c44d09811b
rte_fbarray is a simple indexed array stored in shared memory via mapping files into memory. Rationale for its existence is the following: since we are going to map memory page-by-page, there could be quite a lot of memory segments to keep track of (for smaller page sizes, page count can easily reach thousands). We can't really make page lists truly dynamic and infinitely expandable, because that involves reallocating memory (which is a big no-no in multiprocess). What we can do instead is have a maximum capacity as something really, really large, and decide at allocation time how big the array is going to be. We map the entire file into memory, which makes it possible to use fbarray as shared memory, provided the structure itself is allocated in shared memory. Per-fbarray locking is also used to avoid index data races (but not contents data races - that is up to user application to synchronize). In addition, in understanding that we will frequently need to scan this array for free space and iterating over array linearly can become slow, rte_fbarray provides facilities to index array's usage. The following use cases are covered: - find next free/used slot (useful either for adding new elements to fbarray, or walking the list) - find starting index for next N free/used slots (useful for when we want to allocate chunk of VA-contiguous memory composed of several pages) - find how many contiguous free/used slots there are, starting from specified index (useful for when we want to figure out how many pages we have until next hole in allocated memory, to speed up some bulk operations where we would otherwise have to walk the array and add pages one by one) This is accomplished by storing a usage mask in-memory, right after the data section of the array, and using some bit-level magic to figure out the info we need. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
860 lines
19 KiB
C
860 lines
19 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017-2018 Intel Corporation
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <sys/mman.h>
|
|
#include <stdint.h>
|
|
#include <errno.h>
|
|
#include <sys/file.h>
|
|
#include <string.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_tailq.h>
|
|
|
|
#include "eal_filesystem.h"
|
|
#include "eal_private.h"
|
|
|
|
#include "rte_fbarray.h"
|
|
|
|
#define MASK_SHIFT 6ULL
|
|
#define MASK_ALIGN (1 << MASK_SHIFT)
|
|
#define MASK_LEN_TO_IDX(x) ((x) >> MASK_SHIFT)
|
|
#define MASK_LEN_TO_MOD(x) ((x) - RTE_ALIGN_FLOOR(x, MASK_ALIGN))
|
|
#define MASK_GET_IDX(idx, mod) ((idx << MASK_SHIFT) + mod)
|
|
|
|
/*
|
|
* This is a mask that is always stored at the end of array, to provide fast
|
|
* way of finding free/used spots without looping through each element.
|
|
*/
|
|
|
|
struct used_mask {
|
|
int n_masks;
|
|
uint64_t data[];
|
|
};
|
|
|
|
static size_t
|
|
calc_mask_size(int len)
|
|
{
|
|
/* mask must be multiple of MASK_ALIGN, even though length of array
|
|
* itself may not be aligned on that boundary.
|
|
*/
|
|
len = RTE_ALIGN_CEIL(len, MASK_ALIGN);
|
|
return sizeof(struct used_mask) +
|
|
sizeof(uint64_t) * MASK_LEN_TO_IDX(len);
|
|
}
|
|
|
|
static size_t
|
|
calc_data_size(size_t page_sz, int elt_sz, int len)
|
|
{
|
|
size_t data_sz = elt_sz * len;
|
|
size_t msk_sz = calc_mask_size(len);
|
|
return RTE_ALIGN_CEIL(data_sz + msk_sz, page_sz);
|
|
}
|
|
|
|
static struct used_mask *
|
|
get_used_mask(void *data, int elt_sz, int len)
|
|
{
|
|
return (struct used_mask *) RTE_PTR_ADD(data, elt_sz * len);
|
|
}
|
|
|
|
static int
|
|
resize_and_map(int fd, void *addr, size_t len)
|
|
{
|
|
char path[PATH_MAX];
|
|
void *map_addr;
|
|
|
|
if (ftruncate(fd, len)) {
|
|
RTE_LOG(ERR, EAL, "Cannot truncate %s\n", path);
|
|
/* pass errno up the chain */
|
|
rte_errno = errno;
|
|
return -1;
|
|
}
|
|
|
|
map_addr = mmap(addr, len, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_FIXED, fd, 0);
|
|
if (map_addr != addr) {
|
|
RTE_LOG(ERR, EAL, "mmap() failed: %s\n", strerror(errno));
|
|
/* pass errno up the chain */
|
|
rte_errno = errno;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
find_next_n(const struct rte_fbarray *arr, int start, int n, bool used)
|
|
{
|
|
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
|
|
arr->len);
|
|
int msk_idx, lookahead_idx, first, first_mod;
|
|
int last, last_mod, last_msk;
|
|
uint64_t ignore_msk;
|
|
|
|
/*
|
|
* mask only has granularity of MASK_ALIGN, but start may not be aligned
|
|
* on that boundary, so construct a special mask to exclude anything we
|
|
* don't want to see to avoid confusing ctz.
|
|
*/
|
|
first = MASK_LEN_TO_IDX(start);
|
|
first_mod = MASK_LEN_TO_MOD(start);
|
|
ignore_msk = ~((1ULL << first_mod) - 1);
|
|
|
|
/* array length may not be aligned, so calculate ignore mask for last
|
|
* mask index.
|
|
*/
|
|
last = MASK_LEN_TO_IDX(arr->len);
|
|
last_mod = MASK_LEN_TO_MOD(arr->len);
|
|
last_msk = ~(-(1ULL) << last_mod);
|
|
|
|
for (msk_idx = first; msk_idx < msk->n_masks; msk_idx++) {
|
|
uint64_t cur_msk, lookahead_msk;
|
|
int run_start, clz, left;
|
|
bool found = false;
|
|
/*
|
|
* The process of getting n consecutive bits for arbitrary n is
|
|
* a bit involved, but here it is in a nutshell:
|
|
*
|
|
* 1. let n be the number of consecutive bits we're looking for
|
|
* 2. check if n can fit in one mask, and if so, do n-1
|
|
* rshift-ands to see if there is an appropriate run inside
|
|
* our current mask
|
|
* 2a. if we found a run, bail out early
|
|
* 2b. if we didn't find a run, proceed
|
|
* 3. invert the mask and count leading zeroes (that is, count
|
|
* how many consecutive set bits we had starting from the
|
|
* end of current mask) as k
|
|
* 3a. if k is 0, continue to next mask
|
|
* 3b. if k is not 0, we have a potential run
|
|
* 4. to satisfy our requirements, next mask must have n-k
|
|
* consecutive set bits right at the start, so we will do
|
|
* (n-k-1) rshift-ands and check if first bit is set.
|
|
*
|
|
* Step 4 will need to be repeated if (n-k) > MASK_ALIGN until
|
|
* we either run out of masks, lose the run, or find what we
|
|
* were looking for.
|
|
*/
|
|
cur_msk = msk->data[msk_idx];
|
|
left = n;
|
|
|
|
/* if we're looking for free spaces, invert the mask */
|
|
if (!used)
|
|
cur_msk = ~cur_msk;
|
|
|
|
/* combine current ignore mask with last index ignore mask */
|
|
if (msk_idx == last)
|
|
ignore_msk |= last_msk;
|
|
|
|
/* if we have an ignore mask, ignore once */
|
|
if (ignore_msk) {
|
|
cur_msk &= ignore_msk;
|
|
ignore_msk = 0;
|
|
}
|
|
|
|
/* if n can fit in within a single mask, do a search */
|
|
if (n <= MASK_ALIGN) {
|
|
uint64_t tmp_msk = cur_msk;
|
|
int s_idx;
|
|
for (s_idx = 0; s_idx < n - 1; s_idx++)
|
|
tmp_msk &= tmp_msk >> 1ULL;
|
|
/* we found what we were looking for */
|
|
if (tmp_msk != 0) {
|
|
run_start = __builtin_ctzll(tmp_msk);
|
|
return MASK_GET_IDX(msk_idx, run_start);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* we didn't find our run within the mask, or n > MASK_ALIGN,
|
|
* so we're going for plan B.
|
|
*/
|
|
|
|
/* count leading zeroes on inverted mask */
|
|
clz = __builtin_clzll(~cur_msk);
|
|
|
|
/* if there aren't any runs at the end either, just continue */
|
|
if (clz == 0)
|
|
continue;
|
|
|
|
/* we have a partial run at the end, so try looking ahead */
|
|
run_start = MASK_ALIGN - clz;
|
|
left -= clz;
|
|
|
|
for (lookahead_idx = msk_idx + 1; lookahead_idx < msk->n_masks;
|
|
lookahead_idx++) {
|
|
int s_idx, need;
|
|
lookahead_msk = msk->data[lookahead_idx];
|
|
|
|
/* if we're looking for free space, invert the mask */
|
|
if (!used)
|
|
lookahead_msk = ~lookahead_msk;
|
|
|
|
/* figure out how many consecutive bits we need here */
|
|
need = RTE_MIN(left, MASK_ALIGN);
|
|
|
|
for (s_idx = 0; s_idx < need - 1; s_idx++)
|
|
lookahead_msk &= lookahead_msk >> 1ULL;
|
|
|
|
/* if first bit is not set, we've lost the run */
|
|
if ((lookahead_msk & 1) == 0) {
|
|
/*
|
|
* we've scanned this far, so we know there are
|
|
* no runs in the space we've lookahead-scanned
|
|
* as well, so skip that on next iteration.
|
|
*/
|
|
ignore_msk = ~((1ULL << need) - 1);
|
|
msk_idx = lookahead_idx;
|
|
break;
|
|
}
|
|
|
|
left -= need;
|
|
|
|
/* check if we've found what we were looking for */
|
|
if (left == 0) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* we didn't find anything, so continue */
|
|
if (!found)
|
|
continue;
|
|
|
|
return MASK_GET_IDX(msk_idx, run_start);
|
|
}
|
|
/* we didn't find anything */
|
|
rte_errno = used ? -ENOENT : -ENOSPC;
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
find_next(const struct rte_fbarray *arr, int start, bool used)
|
|
{
|
|
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
|
|
arr->len);
|
|
int idx, first, first_mod;
|
|
int last, last_mod, last_msk;
|
|
uint64_t ignore_msk;
|
|
|
|
/*
|
|
* mask only has granularity of MASK_ALIGN, but start may not be aligned
|
|
* on that boundary, so construct a special mask to exclude anything we
|
|
* don't want to see to avoid confusing ctz.
|
|
*/
|
|
first = MASK_LEN_TO_IDX(start);
|
|
first_mod = MASK_LEN_TO_MOD(start);
|
|
ignore_msk = ~((1ULL << first_mod) - 1ULL);
|
|
|
|
/* array length may not be aligned, so calculate ignore mask for last
|
|
* mask index.
|
|
*/
|
|
last = MASK_LEN_TO_IDX(arr->len);
|
|
last_mod = MASK_LEN_TO_MOD(arr->len);
|
|
last_msk = ~(-(1ULL) << last_mod);
|
|
|
|
for (idx = first; idx < msk->n_masks; idx++) {
|
|
uint64_t cur = msk->data[idx];
|
|
int found;
|
|
|
|
/* if we're looking for free entries, invert mask */
|
|
if (!used)
|
|
cur = ~cur;
|
|
|
|
if (idx == last)
|
|
cur &= last_msk;
|
|
|
|
/* ignore everything before start on first iteration */
|
|
if (idx == first)
|
|
cur &= ignore_msk;
|
|
|
|
/* check if we have any entries */
|
|
if (cur == 0)
|
|
continue;
|
|
|
|
/*
|
|
* find first set bit - that will correspond to whatever it is
|
|
* that we're looking for.
|
|
*/
|
|
found = __builtin_ctzll(cur);
|
|
return MASK_GET_IDX(idx, found);
|
|
}
|
|
/* we didn't find anything */
|
|
rte_errno = used ? -ENOENT : -ENOSPC;
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
find_contig(const struct rte_fbarray *arr, int start, bool used)
|
|
{
|
|
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
|
|
arr->len);
|
|
int idx, first, first_mod;
|
|
int last, last_mod, last_msk;
|
|
int need_len, result = 0;
|
|
|
|
/* array length may not be aligned, so calculate ignore mask for last
|
|
* mask index.
|
|
*/
|
|
last = MASK_LEN_TO_IDX(arr->len);
|
|
last_mod = MASK_LEN_TO_MOD(arr->len);
|
|
last_msk = ~(-(1ULL) << last_mod);
|
|
|
|
first = MASK_LEN_TO_IDX(start);
|
|
first_mod = MASK_LEN_TO_MOD(start);
|
|
for (idx = first; idx < msk->n_masks; idx++, result += need_len) {
|
|
uint64_t cur = msk->data[idx];
|
|
int run_len;
|
|
|
|
need_len = MASK_ALIGN;
|
|
|
|
/* if we're looking for free entries, invert mask */
|
|
if (!used)
|
|
cur = ~cur;
|
|
|
|
/* if this is last mask, ignore everything after last bit */
|
|
if (idx == last)
|
|
cur &= last_msk;
|
|
|
|
/* ignore everything before start on first iteration */
|
|
if (idx == first) {
|
|
cur >>= first_mod;
|
|
/* at the start, we don't need the full mask len */
|
|
need_len -= first_mod;
|
|
}
|
|
|
|
/* we will be looking for zeroes, so invert the mask */
|
|
cur = ~cur;
|
|
|
|
/* if mask is zero, we have a complete run */
|
|
if (cur == 0)
|
|
continue;
|
|
|
|
/*
|
|
* see if current run ends before mask end.
|
|
*/
|
|
run_len = __builtin_ctzll(cur);
|
|
|
|
/* add however many zeroes we've had in the last run and quit */
|
|
if (run_len < need_len) {
|
|
result += run_len;
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
set_used(struct rte_fbarray *arr, int idx, bool used)
|
|
{
|
|
struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
|
|
uint64_t msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
|
|
int msk_idx = MASK_LEN_TO_IDX(idx);
|
|
bool already_used;
|
|
int ret = -1;
|
|
|
|
if (arr == NULL || idx < 0 || idx >= arr->len) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
ret = 0;
|
|
|
|
/* prevent array from changing under us */
|
|
rte_rwlock_write_lock(&arr->rwlock);
|
|
|
|
already_used = (msk->data[msk_idx] & msk_bit) != 0;
|
|
|
|
/* nothing to be done */
|
|
if (used == already_used)
|
|
goto out;
|
|
|
|
if (used) {
|
|
msk->data[msk_idx] |= msk_bit;
|
|
arr->count++;
|
|
} else {
|
|
msk->data[msk_idx] &= ~msk_bit;
|
|
arr->count--;
|
|
}
|
|
out:
|
|
rte_rwlock_write_unlock(&arr->rwlock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
fully_validate(const char *name, unsigned int elt_sz, unsigned int len)
|
|
{
|
|
if (name == NULL || elt_sz == 0 || len == 0) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (strnlen(name, RTE_FBARRAY_NAME_LEN) == RTE_FBARRAY_NAME_LEN) {
|
|
rte_errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_init(struct rte_fbarray *arr, const char *name, int len, int elt_sz)
|
|
{
|
|
size_t page_sz, mmap_len;
|
|
char path[PATH_MAX];
|
|
struct used_mask *msk;
|
|
void *data = NULL;
|
|
int fd = -1;
|
|
|
|
if (arr == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (fully_validate(name, elt_sz, len))
|
|
return -1;
|
|
|
|
page_sz = sysconf(_SC_PAGESIZE);
|
|
|
|
/* calculate our memory limits */
|
|
mmap_len = calc_data_size(page_sz, elt_sz, len);
|
|
|
|
data = eal_get_virtual_area(NULL, &mmap_len, page_sz, 0, 0);
|
|
if (data == NULL)
|
|
goto fail;
|
|
|
|
eal_get_fbarray_path(path, sizeof(path), name);
|
|
|
|
/*
|
|
* Each fbarray is unique to process namespace, i.e. the filename
|
|
* depends on process prefix. Try to take out a lock and see if we
|
|
* succeed. If we don't, someone else is using it already.
|
|
*/
|
|
fd = open(path, O_CREAT | O_RDWR, 0600);
|
|
if (fd < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): couldn't open %s: %s\n", __func__,
|
|
path, strerror(errno));
|
|
rte_errno = errno;
|
|
goto fail;
|
|
} else if (flock(fd, LOCK_EX | LOCK_NB)) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): couldn't lock %s: %s\n", __func__,
|
|
path, strerror(errno));
|
|
rte_errno = EBUSY;
|
|
goto fail;
|
|
}
|
|
|
|
/* take out a non-exclusive lock, so that other processes could still
|
|
* attach to it, but no other process could reinitialize it.
|
|
*/
|
|
if (flock(fd, LOCK_SH | LOCK_NB)) {
|
|
rte_errno = errno;
|
|
goto fail;
|
|
}
|
|
|
|
if (resize_and_map(fd, data, mmap_len))
|
|
goto fail;
|
|
|
|
/* we've mmap'ed the file, we can now close the fd */
|
|
close(fd);
|
|
|
|
/* initialize the data */
|
|
memset(data, 0, mmap_len);
|
|
|
|
/* populate data structure */
|
|
snprintf(arr->name, sizeof(arr->name), "%s", name);
|
|
arr->data = data;
|
|
arr->len = len;
|
|
arr->elt_sz = elt_sz;
|
|
arr->count = 0;
|
|
|
|
msk = get_used_mask(data, elt_sz, len);
|
|
msk->n_masks = MASK_LEN_TO_IDX(RTE_ALIGN_CEIL(len, MASK_ALIGN));
|
|
|
|
rte_rwlock_init(&arr->rwlock);
|
|
|
|
return 0;
|
|
fail:
|
|
if (data)
|
|
munmap(data, mmap_len);
|
|
if (fd >= 0)
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_attach(struct rte_fbarray *arr)
|
|
{
|
|
size_t page_sz, mmap_len;
|
|
char path[PATH_MAX];
|
|
void *data = NULL;
|
|
int fd = -1;
|
|
|
|
if (arr == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* we don't need to synchronize attach as two values we need (element
|
|
* size and array length) are constant for the duration of life of
|
|
* the array, so the parts we care about will not race.
|
|
*/
|
|
|
|
if (fully_validate(arr->name, arr->elt_sz, arr->len))
|
|
return -1;
|
|
|
|
page_sz = sysconf(_SC_PAGESIZE);
|
|
|
|
mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
|
|
|
|
data = eal_get_virtual_area(arr->data, &mmap_len, page_sz, 0, 0);
|
|
if (data == NULL)
|
|
goto fail;
|
|
|
|
eal_get_fbarray_path(path, sizeof(path), arr->name);
|
|
|
|
fd = open(path, O_RDWR);
|
|
if (fd < 0) {
|
|
rte_errno = errno;
|
|
goto fail;
|
|
}
|
|
|
|
/* lock the file, to let others know we're using it */
|
|
if (flock(fd, LOCK_SH | LOCK_NB)) {
|
|
rte_errno = errno;
|
|
goto fail;
|
|
}
|
|
|
|
if (resize_and_map(fd, data, mmap_len))
|
|
goto fail;
|
|
|
|
close(fd);
|
|
|
|
/* we're done */
|
|
|
|
return 0;
|
|
fail:
|
|
if (data)
|
|
munmap(data, mmap_len);
|
|
if (fd >= 0)
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_detach(struct rte_fbarray *arr)
|
|
{
|
|
if (arr == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* we don't need to synchronize detach as two values we need (element
|
|
* size and total capacity) are constant for the duration of life of
|
|
* the array, so the parts we care about will not race. if the user is
|
|
* detaching while doing something else in the same process, we can't
|
|
* really do anything about it, things will blow up either way.
|
|
*/
|
|
|
|
size_t page_sz = sysconf(_SC_PAGESIZE);
|
|
|
|
/* this may already be unmapped (e.g. repeated call from previously
|
|
* failed destroy(), but this is on user, we can't (easily) know if this
|
|
* is still mapped.
|
|
*/
|
|
munmap(arr->data, calc_data_size(page_sz, arr->elt_sz, arr->len));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_destroy(struct rte_fbarray *arr)
|
|
{
|
|
int fd, ret;
|
|
char path[PATH_MAX];
|
|
|
|
ret = rte_fbarray_detach(arr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* try deleting the file */
|
|
eal_get_fbarray_path(path, sizeof(path), arr->name);
|
|
|
|
fd = open(path, O_RDONLY);
|
|
if (flock(fd, LOCK_EX | LOCK_NB)) {
|
|
RTE_LOG(DEBUG, EAL, "Cannot destroy fbarray - another process is using it\n");
|
|
rte_errno = EBUSY;
|
|
ret = -1;
|
|
} else {
|
|
ret = 0;
|
|
unlink(path);
|
|
memset(arr, 0, sizeof(*arr));
|
|
}
|
|
close(fd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void * __rte_experimental
|
|
rte_fbarray_get(const struct rte_fbarray *arr, int idx)
|
|
{
|
|
void *ret = NULL;
|
|
if (arr == NULL || idx < 0) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
if (idx >= arr->len) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
ret = RTE_PTR_ADD(arr->data, idx * arr->elt_sz);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_set_used(struct rte_fbarray *arr, int idx)
|
|
{
|
|
return set_used(arr, idx, true);
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_set_free(struct rte_fbarray *arr, int idx)
|
|
{
|
|
return set_used(arr, idx, false);
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_is_used(struct rte_fbarray *arr, int idx)
|
|
{
|
|
struct used_mask *msk;
|
|
int msk_idx;
|
|
uint64_t msk_bit;
|
|
int ret = -1;
|
|
|
|
if (arr == NULL || idx < 0 || idx >= arr->len) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* prevent array from changing under us */
|
|
rte_rwlock_read_lock(&arr->rwlock);
|
|
|
|
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
|
|
msk_idx = MASK_LEN_TO_IDX(idx);
|
|
msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
|
|
|
|
ret = (msk->data[msk_idx] & msk_bit) != 0;
|
|
|
|
rte_rwlock_read_unlock(&arr->rwlock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_find_next_free(struct rte_fbarray *arr, int start)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (arr == NULL || start < 0 || start >= arr->len) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* prevent array from changing under us */
|
|
rte_rwlock_read_lock(&arr->rwlock);
|
|
|
|
if (arr->len == arr->count) {
|
|
rte_errno = ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
ret = find_next(arr, start, false);
|
|
out:
|
|
rte_rwlock_read_unlock(&arr->rwlock);
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_find_next_used(struct rte_fbarray *arr, int start)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (arr == NULL || start < 0 || start >= arr->len) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* prevent array from changing under us */
|
|
rte_rwlock_read_lock(&arr->rwlock);
|
|
|
|
if (arr->count == 0) {
|
|
rte_errno = ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = find_next(arr, start, true);
|
|
out:
|
|
rte_rwlock_read_unlock(&arr->rwlock);
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_find_next_n_free(struct rte_fbarray *arr, int start, int n)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (arr == NULL || start < 0 || start >= arr->len ||
|
|
n < 0 || n > arr->len) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* prevent array from changing under us */
|
|
rte_rwlock_read_lock(&arr->rwlock);
|
|
|
|
if (arr->len == arr->count || arr->len - arr->count < n) {
|
|
rte_errno = ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
ret = find_next_n(arr, start, n, false);
|
|
out:
|
|
rte_rwlock_read_unlock(&arr->rwlock);
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_find_next_n_used(struct rte_fbarray *arr, int start, int n)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (arr == NULL || start < 0 || start >= arr->len ||
|
|
n < 0 || n > arr->len) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* prevent array from changing under us */
|
|
rte_rwlock_read_lock(&arr->rwlock);
|
|
|
|
if (arr->count < n) {
|
|
rte_errno = ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = find_next_n(arr, start, n, true);
|
|
out:
|
|
rte_rwlock_read_unlock(&arr->rwlock);
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_find_contig_free(struct rte_fbarray *arr, int start)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (arr == NULL || start < 0 || start >= arr->len) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* prevent array from changing under us */
|
|
rte_rwlock_read_lock(&arr->rwlock);
|
|
|
|
if (arr->len == arr->count) {
|
|
rte_errno = ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
if (arr->count == 0) {
|
|
ret = arr->len - start;
|
|
goto out;
|
|
}
|
|
|
|
ret = find_contig(arr, start, false);
|
|
out:
|
|
rte_rwlock_read_unlock(&arr->rwlock);
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_find_contig_used(struct rte_fbarray *arr, int start)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (arr == NULL || start < 0 || start >= arr->len) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* prevent array from changing under us */
|
|
rte_rwlock_read_lock(&arr->rwlock);
|
|
|
|
ret = find_contig(arr, start, true);
|
|
|
|
rte_rwlock_read_unlock(&arr->rwlock);
|
|
return ret;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_fbarray_find_idx(const struct rte_fbarray *arr, const void *elt)
|
|
{
|
|
void *end;
|
|
int ret = -1;
|
|
|
|
/*
|
|
* no need to synchronize as it doesn't matter if underlying data
|
|
* changes - we're doing pointer arithmetic here.
|
|
*/
|
|
|
|
if (arr == NULL || elt == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
end = RTE_PTR_ADD(arr->data, arr->elt_sz * arr->len);
|
|
if (elt < arr->data || elt >= end) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
ret = RTE_PTR_DIFF(elt, arr->data) / arr->elt_sz;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __rte_experimental
|
|
rte_fbarray_dump_metadata(struct rte_fbarray *arr, FILE *f)
|
|
{
|
|
struct used_mask *msk;
|
|
int i;
|
|
|
|
if (arr == NULL || f == NULL) {
|
|
rte_errno = EINVAL;
|
|
return;
|
|
}
|
|
|
|
if (fully_validate(arr->name, arr->elt_sz, arr->len)) {
|
|
fprintf(f, "Invalid file-backed array\n");
|
|
goto out;
|
|
}
|
|
|
|
/* prevent array from changing under us */
|
|
rte_rwlock_read_lock(&arr->rwlock);
|
|
|
|
fprintf(f, "File-backed array: %s\n", arr->name);
|
|
fprintf(f, "size: %i occupied: %i elt_sz: %i\n",
|
|
arr->len, arr->count, arr->elt_sz);
|
|
|
|
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
|
|
|
|
for (i = 0; i < msk->n_masks; i++)
|
|
fprintf(f, "msk idx %i: 0x%016" PRIx64 "\n", i, msk->data[i]);
|
|
out:
|
|
rte_rwlock_read_unlock(&arr->rwlock);
|
|
}
|