lio_map_ring_info(struct lio_droq *droq, uint32_t i)
{
rte_iova_t dma_addr;
dma_addr = droq->info_list_dma + (i * LIO_DROQ_INFO_SIZE);
return (uint64_t)dma_addr;
}
static inline int
lio_opcode_slow_path(union octeon_rh *rh)
{
uint16_t subcode1, subcode2;
subcode1 = LIO_OPCODE_SUBCODE(rh->r.opcode, rh->r.subcode);
subcode2 = LIO_OPCODE_SUBCODE(LIO_OPCODE, LIO_OPCODE_NW_DATA);
return subcode2 != subcode1;
}
static inline void
lio_add_sg_size(struct lio_sg_entry *sg_entry,
uint16_t size, uint32_t pos)
{
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
sg_entry->u.size[pos] = size;
#elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
sg_entry->u.size[3 - pos] = size;
#endif
}
/* Macro to increment index.
* Index is incremented by count; if the sum exceeds
* max, index is wrapped-around to the start.
*/
static inline uint32_t
lio_incr_index(uint32_t index, uint32_t count, uint32_t max)
{
if ((index + count) >= max)
index = index + count - max;
else
index += count;
return index;
}
int lio_setup_droq(struct lio_device *lio_dev, int q_no, int num_descs,
int desc_size, struct rte_mempool *mpool,
unsigned int socket_id);
uint16_t lio_dev_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t budget);
void lio_delete_droq_queue(struct lio_device *lio_dev, int oq_no);
void lio_delete_sglist(struct lio_instr_queue *txq);
int lio_setup_sglists(struct lio_device *lio_dev, int iq_no,
int fw_mapped_iq, int num_descs, unsigned int socket_id);
uint16_t lio_dev_xmit_pkts(void *tx_queue, struct rte_mbuf **pkts,
uint16_t nb_pkts);
int lio_wait_for_instr_fetch(struct lio_device *lio_dev);
int lio_setup_iq(struct lio_device *lio_dev, int q_index,
union octeon_txpciq iq_no, uint32_t num_descs, void *app_ctx,
unsigned int socket_id);
int lio_flush_iq(struct lio_device *lio_dev, struct lio_instr_queue *iq);
void lio_delete_instruction_queue(struct lio_device *lio_dev, int iq_no);
/** Setup instruction queue zero for the device
* @param lio_dev which lio device to setup
*
* @return 0 if success. -1 if fails
*/
int lio_setup_instr_queue0(struct lio_device *lio_dev);
void lio_free_instr_queue0(struct lio_device *lio_dev);
void lio_dev_clear_queues(struct rte_eth_dev *eth_dev);
#endif /* _LIO_RXTX_H_ */