numam-dpdk/drivers/common/cnxk/roc_bphy_irq.c
Tomasz Duszynski e267eef7cc common/cnxk: do not switch affinity back and forth
Switching affinity back and forth was used as a mean to pass CPU number
to IRQ registration routine which is an overkill.

Simplify current logic by extending IRQ registration routine parameter
list with a CPU which should run IRQ handler.

Signed-off-by: Tomasz Duszynski <tduszynski@marvell.com>
Reviewed-by: Jakub Palider <jpalider@marvell.com>
Reviewed-by: Jerin Jacob <jerinj@marvell.com>
2022-06-22 08:18:57 +02:00

344 lines
8.0 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#include <fcntl.h>
#include <pthread.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <unistd.h>
#include "roc_api.h"
#include "roc_bphy_irq.h"
struct roc_bphy_irq_usr_data {
uint64_t isr_base;
uint64_t sp;
uint64_t cpu;
uint64_t irq_num;
};
struct roc_bphy_irq_stack {
STAILQ_ENTRY(roc_bphy_irq_stack) entries;
void *sp_buffer;
int cpu;
int inuse;
};
#define ROC_BPHY_MEMZONE_NAME "roc_bphy_mz"
#define ROC_BPHY_CTR_DEV_PATH "/dev/otx-bphy-ctr"
#define ROC_BPHY_IOC_MAGIC 0xF3
#define ROC_BPHY_IOC_SET_BPHY_HANDLER \
_IOW(ROC_BPHY_IOC_MAGIC, 1, struct roc_bphy_irq_usr_data)
#define ROC_BPHY_IOC_CLR_BPHY_HANDLER _IO(ROC_BPHY_IOC_MAGIC, 2)
#define ROC_BPHY_IOC_GET_BPHY_MAX_IRQ _IOR(ROC_BPHY_IOC_MAGIC, 3, uint64_t)
#define ROC_BPHY_IOC_GET_BPHY_BMASK_IRQ _IOR(ROC_BPHY_IOC_MAGIC, 4, uint64_t)
static STAILQ_HEAD(slisthead, roc_bphy_irq_stack)
irq_stacks = STAILQ_HEAD_INITIALIZER(irq_stacks);
/* Note: it is assumed that as for now there is no multiprocess support */
static pthread_mutex_t stacks_mutex = PTHREAD_MUTEX_INITIALIZER;
struct roc_bphy_irq_chip *
roc_bphy_intr_init(void)
{
struct roc_bphy_irq_chip *irq_chip;
uint64_t max_irq, i, avail_irqs;
int fd, ret;
fd = open(ROC_BPHY_CTR_DEV_PATH, O_RDWR | O_SYNC);
if (fd < 0) {
plt_err("Failed to open %s", ROC_BPHY_CTR_DEV_PATH);
return NULL;
}
ret = ioctl(fd, ROC_BPHY_IOC_GET_BPHY_MAX_IRQ, &max_irq);
if (ret < 0) {
plt_err("Failed to get max irq number via ioctl");
goto err_ioctl;
}
ret = ioctl(fd, ROC_BPHY_IOC_GET_BPHY_BMASK_IRQ, &avail_irqs);
if (ret < 0) {
plt_err("Failed to get available irqs bitmask via ioctl");
goto err_ioctl;
}
irq_chip = plt_zmalloc(sizeof(*irq_chip), 0);
if (irq_chip == NULL) {
plt_err("Failed to alloc irq_chip");
goto err_alloc_chip;
}
irq_chip->intfd = fd;
irq_chip->max_irq = max_irq;
irq_chip->avail_irq_bmask = avail_irqs;
irq_chip->irq_vecs =
plt_zmalloc(irq_chip->max_irq * sizeof(*irq_chip->irq_vecs), 0);
if (irq_chip->irq_vecs == NULL) {
plt_err("Failed to alloc irq_chip irq_vecs");
goto err_alloc_irq;
}
irq_chip->mz_name = plt_zmalloc(strlen(ROC_BPHY_MEMZONE_NAME) + 1, 0);
if (irq_chip->mz_name == NULL) {
plt_err("Failed to alloc irq_chip name");
goto err_alloc_name;
}
plt_strlcpy(irq_chip->mz_name, ROC_BPHY_MEMZONE_NAME,
strlen(ROC_BPHY_MEMZONE_NAME) + 1);
for (i = 0; i < irq_chip->max_irq; i++) {
irq_chip->irq_vecs[i].fd = -1;
irq_chip->irq_vecs[i].handler_cpu = -1;
}
return irq_chip;
err_alloc_name:
plt_free(irq_chip->irq_vecs);
err_alloc_irq:
plt_free(irq_chip);
err_ioctl:
err_alloc_chip:
close(fd);
return NULL;
}
void
roc_bphy_intr_fini(struct roc_bphy_irq_chip *irq_chip)
{
if (irq_chip == NULL)
return;
close(irq_chip->intfd);
plt_free(irq_chip->mz_name);
plt_free(irq_chip->irq_vecs);
plt_free(irq_chip);
}
static void
roc_bphy_irq_stack_remove(int cpu)
{
struct roc_bphy_irq_stack *curr_stack;
if (pthread_mutex_lock(&stacks_mutex))
return;
STAILQ_FOREACH(curr_stack, &irq_stacks, entries) {
if (curr_stack->cpu == cpu)
break;
}
if (curr_stack == NULL)
goto leave;
if (curr_stack->inuse > 0)
curr_stack->inuse--;
if (curr_stack->inuse == 0) {
STAILQ_REMOVE(&irq_stacks, curr_stack, roc_bphy_irq_stack,
entries);
plt_free(curr_stack->sp_buffer);
plt_free(curr_stack);
}
leave:
pthread_mutex_unlock(&stacks_mutex);
}
static void *
roc_bphy_irq_stack_get(int cpu)
{
#define ARM_STACK_ALIGNMENT (2 * sizeof(void *))
#define IRQ_ISR_STACK_SIZE 0x200000
struct roc_bphy_irq_stack *curr_stack;
void *retval = NULL;
if (pthread_mutex_lock(&stacks_mutex))
return NULL;
STAILQ_FOREACH(curr_stack, &irq_stacks, entries) {
if (curr_stack->cpu == cpu) {
curr_stack->inuse++;
retval = ((char *)curr_stack->sp_buffer) +
IRQ_ISR_STACK_SIZE;
goto found_stack;
}
}
curr_stack = plt_zmalloc(sizeof(struct roc_bphy_irq_stack), 0);
if (curr_stack == NULL)
goto err_stack;
curr_stack->sp_buffer =
plt_zmalloc(IRQ_ISR_STACK_SIZE * 2, ARM_STACK_ALIGNMENT);
if (curr_stack->sp_buffer == NULL)
goto err_buffer;
curr_stack->cpu = cpu;
curr_stack->inuse = 0;
STAILQ_INSERT_TAIL(&irq_stacks, curr_stack, entries);
retval = ((char *)curr_stack->sp_buffer) + IRQ_ISR_STACK_SIZE;
found_stack:
pthread_mutex_unlock(&stacks_mutex);
return retval;
err_buffer:
plt_free(curr_stack);
err_stack:
pthread_mutex_unlock(&stacks_mutex);
return NULL;
}
void
roc_bphy_intr_handler(unsigned int irq_num)
{
struct roc_bphy_irq_chip *irq_chip;
const struct plt_memzone *mz;
mz = plt_memzone_lookup(ROC_BPHY_MEMZONE_NAME);
if (mz == NULL)
return;
irq_chip = *(struct roc_bphy_irq_chip **)mz->addr;
if (irq_chip == NULL)
return;
if (irq_chip->irq_vecs[irq_num].handler != NULL)
irq_chip->irq_vecs[irq_num].handler(
(int)irq_num, irq_chip->irq_vecs[irq_num].isr_data);
roc_atf_ret();
}
static int
roc_bphy_irq_handler_set(struct roc_bphy_irq_chip *chip, int cpu, int irq_num,
void (*isr)(int irq_num, void *isr_data),
void *isr_data)
{
struct roc_bphy_irq_usr_data irq_usr;
const struct plt_memzone *mz;
int retval, rc;
char *env;
mz = plt_memzone_lookup(chip->mz_name);
if (mz == NULL) {
/* what we want is just a pointer to chip, not object itself */
mz = plt_memzone_reserve_cache_align(chip->mz_name,
sizeof(chip));
if (mz == NULL)
return -ENOMEM;
}
if (chip->irq_vecs[irq_num].handler != NULL)
return -EINVAL;
irq_usr.isr_base = (uint64_t)roc_bphy_intr_handler;
irq_usr.sp = (uint64_t)roc_bphy_irq_stack_get(cpu);
irq_usr.cpu = cpu;
if (irq_usr.sp == 0)
return -ENOMEM;
/* On simulator memory locking operation takes much time. We want
* to skip this when running in such an environment.
*/
env = getenv("BPHY_INTR_MLOCK_DISABLE");
if (env == NULL) {
rc = mlockall(MCL_CURRENT | MCL_FUTURE);
if (rc < 0)
plt_warn("Failed to lock memory into RAM");
}
*((struct roc_bphy_irq_chip **)(mz->addr)) = chip;
irq_usr.irq_num = irq_num;
chip->irq_vecs[irq_num].handler_cpu = cpu;
chip->irq_vecs[irq_num].handler = isr;
chip->irq_vecs[irq_num].isr_data = isr_data;
retval = ioctl(chip->intfd, ROC_BPHY_IOC_SET_BPHY_HANDLER, &irq_usr);
if (retval != 0) {
roc_bphy_irq_stack_remove(cpu);
chip->irq_vecs[irq_num].handler = NULL;
chip->irq_vecs[irq_num].handler_cpu = -1;
} else {
chip->n_handlers++;
}
return retval;
}
bool
roc_bphy_intr_available(struct roc_bphy_irq_chip *irq_chip, int irq_num)
{
if (irq_num < 0 || (uint64_t)irq_num >= irq_chip->max_irq)
return false;
return irq_chip->avail_irq_bmask & BIT(irq_num);
}
uint64_t
roc_bphy_intr_max_get(struct roc_bphy_irq_chip *irq_chip)
{
return irq_chip->max_irq;
}
int
roc_bphy_intr_clear(struct roc_bphy_irq_chip *chip, int irq_num)
{
const struct plt_memzone *mz;
int retval;
if (chip == NULL)
return -EINVAL;
if ((uint64_t)irq_num >= chip->max_irq || irq_num < 0)
return -EINVAL;
if (!roc_bphy_intr_available(chip, irq_num))
return -ENOTSUP;
if (chip->irq_vecs[irq_num].handler == NULL)
return -EINVAL;
mz = plt_memzone_lookup(chip->mz_name);
if (mz == NULL)
return -ENXIO;
retval = ioctl(chip->intfd, ROC_BPHY_IOC_CLR_BPHY_HANDLER, irq_num);
if (retval == 0) {
roc_bphy_irq_stack_remove(chip->irq_vecs[irq_num].handler_cpu);
chip->n_handlers--;
chip->irq_vecs[irq_num].isr_data = NULL;
chip->irq_vecs[irq_num].handler = NULL;
chip->irq_vecs[irq_num].handler_cpu = -1;
if (chip->n_handlers == 0) {
retval = plt_memzone_free(mz);
if (retval < 0)
plt_err("Failed to free memzone: irq %d",
irq_num);
}
} else {
plt_err("Failed to clear bphy interrupt handler");
}
return retval;
}
int
roc_bphy_intr_register(struct roc_bphy_irq_chip *irq_chip,
struct roc_bphy_intr *intr)
{
int ret;
if (!roc_bphy_intr_available(irq_chip, intr->irq_num))
return -ENOTSUP;
ret = roc_bphy_irq_handler_set(irq_chip, intr->cpu, intr->irq_num,
intr->intr_handler, intr->isr_data);
return ret;
}