3c60274c09
Skip tests which are not yet supported for Windows: - The libraries that tests depend on are not enabled on Windows yet - The tests can compile but with issue still under investigation * test_func_reentrancy: Windows EAL has no protection against repeated calls. * test_lcores: Execution enters an infinite loops, requires investigation. * test_rcu_qsbr_perf: Execution hangs on Windows, requires investigation. Signed-off-by: Jie Zhou <jizh@linux.microsoft.com> Signed-off-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com> Acked-by: Tyler Retzlaff <roretzla@linux.microsoft.com>
1757 lines
42 KiB
C
1757 lines
42 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
|
|
#include "test.h"
|
|
|
|
#include <rte_string_fns.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_ip.h>
|
|
|
|
#ifdef RTE_EXEC_ENV_WINDOWS
|
|
static int
|
|
test_acl(void)
|
|
{
|
|
printf("ACL not supported on Windows, skipping test\n");
|
|
return TEST_SKIPPED;
|
|
}
|
|
|
|
#else
|
|
#include <rte_acl.h>
|
|
#include <rte_common.h>
|
|
|
|
#include "test_acl.h"
|
|
|
|
#define BIT_SIZEOF(x) (sizeof(x) * CHAR_BIT)
|
|
|
|
#define LEN RTE_ACL_MAX_CATEGORIES
|
|
|
|
RTE_ACL_RULE_DEF(acl_ipv4vlan_rule, RTE_ACL_IPV4VLAN_NUM_FIELDS);
|
|
|
|
struct rte_acl_param acl_param = {
|
|
.name = "acl_ctx",
|
|
.socket_id = SOCKET_ID_ANY,
|
|
.rule_size = RTE_ACL_IPV4VLAN_RULE_SZ,
|
|
.max_rule_num = 0x30000,
|
|
};
|
|
|
|
struct rte_acl_ipv4vlan_rule acl_rule = {
|
|
.data = { .priority = 1, .category_mask = 0xff },
|
|
.src_port_low = 0,
|
|
.src_port_high = UINT16_MAX,
|
|
.dst_port_low = 0,
|
|
.dst_port_high = UINT16_MAX,
|
|
};
|
|
|
|
const uint32_t ipv4_7tuple_layout[RTE_ACL_IPV4VLAN_NUM] = {
|
|
offsetof(struct ipv4_7tuple, proto),
|
|
offsetof(struct ipv4_7tuple, vlan),
|
|
offsetof(struct ipv4_7tuple, ip_src),
|
|
offsetof(struct ipv4_7tuple, ip_dst),
|
|
offsetof(struct ipv4_7tuple, port_src),
|
|
};
|
|
|
|
|
|
/* byteswap to cpu or network order */
|
|
static void
|
|
bswap_test_data(struct ipv4_7tuple *data, int len, int to_be)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
|
|
if (to_be) {
|
|
/* swap all bytes so that they are in network order */
|
|
data[i].ip_dst = rte_cpu_to_be_32(data[i].ip_dst);
|
|
data[i].ip_src = rte_cpu_to_be_32(data[i].ip_src);
|
|
data[i].port_dst = rte_cpu_to_be_16(data[i].port_dst);
|
|
data[i].port_src = rte_cpu_to_be_16(data[i].port_src);
|
|
data[i].vlan = rte_cpu_to_be_16(data[i].vlan);
|
|
data[i].domain = rte_cpu_to_be_16(data[i].domain);
|
|
} else {
|
|
data[i].ip_dst = rte_be_to_cpu_32(data[i].ip_dst);
|
|
data[i].ip_src = rte_be_to_cpu_32(data[i].ip_src);
|
|
data[i].port_dst = rte_be_to_cpu_16(data[i].port_dst);
|
|
data[i].port_src = rte_be_to_cpu_16(data[i].port_src);
|
|
data[i].vlan = rte_be_to_cpu_16(data[i].vlan);
|
|
data[i].domain = rte_be_to_cpu_16(data[i].domain);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
acl_ipv4vlan_check_rule(const struct rte_acl_ipv4vlan_rule *rule)
|
|
{
|
|
if (rule->src_port_low > rule->src_port_high ||
|
|
rule->dst_port_low > rule->dst_port_high ||
|
|
rule->src_mask_len > BIT_SIZEOF(rule->src_addr) ||
|
|
rule->dst_mask_len > BIT_SIZEOF(rule->dst_addr))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
acl_ipv4vlan_convert_rule(const struct rte_acl_ipv4vlan_rule *ri,
|
|
struct acl_ipv4vlan_rule *ro)
|
|
{
|
|
ro->data = ri->data;
|
|
|
|
ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].value.u8 = ri->proto;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].value.u16 = ri->vlan;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].value.u16 = ri->domain;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].value.u32 = ri->src_addr;
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].value.u32 = ri->dst_addr;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].value.u16 = ri->src_port_low;
|
|
ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].value.u16 = ri->dst_port_low;
|
|
|
|
ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].mask_range.u8 = ri->proto_mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].mask_range.u16 = ri->vlan_mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].mask_range.u16 =
|
|
ri->domain_mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32 =
|
|
ri->src_mask_len;
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32 = ri->dst_mask_len;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].mask_range.u16 =
|
|
ri->src_port_high;
|
|
ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].mask_range.u16 =
|
|
ri->dst_port_high;
|
|
}
|
|
|
|
/*
|
|
* Add ipv4vlan rules to an existing ACL context.
|
|
* This function is not multi-thread safe.
|
|
*
|
|
* @param ctx
|
|
* ACL context to add patterns to.
|
|
* @param rules
|
|
* Array of rules to add to the ACL context.
|
|
* Note that all fields in rte_acl_ipv4vlan_rule structures are expected
|
|
* to be in host byte order.
|
|
* @param num
|
|
* Number of elements in the input array of rules.
|
|
* @return
|
|
* - -ENOMEM if there is no space in the ACL context for these rules.
|
|
* - -EINVAL if the parameters are invalid.
|
|
* - Zero if operation completed successfully.
|
|
*/
|
|
static int
|
|
rte_acl_ipv4vlan_add_rules(struct rte_acl_ctx *ctx,
|
|
const struct rte_acl_ipv4vlan_rule *rules,
|
|
uint32_t num)
|
|
{
|
|
int32_t rc;
|
|
uint32_t i;
|
|
struct acl_ipv4vlan_rule rv;
|
|
|
|
if (ctx == NULL || rules == NULL)
|
|
return -EINVAL;
|
|
|
|
/* check input rules. */
|
|
for (i = 0; i != num; i++) {
|
|
rc = acl_ipv4vlan_check_rule(rules + i);
|
|
if (rc != 0) {
|
|
RTE_LOG(ERR, ACL, "%s: rule #%u is invalid\n",
|
|
__func__, i + 1);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* perform conversion to the internal format and add to the context. */
|
|
for (i = 0, rc = 0; i != num && rc == 0; i++) {
|
|
acl_ipv4vlan_convert_rule(rules + i, &rv);
|
|
rc = rte_acl_add_rules(ctx, (struct rte_acl_rule *)&rv, 1);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
acl_ipv4vlan_config(struct rte_acl_config *cfg,
|
|
const uint32_t layout[RTE_ACL_IPV4VLAN_NUM],
|
|
uint32_t num_categories)
|
|
{
|
|
static const struct rte_acl_field_def
|
|
ipv4_defs[RTE_ACL_IPV4VLAN_NUM_FIELDS] = {
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_BITMASK,
|
|
.size = sizeof(uint8_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_PROTO_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_PROTO,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_BITMASK,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_VLAN1_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_VLAN,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_BITMASK,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_VLAN2_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_VLAN,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_MASK,
|
|
.size = sizeof(uint32_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_SRC_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_SRC,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_MASK,
|
|
.size = sizeof(uint32_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_DST_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_DST,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_RANGE,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_SRCP_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_PORTS,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_RANGE,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_DSTP_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_PORTS,
|
|
},
|
|
};
|
|
|
|
memcpy(&cfg->defs, ipv4_defs, sizeof(ipv4_defs));
|
|
cfg->num_fields = RTE_DIM(ipv4_defs);
|
|
|
|
cfg->defs[RTE_ACL_IPV4VLAN_PROTO_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_PROTO];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_VLAN];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_VLAN] +
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].size;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_SRC];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_DST];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_PORTS];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_PORTS] +
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].size;
|
|
|
|
cfg->num_categories = num_categories;
|
|
}
|
|
|
|
/*
|
|
* Analyze set of ipv4vlan rules and build required internal
|
|
* run-time structures.
|
|
* This function is not multi-thread safe.
|
|
*
|
|
* @param ctx
|
|
* ACL context to build.
|
|
* @param layout
|
|
* Layout of input data to search through.
|
|
* @param num_categories
|
|
* Maximum number of categories to use in that build.
|
|
* @return
|
|
* - -ENOMEM if couldn't allocate enough memory.
|
|
* - -EINVAL if the parameters are invalid.
|
|
* - Negative error code if operation failed.
|
|
* - Zero if operation completed successfully.
|
|
*/
|
|
static int
|
|
rte_acl_ipv4vlan_build(struct rte_acl_ctx *ctx,
|
|
const uint32_t layout[RTE_ACL_IPV4VLAN_NUM],
|
|
uint32_t num_categories)
|
|
{
|
|
struct rte_acl_config cfg;
|
|
|
|
if (ctx == NULL || layout == NULL)
|
|
return -EINVAL;
|
|
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
acl_ipv4vlan_config(&cfg, layout, num_categories);
|
|
return rte_acl_build(ctx, &cfg);
|
|
}
|
|
|
|
/*
|
|
* Test ACL lookup (selected alg).
|
|
*/
|
|
static int
|
|
test_classify_alg(struct rte_acl_ctx *acx, struct ipv4_7tuple test_data[],
|
|
const uint8_t *data[], size_t dim, enum rte_acl_classify_alg alg)
|
|
{
|
|
int32_t ret;
|
|
uint32_t i, result, count;
|
|
uint32_t results[dim * RTE_ACL_MAX_CATEGORIES];
|
|
|
|
/* set given classify alg, skip test if alg is not supported */
|
|
ret = rte_acl_set_ctx_classify(acx, alg);
|
|
if (ret != 0)
|
|
return (ret == -ENOTSUP) ? 0 : ret;
|
|
|
|
/**
|
|
* these will run quite a few times, it's necessary to test code paths
|
|
* from num=0 to num>8
|
|
*/
|
|
for (count = 0; count <= dim; count++) {
|
|
ret = rte_acl_classify(acx, data, results,
|
|
count, RTE_ACL_MAX_CATEGORIES);
|
|
if (ret != 0) {
|
|
printf("Line %i: classify(alg=%d) failed!\n",
|
|
__LINE__, alg);
|
|
return ret;
|
|
}
|
|
|
|
/* check if we allow everything we should allow */
|
|
for (i = 0; i < count; i++) {
|
|
result =
|
|
results[i * RTE_ACL_MAX_CATEGORIES + ACL_ALLOW];
|
|
if (result != test_data[i].allow) {
|
|
printf("Line %i: Error in allow results at %i "
|
|
"(expected %"PRIu32" got %"PRIu32")!\n",
|
|
__LINE__, i, test_data[i].allow,
|
|
result);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check if we deny everything we should deny */
|
|
for (i = 0; i < count; i++) {
|
|
result = results[i * RTE_ACL_MAX_CATEGORIES + ACL_DENY];
|
|
if (result != test_data[i].deny) {
|
|
printf("Line %i: Error in deny results at %i "
|
|
"(expected %"PRIu32" got %"PRIu32")!\n",
|
|
__LINE__, i, test_data[i].deny,
|
|
result);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* restore default classify alg */
|
|
return rte_acl_set_ctx_classify(acx, RTE_ACL_CLASSIFY_DEFAULT);
|
|
}
|
|
|
|
/*
|
|
* Test ACL lookup (all possible methods).
|
|
*/
|
|
static int
|
|
test_classify_run(struct rte_acl_ctx *acx, struct ipv4_7tuple test_data[],
|
|
size_t dim)
|
|
{
|
|
int32_t ret;
|
|
uint32_t i;
|
|
const uint8_t *data[dim];
|
|
|
|
static const enum rte_acl_classify_alg alg[] = {
|
|
RTE_ACL_CLASSIFY_SCALAR,
|
|
RTE_ACL_CLASSIFY_SSE,
|
|
RTE_ACL_CLASSIFY_AVX2,
|
|
RTE_ACL_CLASSIFY_NEON,
|
|
RTE_ACL_CLASSIFY_ALTIVEC,
|
|
RTE_ACL_CLASSIFY_AVX512X16,
|
|
RTE_ACL_CLASSIFY_AVX512X32,
|
|
};
|
|
|
|
/* swap all bytes in the data to network order */
|
|
bswap_test_data(test_data, dim, 1);
|
|
|
|
/* store pointers to test data */
|
|
for (i = 0; i < dim; i++)
|
|
data[i] = (uint8_t *)&test_data[i];
|
|
|
|
ret = 0;
|
|
for (i = 0; i != RTE_DIM(alg); i++) {
|
|
ret = test_classify_alg(acx, test_data, data, dim, alg[i]);
|
|
if (ret < 0) {
|
|
printf("Line %i: %s() for alg=%d failed, errno=%d\n",
|
|
__LINE__, __func__, alg[i], -ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* swap data back to cpu order so that next time tests don't fail */
|
|
bswap_test_data(test_data, dim, 0);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
test_classify_buid(struct rte_acl_ctx *acx,
|
|
const struct rte_acl_ipv4vlan_rule *rules, uint32_t num)
|
|
{
|
|
int ret;
|
|
|
|
/* add rules to the context */
|
|
ret = rte_acl_ipv4vlan_add_rules(acx, rules, num);
|
|
if (ret != 0) {
|
|
printf("Line %i: Adding rules to ACL context failed!\n",
|
|
__LINE__);
|
|
return ret;
|
|
}
|
|
|
|
/* try building the context */
|
|
ret = rte_acl_ipv4vlan_build(acx, ipv4_7tuple_layout,
|
|
RTE_ACL_MAX_CATEGORIES);
|
|
if (ret != 0) {
|
|
printf("Line %i: Building ACL context failed!\n", __LINE__);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define TEST_CLASSIFY_ITER 4
|
|
|
|
/*
|
|
* Test scalar and SSE ACL lookup.
|
|
*/
|
|
static int
|
|
test_classify(void)
|
|
{
|
|
struct rte_acl_ctx *acx;
|
|
int i, ret;
|
|
|
|
acx = rte_acl_create(&acl_param);
|
|
if (acx == NULL) {
|
|
printf("Line %i: Error creating ACL context!\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
ret = 0;
|
|
for (i = 0; i != TEST_CLASSIFY_ITER; i++) {
|
|
|
|
if ((i & 1) == 0)
|
|
rte_acl_reset(acx);
|
|
else
|
|
rte_acl_reset_rules(acx);
|
|
|
|
ret = test_classify_buid(acx, acl_test_rules,
|
|
RTE_DIM(acl_test_rules));
|
|
if (ret != 0) {
|
|
printf("Line %i, iter: %d: "
|
|
"Adding rules to ACL context failed!\n",
|
|
__LINE__, i);
|
|
break;
|
|
}
|
|
|
|
ret = test_classify_run(acx, acl_test_data,
|
|
RTE_DIM(acl_test_data));
|
|
if (ret != 0) {
|
|
printf("Line %i, iter: %d: %s failed!\n",
|
|
__LINE__, i, __func__);
|
|
break;
|
|
}
|
|
|
|
/* reset rules and make sure that classify still works ok. */
|
|
rte_acl_reset_rules(acx);
|
|
ret = test_classify_run(acx, acl_test_data,
|
|
RTE_DIM(acl_test_data));
|
|
if (ret != 0) {
|
|
printf("Line %i, iter: %d: %s failed!\n",
|
|
__LINE__, i, __func__);
|
|
break;
|
|
}
|
|
}
|
|
|
|
rte_acl_free(acx);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
test_build_ports_range(void)
|
|
{
|
|
static const struct rte_acl_ipv4vlan_rule test_rules[] = {
|
|
{
|
|
/* match all packets. */
|
|
.data = {
|
|
.userdata = 1,
|
|
.category_mask = ACL_ALLOW_MASK,
|
|
.priority = 101,
|
|
},
|
|
.src_port_low = 0,
|
|
.src_port_high = UINT16_MAX,
|
|
.dst_port_low = 0,
|
|
.dst_port_high = UINT16_MAX,
|
|
},
|
|
{
|
|
/* match all packets with dst ports [54-65280]. */
|
|
.data = {
|
|
.userdata = 2,
|
|
.category_mask = ACL_ALLOW_MASK,
|
|
.priority = 102,
|
|
},
|
|
.src_port_low = 0,
|
|
.src_port_high = UINT16_MAX,
|
|
.dst_port_low = 54,
|
|
.dst_port_high = 65280,
|
|
},
|
|
{
|
|
/* match all packets with dst ports [0-52]. */
|
|
.data = {
|
|
.userdata = 3,
|
|
.category_mask = ACL_ALLOW_MASK,
|
|
.priority = 103,
|
|
},
|
|
.src_port_low = 0,
|
|
.src_port_high = UINT16_MAX,
|
|
.dst_port_low = 0,
|
|
.dst_port_high = 52,
|
|
},
|
|
{
|
|
/* match all packets with dst ports [53]. */
|
|
.data = {
|
|
.userdata = 4,
|
|
.category_mask = ACL_ALLOW_MASK,
|
|
.priority = 99,
|
|
},
|
|
.src_port_low = 0,
|
|
.src_port_high = UINT16_MAX,
|
|
.dst_port_low = 53,
|
|
.dst_port_high = 53,
|
|
},
|
|
{
|
|
/* match all packets with dst ports [65279-65535]. */
|
|
.data = {
|
|
.userdata = 5,
|
|
.category_mask = ACL_ALLOW_MASK,
|
|
.priority = 98,
|
|
},
|
|
.src_port_low = 0,
|
|
.src_port_high = UINT16_MAX,
|
|
.dst_port_low = 65279,
|
|
.dst_port_high = UINT16_MAX,
|
|
},
|
|
};
|
|
|
|
static struct ipv4_7tuple test_data[] = {
|
|
{
|
|
.proto = 6,
|
|
.ip_src = RTE_IPV4(10, 1, 1, 1),
|
|
.ip_dst = RTE_IPV4(192, 168, 0, 33),
|
|
.port_dst = 53,
|
|
.allow = 1,
|
|
},
|
|
{
|
|
.proto = 6,
|
|
.ip_src = RTE_IPV4(127, 84, 33, 1),
|
|
.ip_dst = RTE_IPV4(1, 2, 3, 4),
|
|
.port_dst = 65281,
|
|
.allow = 1,
|
|
},
|
|
};
|
|
|
|
struct rte_acl_ctx *acx;
|
|
int32_t ret, i, j;
|
|
uint32_t results[RTE_DIM(test_data)];
|
|
const uint8_t *data[RTE_DIM(test_data)];
|
|
|
|
acx = rte_acl_create(&acl_param);
|
|
if (acx == NULL) {
|
|
printf("Line %i: Error creating ACL context!\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
/* swap all bytes in the data to network order */
|
|
bswap_test_data(test_data, RTE_DIM(test_data), 1);
|
|
|
|
/* store pointers to test data */
|
|
for (i = 0; i != RTE_DIM(test_data); i++)
|
|
data[i] = (uint8_t *)&test_data[i];
|
|
|
|
for (i = 0; i != RTE_DIM(test_rules); i++) {
|
|
rte_acl_reset(acx);
|
|
ret = test_classify_buid(acx, test_rules, i + 1);
|
|
if (ret != 0) {
|
|
printf("Line %i, iter: %d: "
|
|
"Adding rules to ACL context failed!\n",
|
|
__LINE__, i);
|
|
break;
|
|
}
|
|
ret = rte_acl_classify(acx, data, results,
|
|
RTE_DIM(data), 1);
|
|
if (ret != 0) {
|
|
printf("Line %i, iter: %d: classify failed!\n",
|
|
__LINE__, i);
|
|
break;
|
|
}
|
|
|
|
/* check results */
|
|
for (j = 0; j != RTE_DIM(results); j++) {
|
|
if (results[j] != test_data[j].allow) {
|
|
printf("Line %i: Error in allow results at %i "
|
|
"(expected %"PRIu32" got %"PRIu32")!\n",
|
|
__LINE__, j, test_data[j].allow,
|
|
results[j]);
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
bswap_test_data(test_data, RTE_DIM(test_data), 0);
|
|
|
|
rte_acl_free(acx);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
convert_rule(const struct rte_acl_ipv4vlan_rule *ri,
|
|
struct acl_ipv4vlan_rule *ro)
|
|
{
|
|
ro->data = ri->data;
|
|
|
|
ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].value.u8 = ri->proto;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].value.u16 = ri->vlan;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].value.u16 = ri->domain;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].value.u32 = ri->src_addr;
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].value.u32 = ri->dst_addr;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].value.u16 = ri->src_port_low;
|
|
ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].value.u16 = ri->dst_port_low;
|
|
|
|
ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].mask_range.u8 = ri->proto_mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].mask_range.u16 = ri->vlan_mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].mask_range.u16 =
|
|
ri->domain_mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32 =
|
|
ri->src_mask_len;
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32 = ri->dst_mask_len;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].mask_range.u16 =
|
|
ri->src_port_high;
|
|
ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].mask_range.u16 =
|
|
ri->dst_port_high;
|
|
}
|
|
|
|
/*
|
|
* Convert IPV4 source and destination from RTE_ACL_FIELD_TYPE_MASK to
|
|
* RTE_ACL_FIELD_TYPE_BITMASK.
|
|
*/
|
|
static void
|
|
convert_rule_1(const struct rte_acl_ipv4vlan_rule *ri,
|
|
struct acl_ipv4vlan_rule *ro)
|
|
{
|
|
uint32_t v;
|
|
|
|
convert_rule(ri, ro);
|
|
v = ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32 =
|
|
RTE_ACL_MASKLEN_TO_BITMASK(v, sizeof(v));
|
|
v = ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32;
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32 =
|
|
RTE_ACL_MASKLEN_TO_BITMASK(v, sizeof(v));
|
|
}
|
|
|
|
/*
|
|
* Convert IPV4 source and destination from RTE_ACL_FIELD_TYPE_MASK to
|
|
* RTE_ACL_FIELD_TYPE_RANGE.
|
|
*/
|
|
static void
|
|
convert_rule_2(const struct rte_acl_ipv4vlan_rule *ri,
|
|
struct acl_ipv4vlan_rule *ro)
|
|
{
|
|
uint32_t hi, lo, mask;
|
|
|
|
convert_rule(ri, ro);
|
|
|
|
mask = ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32;
|
|
mask = RTE_ACL_MASKLEN_TO_BITMASK(mask, sizeof(mask));
|
|
lo = ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].value.u32 & mask;
|
|
hi = lo + ~mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].value.u32 = lo;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32 = hi;
|
|
|
|
mask = ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32;
|
|
mask = RTE_ACL_MASKLEN_TO_BITMASK(mask, sizeof(mask));
|
|
lo = ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].value.u32 & mask;
|
|
hi = lo + ~mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].value.u32 = lo;
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32 = hi;
|
|
}
|
|
|
|
/*
|
|
* Convert rte_acl_ipv4vlan_rule: swap VLAN and PORTS rule fields.
|
|
*/
|
|
static void
|
|
convert_rule_3(const struct rte_acl_ipv4vlan_rule *ri,
|
|
struct acl_ipv4vlan_rule *ro)
|
|
{
|
|
struct rte_acl_field t1, t2;
|
|
|
|
convert_rule(ri, ro);
|
|
|
|
t1 = ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD];
|
|
t2 = ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD];
|
|
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD] =
|
|
ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD];
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD] =
|
|
ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD];
|
|
|
|
ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD] = t1;
|
|
ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD] = t2;
|
|
}
|
|
|
|
/*
|
|
* Convert rte_acl_ipv4vlan_rule: swap SRC and DST IPv4 address rules.
|
|
*/
|
|
static void
|
|
convert_rule_4(const struct rte_acl_ipv4vlan_rule *ri,
|
|
struct acl_ipv4vlan_rule *ro)
|
|
{
|
|
struct rte_acl_field t;
|
|
|
|
convert_rule(ri, ro);
|
|
|
|
t = ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD];
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD] =
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD];
|
|
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD] = t;
|
|
}
|
|
|
|
static void
|
|
ipv4vlan_config(struct rte_acl_config *cfg,
|
|
const uint32_t layout[RTE_ACL_IPV4VLAN_NUM],
|
|
uint32_t num_categories)
|
|
{
|
|
static const struct rte_acl_field_def
|
|
ipv4_defs[RTE_ACL_IPV4VLAN_NUM_FIELDS] = {
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_BITMASK,
|
|
.size = sizeof(uint8_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_PROTO_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_PROTO,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_BITMASK,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_VLAN1_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_VLAN,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_BITMASK,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_VLAN2_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_VLAN,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_MASK,
|
|
.size = sizeof(uint32_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_SRC_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_SRC,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_MASK,
|
|
.size = sizeof(uint32_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_DST_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_DST,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_RANGE,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_SRCP_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_PORTS,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_RANGE,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_DSTP_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_PORTS,
|
|
},
|
|
};
|
|
|
|
memcpy(&cfg->defs, ipv4_defs, sizeof(ipv4_defs));
|
|
cfg->num_fields = RTE_DIM(ipv4_defs);
|
|
|
|
cfg->defs[RTE_ACL_IPV4VLAN_PROTO_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_PROTO];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_VLAN];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_VLAN] +
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].size;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_SRC];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_DST];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_PORTS];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_PORTS] +
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].size;
|
|
|
|
cfg->num_categories = num_categories;
|
|
}
|
|
|
|
static int
|
|
convert_rules(struct rte_acl_ctx *acx,
|
|
void (*convert)(const struct rte_acl_ipv4vlan_rule *,
|
|
struct acl_ipv4vlan_rule *),
|
|
const struct rte_acl_ipv4vlan_rule *rules, uint32_t num)
|
|
{
|
|
int32_t rc;
|
|
uint32_t i;
|
|
struct acl_ipv4vlan_rule r;
|
|
|
|
for (i = 0; i != num; i++) {
|
|
convert(rules + i, &r);
|
|
rc = rte_acl_add_rules(acx, (struct rte_acl_rule *)&r, 1);
|
|
if (rc != 0) {
|
|
printf("Line %i: Adding rule %u to ACL context "
|
|
"failed with error code: %d\n",
|
|
__LINE__, i, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
convert_config(struct rte_acl_config *cfg)
|
|
{
|
|
ipv4vlan_config(cfg, ipv4_7tuple_layout, RTE_ACL_MAX_CATEGORIES);
|
|
}
|
|
|
|
/*
|
|
* Convert rte_acl_ipv4vlan_rule to use RTE_ACL_FIELD_TYPE_BITMASK.
|
|
*/
|
|
static void
|
|
convert_config_1(struct rte_acl_config *cfg)
|
|
{
|
|
ipv4vlan_config(cfg, ipv4_7tuple_layout, RTE_ACL_MAX_CATEGORIES);
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].type = RTE_ACL_FIELD_TYPE_BITMASK;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].type = RTE_ACL_FIELD_TYPE_BITMASK;
|
|
}
|
|
|
|
/*
|
|
* Convert rte_acl_ipv4vlan_rule to use RTE_ACL_FIELD_TYPE_RANGE.
|
|
*/
|
|
static void
|
|
convert_config_2(struct rte_acl_config *cfg)
|
|
{
|
|
ipv4vlan_config(cfg, ipv4_7tuple_layout, RTE_ACL_MAX_CATEGORIES);
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].type = RTE_ACL_FIELD_TYPE_RANGE;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].type = RTE_ACL_FIELD_TYPE_RANGE;
|
|
}
|
|
|
|
/*
|
|
* Convert rte_acl_ipv4vlan_rule: swap VLAN and PORTS rule definitions.
|
|
*/
|
|
static void
|
|
convert_config_3(struct rte_acl_config *cfg)
|
|
{
|
|
struct rte_acl_field_def t1, t2;
|
|
|
|
ipv4vlan_config(cfg, ipv4_7tuple_layout, RTE_ACL_MAX_CATEGORIES);
|
|
|
|
t1 = cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD];
|
|
t2 = cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD];
|
|
|
|
/* swap VLAN1 and SRCP rule definition. */
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD] =
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].field_index = t1.field_index;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].input_index = t1.input_index;
|
|
|
|
/* swap VLAN2 and DSTP rule definition. */
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD] =
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD].field_index = t2.field_index;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD].input_index = t2.input_index;
|
|
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].type = t1.type;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].size = t1.size;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].offset = t1.offset;
|
|
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD].type = t2.type;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD].size = t2.size;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD].offset = t2.offset;
|
|
}
|
|
|
|
/*
|
|
* Convert rte_acl_ipv4vlan_rule: swap SRC and DST ip address rule definitions.
|
|
*/
|
|
static void
|
|
convert_config_4(struct rte_acl_config *cfg)
|
|
{
|
|
struct rte_acl_field_def t;
|
|
|
|
ipv4vlan_config(cfg, ipv4_7tuple_layout, RTE_ACL_MAX_CATEGORIES);
|
|
|
|
t = cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD];
|
|
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD] =
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].field_index = t.field_index;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].input_index = t.input_index;
|
|
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].type = t.type;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].size = t.size;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].offset = t.offset;
|
|
}
|
|
|
|
|
|
static int
|
|
build_convert_rules(struct rte_acl_ctx *acx,
|
|
void (*config)(struct rte_acl_config *),
|
|
size_t max_size)
|
|
{
|
|
struct rte_acl_config cfg;
|
|
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
config(&cfg);
|
|
cfg.max_size = max_size;
|
|
return rte_acl_build(acx, &cfg);
|
|
}
|
|
|
|
static int
|
|
test_convert_rules(const char *desc,
|
|
void (*config)(struct rte_acl_config *),
|
|
void (*convert)(const struct rte_acl_ipv4vlan_rule *,
|
|
struct acl_ipv4vlan_rule *))
|
|
{
|
|
struct rte_acl_ctx *acx;
|
|
int32_t rc;
|
|
uint32_t i;
|
|
static const size_t mem_sizes[] = {0, -1};
|
|
|
|
printf("running %s(%s)\n", __func__, desc);
|
|
|
|
acx = rte_acl_create(&acl_param);
|
|
if (acx == NULL) {
|
|
printf("Line %i: Error creating ACL context!\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
rc = convert_rules(acx, convert, acl_test_rules,
|
|
RTE_DIM(acl_test_rules));
|
|
if (rc != 0)
|
|
printf("Line %i: Error converting ACL rules!\n", __LINE__);
|
|
|
|
for (i = 0; rc == 0 && i != RTE_DIM(mem_sizes); i++) {
|
|
|
|
rc = build_convert_rules(acx, config, mem_sizes[i]);
|
|
if (rc != 0) {
|
|
printf("Line %i: Error @ build_convert_rules(%zu)!\n",
|
|
__LINE__, mem_sizes[i]);
|
|
break;
|
|
}
|
|
|
|
rc = test_classify_run(acx, acl_test_data,
|
|
RTE_DIM(acl_test_data));
|
|
if (rc != 0)
|
|
printf("%s failed at line %i, max_size=%zu\n",
|
|
__func__, __LINE__, mem_sizes[i]);
|
|
}
|
|
|
|
rte_acl_free(acx);
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
test_convert(void)
|
|
{
|
|
static const struct {
|
|
const char *desc;
|
|
void (*config)(struct rte_acl_config *);
|
|
void (*convert)(const struct rte_acl_ipv4vlan_rule *,
|
|
struct acl_ipv4vlan_rule *);
|
|
} convert_param[] = {
|
|
{
|
|
"acl_ipv4vlan_tuple",
|
|
convert_config,
|
|
convert_rule,
|
|
},
|
|
{
|
|
"acl_ipv4vlan_tuple, RTE_ACL_FIELD_TYPE_BITMASK type "
|
|
"for IPv4",
|
|
convert_config_1,
|
|
convert_rule_1,
|
|
},
|
|
{
|
|
"acl_ipv4vlan_tuple, RTE_ACL_FIELD_TYPE_RANGE type "
|
|
"for IPv4",
|
|
convert_config_2,
|
|
convert_rule_2,
|
|
},
|
|
{
|
|
"acl_ipv4vlan_tuple: swap VLAN and PORTs order",
|
|
convert_config_3,
|
|
convert_rule_3,
|
|
},
|
|
{
|
|
"acl_ipv4vlan_tuple: swap SRC and DST IPv4 order",
|
|
convert_config_4,
|
|
convert_rule_4,
|
|
},
|
|
};
|
|
|
|
uint32_t i;
|
|
int32_t rc;
|
|
|
|
for (i = 0; i != RTE_DIM(convert_param); i++) {
|
|
rc = test_convert_rules(convert_param[i].desc,
|
|
convert_param[i].config,
|
|
convert_param[i].convert);
|
|
if (rc != 0) {
|
|
printf("%s for test-case: %s failed, error code: %d;\n",
|
|
__func__, convert_param[i].desc, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Test wrong layout behavior
|
|
* This test supplies the ACL context with invalid layout, which results in
|
|
* ACL matching the wrong stuff. However, it should match the wrong stuff
|
|
* the right way. We switch around source and destination addresses,
|
|
* source and destination ports, and protocol will point to first byte of
|
|
* destination port.
|
|
*/
|
|
static int
|
|
test_invalid_layout(void)
|
|
{
|
|
struct rte_acl_ctx *acx;
|
|
int ret, i;
|
|
|
|
uint32_t results[RTE_DIM(invalid_layout_data)];
|
|
const uint8_t *data[RTE_DIM(invalid_layout_data)];
|
|
|
|
const uint32_t layout[RTE_ACL_IPV4VLAN_NUM] = {
|
|
/* proto points to destination port's first byte */
|
|
offsetof(struct ipv4_7tuple, port_dst),
|
|
|
|
0, /* VLAN not used */
|
|
|
|
/* src and dst addresses are swapped */
|
|
offsetof(struct ipv4_7tuple, ip_dst),
|
|
offsetof(struct ipv4_7tuple, ip_src),
|
|
|
|
/*
|
|
* we can't swap ports here, so we will swap
|
|
* them in the data
|
|
*/
|
|
offsetof(struct ipv4_7tuple, port_src),
|
|
};
|
|
|
|
acx = rte_acl_create(&acl_param);
|
|
if (acx == NULL) {
|
|
printf("Line %i: Error creating ACL context!\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
/* putting a lot of rules into the context results in greater
|
|
* coverage numbers. it doesn't matter if they are identical */
|
|
for (i = 0; i < 1000; i++) {
|
|
/* add rules to the context */
|
|
ret = rte_acl_ipv4vlan_add_rules(acx, invalid_layout_rules,
|
|
RTE_DIM(invalid_layout_rules));
|
|
if (ret != 0) {
|
|
printf("Line %i: Adding rules to ACL context failed!\n",
|
|
__LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* try building the context */
|
|
ret = rte_acl_ipv4vlan_build(acx, layout, 1);
|
|
if (ret != 0) {
|
|
printf("Line %i: Building ACL context failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* swap all bytes in the data to network order */
|
|
bswap_test_data(invalid_layout_data, RTE_DIM(invalid_layout_data), 1);
|
|
|
|
/* prepare data */
|
|
for (i = 0; i < (int) RTE_DIM(invalid_layout_data); i++) {
|
|
data[i] = (uint8_t *)&invalid_layout_data[i];
|
|
}
|
|
|
|
/* classify tuples */
|
|
ret = rte_acl_classify_alg(acx, data, results,
|
|
RTE_DIM(results), 1, RTE_ACL_CLASSIFY_SCALAR);
|
|
if (ret != 0) {
|
|
printf("Line %i: SSE classify failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < (int) RTE_DIM(results); i++) {
|
|
if (results[i] != invalid_layout_data[i].allow) {
|
|
printf("Line %i: Wrong results at %i "
|
|
"(result=%u, should be %u)!\n",
|
|
__LINE__, i, results[i],
|
|
invalid_layout_data[i].allow);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* classify tuples (scalar) */
|
|
ret = rte_acl_classify_alg(acx, data, results, RTE_DIM(results), 1,
|
|
RTE_ACL_CLASSIFY_SCALAR);
|
|
|
|
if (ret != 0) {
|
|
printf("Line %i: Scalar classify failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < (int) RTE_DIM(results); i++) {
|
|
if (results[i] != invalid_layout_data[i].allow) {
|
|
printf("Line %i: Wrong results at %i "
|
|
"(result=%u, should be %u)!\n",
|
|
__LINE__, i, results[i],
|
|
invalid_layout_data[i].allow);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
rte_acl_free(acx);
|
|
|
|
/* swap data back to cpu order so that next time tests don't fail */
|
|
bswap_test_data(invalid_layout_data, RTE_DIM(invalid_layout_data), 0);
|
|
|
|
return 0;
|
|
err:
|
|
|
|
/* swap data back to cpu order so that next time tests don't fail */
|
|
bswap_test_data(invalid_layout_data, RTE_DIM(invalid_layout_data), 0);
|
|
|
|
rte_acl_free(acx);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Test creating and finding ACL contexts, and adding rules
|
|
*/
|
|
static int
|
|
test_create_find_add(void)
|
|
{
|
|
struct rte_acl_param param;
|
|
struct rte_acl_ctx *acx, *acx2, *tmp;
|
|
struct rte_acl_ipv4vlan_rule rules[LEN];
|
|
|
|
const uint32_t layout[RTE_ACL_IPV4VLAN_NUM] = {0};
|
|
|
|
const char *acx_name = "acx";
|
|
const char *acx2_name = "acx2";
|
|
int i, ret;
|
|
|
|
/* create two contexts */
|
|
memcpy(¶m, &acl_param, sizeof(param));
|
|
param.max_rule_num = 2;
|
|
|
|
param.name = acx_name;
|
|
acx = rte_acl_create(¶m);
|
|
if (acx == NULL) {
|
|
printf("Line %i: Error creating %s!\n", __LINE__, acx_name);
|
|
return -1;
|
|
}
|
|
|
|
param.name = acx2_name;
|
|
acx2 = rte_acl_create(¶m);
|
|
if (acx2 == NULL || acx2 == acx) {
|
|
printf("Line %i: Error creating %s!\n", __LINE__, acx2_name);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* try to create third one, with an existing name */
|
|
param.name = acx_name;
|
|
tmp = rte_acl_create(¶m);
|
|
if (tmp != acx) {
|
|
printf("Line %i: Creating context with existing name "
|
|
"test failed!\n",
|
|
__LINE__);
|
|
if (tmp)
|
|
rte_acl_free(tmp);
|
|
goto err;
|
|
}
|
|
|
|
param.name = acx2_name;
|
|
tmp = rte_acl_create(¶m);
|
|
if (tmp != acx2) {
|
|
printf("Line %i: Creating context with existing "
|
|
"name test 2 failed!\n",
|
|
__LINE__);
|
|
if (tmp)
|
|
rte_acl_free(tmp);
|
|
goto err;
|
|
}
|
|
|
|
/* try to find existing ACL contexts */
|
|
tmp = rte_acl_find_existing(acx_name);
|
|
if (tmp != acx) {
|
|
printf("Line %i: Finding %s failed!\n", __LINE__, acx_name);
|
|
if (tmp)
|
|
rte_acl_free(tmp);
|
|
goto err;
|
|
}
|
|
|
|
tmp = rte_acl_find_existing(acx2_name);
|
|
if (tmp != acx2) {
|
|
printf("Line %i: Finding %s failed!\n", __LINE__, acx2_name);
|
|
if (tmp)
|
|
rte_acl_free(tmp);
|
|
goto err;
|
|
}
|
|
|
|
/* try to find non-existing context */
|
|
tmp = rte_acl_find_existing("invalid");
|
|
if (tmp != NULL) {
|
|
printf("Line %i: Non-existent ACL context found!\n", __LINE__);
|
|
goto err;
|
|
}
|
|
|
|
/* free context */
|
|
rte_acl_free(acx);
|
|
|
|
|
|
/* create valid (but severely limited) acx */
|
|
memcpy(¶m, &acl_param, sizeof(param));
|
|
param.max_rule_num = LEN;
|
|
|
|
acx = rte_acl_create(¶m);
|
|
if (acx == NULL) {
|
|
printf("Line %i: Error creating %s!\n", __LINE__, param.name);
|
|
goto err;
|
|
}
|
|
|
|
/* create dummy acl */
|
|
for (i = 0; i < LEN; i++) {
|
|
memcpy(&rules[i], &acl_rule,
|
|
sizeof(struct rte_acl_ipv4vlan_rule));
|
|
/* skip zero */
|
|
rules[i].data.userdata = i + 1;
|
|
/* one rule per category */
|
|
rules[i].data.category_mask = 1 << i;
|
|
}
|
|
|
|
/* try filling up the context */
|
|
ret = rte_acl_ipv4vlan_add_rules(acx, rules, LEN);
|
|
if (ret != 0) {
|
|
printf("Line %i: Adding %i rules to ACL context failed!\n",
|
|
__LINE__, LEN);
|
|
goto err;
|
|
}
|
|
|
|
/* try adding to a (supposedly) full context */
|
|
ret = rte_acl_ipv4vlan_add_rules(acx, rules, 1);
|
|
if (ret == 0) {
|
|
printf("Line %i: Adding rules to full ACL context should"
|
|
"have failed!\n", __LINE__);
|
|
goto err;
|
|
}
|
|
|
|
/* try building the context */
|
|
ret = rte_acl_ipv4vlan_build(acx, layout, RTE_ACL_MAX_CATEGORIES);
|
|
if (ret != 0) {
|
|
printf("Line %i: Building ACL context failed!\n", __LINE__);
|
|
goto err;
|
|
}
|
|
|
|
rte_acl_free(acx);
|
|
rte_acl_free(acx2);
|
|
|
|
return 0;
|
|
err:
|
|
rte_acl_free(acx);
|
|
rte_acl_free(acx2);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* test various invalid rules
|
|
*/
|
|
static int
|
|
test_invalid_rules(void)
|
|
{
|
|
struct rte_acl_ctx *acx;
|
|
int ret;
|
|
|
|
struct rte_acl_ipv4vlan_rule rule;
|
|
|
|
acx = rte_acl_create(&acl_param);
|
|
if (acx == NULL) {
|
|
printf("Line %i: Error creating ACL context!\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
/* test inverted high/low source and destination ports.
|
|
* originally, there was a problem with memory consumption when using
|
|
* such rules.
|
|
*/
|
|
/* create dummy acl */
|
|
memcpy(&rule, &acl_rule, sizeof(struct rte_acl_ipv4vlan_rule));
|
|
rule.data.userdata = 1;
|
|
rule.dst_port_low = 0xfff0;
|
|
rule.dst_port_high = 0x0010;
|
|
|
|
/* add rules to context and try to build it */
|
|
ret = rte_acl_ipv4vlan_add_rules(acx, &rule, 1);
|
|
if (ret == 0) {
|
|
printf("Line %i: Adding rules to ACL context "
|
|
"should have failed!\n", __LINE__);
|
|
goto err;
|
|
}
|
|
|
|
rule.dst_port_low = 0x0;
|
|
rule.dst_port_high = 0xffff;
|
|
rule.src_port_low = 0xfff0;
|
|
rule.src_port_high = 0x0010;
|
|
|
|
/* add rules to context and try to build it */
|
|
ret = rte_acl_ipv4vlan_add_rules(acx, &rule, 1);
|
|
if (ret == 0) {
|
|
printf("Line %i: Adding rules to ACL context "
|
|
"should have failed!\n", __LINE__);
|
|
goto err;
|
|
}
|
|
|
|
rule.dst_port_low = 0x0;
|
|
rule.dst_port_high = 0xffff;
|
|
rule.src_port_low = 0x0;
|
|
rule.src_port_high = 0xffff;
|
|
|
|
rule.dst_mask_len = 33;
|
|
|
|
/* add rules to context and try to build it */
|
|
ret = rte_acl_ipv4vlan_add_rules(acx, &rule, 1);
|
|
if (ret == 0) {
|
|
printf("Line %i: Adding rules to ACL context "
|
|
"should have failed!\n", __LINE__);
|
|
goto err;
|
|
}
|
|
|
|
rule.dst_mask_len = 0;
|
|
rule.src_mask_len = 33;
|
|
|
|
/* add rules to context and try to build it */
|
|
ret = rte_acl_ipv4vlan_add_rules(acx, &rule, 1);
|
|
if (ret == 0) {
|
|
printf("Line %i: Adding rules to ACL context "
|
|
"should have failed!\n", __LINE__);
|
|
goto err;
|
|
}
|
|
|
|
rte_acl_free(acx);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
rte_acl_free(acx);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* test functions by passing invalid or
|
|
* non-workable parameters.
|
|
*
|
|
* we do very limited testing of classify functions here
|
|
* because those are performance-critical and
|
|
* thus don't do much parameter checking.
|
|
*/
|
|
static int
|
|
test_invalid_parameters(void)
|
|
{
|
|
struct rte_acl_param param;
|
|
struct rte_acl_ctx *acx;
|
|
struct rte_acl_ipv4vlan_rule rule;
|
|
int result;
|
|
|
|
uint32_t layout[RTE_ACL_IPV4VLAN_NUM] = {0};
|
|
|
|
|
|
/**
|
|
* rte_ac_create()
|
|
*/
|
|
|
|
/* NULL param */
|
|
acx = rte_acl_create(NULL);
|
|
if (acx != NULL) {
|
|
printf("Line %i: ACL context creation with NULL param "
|
|
"should have failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* zero rule size */
|
|
memcpy(¶m, &acl_param, sizeof(param));
|
|
param.rule_size = 0;
|
|
|
|
acx = rte_acl_create(¶m);
|
|
if (acx == NULL) {
|
|
printf("Line %i: ACL context creation with zero rule len "
|
|
"failed!\n", __LINE__);
|
|
return -1;
|
|
} else
|
|
rte_acl_free(acx);
|
|
|
|
/* zero max rule num */
|
|
memcpy(¶m, &acl_param, sizeof(param));
|
|
param.max_rule_num = 0;
|
|
|
|
acx = rte_acl_create(¶m);
|
|
if (acx == NULL) {
|
|
printf("Line %i: ACL context creation with zero rule num "
|
|
"failed!\n", __LINE__);
|
|
return -1;
|
|
} else
|
|
rte_acl_free(acx);
|
|
|
|
if (rte_eal_has_hugepages()) {
|
|
/* invalid NUMA node */
|
|
memcpy(¶m, &acl_param, sizeof(param));
|
|
param.socket_id = RTE_MAX_NUMA_NODES + 1;
|
|
|
|
acx = rte_acl_create(¶m);
|
|
if (acx != NULL) {
|
|
printf("Line %i: ACL context creation with invalid "
|
|
"NUMA should have failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* NULL name */
|
|
memcpy(¶m, &acl_param, sizeof(param));
|
|
param.name = NULL;
|
|
|
|
acx = rte_acl_create(¶m);
|
|
if (acx != NULL) {
|
|
printf("Line %i: ACL context creation with NULL name "
|
|
"should have failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* rte_acl_find_existing
|
|
*/
|
|
|
|
acx = rte_acl_find_existing(NULL);
|
|
if (acx != NULL) {
|
|
printf("Line %i: NULL ACL context found!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* rte_acl_ipv4vlan_add_rules
|
|
*/
|
|
|
|
/* initialize everything */
|
|
memcpy(¶m, &acl_param, sizeof(param));
|
|
acx = rte_acl_create(¶m);
|
|
if (acx == NULL) {
|
|
printf("Line %i: ACL context creation failed!\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
memcpy(&rule, &acl_rule, sizeof(rule));
|
|
|
|
/* NULL context */
|
|
result = rte_acl_ipv4vlan_add_rules(NULL, &rule, 1);
|
|
if (result == 0) {
|
|
printf("Line %i: Adding rules with NULL ACL context "
|
|
"should have failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* NULL rule */
|
|
result = rte_acl_ipv4vlan_add_rules(acx, NULL, 1);
|
|
if (result == 0) {
|
|
printf("Line %i: Adding NULL rule to ACL context "
|
|
"should have failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* zero count (should succeed) */
|
|
result = rte_acl_ipv4vlan_add_rules(acx, &rule, 0);
|
|
if (result != 0) {
|
|
printf("Line %i: Adding 0 rules to ACL context failed!\n",
|
|
__LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* free ACL context */
|
|
rte_acl_free(acx);
|
|
|
|
|
|
/**
|
|
* rte_acl_ipv4vlan_build
|
|
*/
|
|
|
|
/* reinitialize context */
|
|
memcpy(¶m, &acl_param, sizeof(param));
|
|
acx = rte_acl_create(¶m);
|
|
if (acx == NULL) {
|
|
printf("Line %i: ACL context creation failed!\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
/* NULL context */
|
|
result = rte_acl_ipv4vlan_build(NULL, layout, 1);
|
|
if (result == 0) {
|
|
printf("Line %i: Building with NULL context "
|
|
"should have failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* NULL layout */
|
|
result = rte_acl_ipv4vlan_build(acx, NULL, 1);
|
|
if (result == 0) {
|
|
printf("Line %i: Building with NULL layout "
|
|
"should have failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* zero categories (should not fail) */
|
|
result = rte_acl_ipv4vlan_build(acx, layout, 0);
|
|
if (result == 0) {
|
|
printf("Line %i: Building with 0 categories should fail!\n",
|
|
__LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* SSE classify test */
|
|
|
|
/* cover zero categories in classify (should not fail) */
|
|
result = rte_acl_classify(acx, NULL, NULL, 0, 0);
|
|
if (result != 0) {
|
|
printf("Line %i: SSE classify with zero categories "
|
|
"failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* cover invalid but positive categories in classify */
|
|
result = rte_acl_classify(acx, NULL, NULL, 0, 3);
|
|
if (result == 0) {
|
|
printf("Line %i: SSE classify with 3 categories "
|
|
"should have failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* scalar classify test */
|
|
|
|
/* cover zero categories in classify (should not fail) */
|
|
result = rte_acl_classify_alg(acx, NULL, NULL, 0, 0,
|
|
RTE_ACL_CLASSIFY_SCALAR);
|
|
if (result != 0) {
|
|
printf("Line %i: Scalar classify with zero categories "
|
|
"failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* cover invalid but positive categories in classify */
|
|
result = rte_acl_classify(acx, NULL, NULL, 0, 3);
|
|
if (result == 0) {
|
|
printf("Line %i: Scalar classify with 3 categories "
|
|
"should have failed!\n", __LINE__);
|
|
rte_acl_free(acx);
|
|
return -1;
|
|
}
|
|
|
|
/* free ACL context */
|
|
rte_acl_free(acx);
|
|
|
|
|
|
/**
|
|
* make sure void functions don't crash with NULL parameters
|
|
*/
|
|
|
|
rte_acl_free(NULL);
|
|
|
|
rte_acl_dump(NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Various tests that don't test much but improve coverage
|
|
*/
|
|
static int
|
|
test_misc(void)
|
|
{
|
|
struct rte_acl_param param;
|
|
struct rte_acl_ctx *acx;
|
|
|
|
/* create context */
|
|
memcpy(¶m, &acl_param, sizeof(param));
|
|
|
|
acx = rte_acl_create(¶m);
|
|
if (acx == NULL) {
|
|
printf("Line %i: Error creating ACL context!\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
/* dump context with rules - useful for coverage */
|
|
rte_acl_list_dump();
|
|
|
|
rte_acl_dump(acx);
|
|
|
|
rte_acl_free(acx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
get_u32_range_max(void)
|
|
{
|
|
uint32_t i, max;
|
|
|
|
max = 0;
|
|
for (i = 0; i != RTE_DIM(acl_u32_range_test_rules); i++)
|
|
max = RTE_MAX(max, acl_u32_range_test_rules[i].src_mask_len);
|
|
return max;
|
|
}
|
|
|
|
static uint32_t
|
|
get_u32_range_min(void)
|
|
{
|
|
uint32_t i, min;
|
|
|
|
min = UINT32_MAX;
|
|
for (i = 0; i != RTE_DIM(acl_u32_range_test_rules); i++)
|
|
min = RTE_MIN(min, acl_u32_range_test_rules[i].src_addr);
|
|
return min;
|
|
}
|
|
|
|
static const struct rte_acl_ipv4vlan_rule *
|
|
find_u32_range_rule(uint32_t val)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i != RTE_DIM(acl_u32_range_test_rules); i++) {
|
|
if (val >= acl_u32_range_test_rules[i].src_addr &&
|
|
val <= acl_u32_range_test_rules[i].src_mask_len)
|
|
return acl_u32_range_test_rules + i;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
fill_u32_range_data(struct ipv4_7tuple tdata[], uint32_t start, uint32_t num)
|
|
{
|
|
uint32_t i;
|
|
const struct rte_acl_ipv4vlan_rule *r;
|
|
|
|
for (i = 0; i != num; i++) {
|
|
tdata[i].ip_src = start + i;
|
|
r = find_u32_range_rule(start + i);
|
|
if (r != NULL)
|
|
tdata[i].allow = r->data.userdata;
|
|
}
|
|
}
|
|
|
|
static int
|
|
test_u32_range(void)
|
|
{
|
|
int32_t rc;
|
|
uint32_t i, k, max, min;
|
|
struct rte_acl_ctx *acx;
|
|
struct acl_ipv4vlan_rule r;
|
|
struct ipv4_7tuple test_data[64];
|
|
|
|
acx = rte_acl_create(&acl_param);
|
|
if (acx == NULL) {
|
|
printf("%s#%i: Error creating ACL context!\n",
|
|
__func__, __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i != RTE_DIM(acl_u32_range_test_rules); i++) {
|
|
convert_rule(&acl_u32_range_test_rules[i], &r);
|
|
rc = rte_acl_add_rules(acx, (struct rte_acl_rule *)&r, 1);
|
|
if (rc != 0) {
|
|
printf("%s#%i: Adding rule to ACL context "
|
|
"failed with error code: %d\n",
|
|
__func__, __LINE__, rc);
|
|
rte_acl_free(acx);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
rc = build_convert_rules(acx, convert_config_2, 0);
|
|
if (rc != 0) {
|
|
printf("%s#%i Error @ build_convert_rules!\n",
|
|
__func__, __LINE__);
|
|
rte_acl_free(acx);
|
|
return rc;
|
|
}
|
|
|
|
max = get_u32_range_max();
|
|
min = get_u32_range_min();
|
|
|
|
max = RTE_MAX(max, max + 1);
|
|
min = RTE_MIN(min, min - 1);
|
|
|
|
printf("%s#%d starting range test from %u to %u\n",
|
|
__func__, __LINE__, min, max);
|
|
|
|
for (i = min; i <= max; i += k) {
|
|
|
|
k = RTE_MIN(max - i + 1, RTE_DIM(test_data));
|
|
|
|
memset(test_data, 0, sizeof(test_data));
|
|
fill_u32_range_data(test_data, i, k);
|
|
|
|
rc = test_classify_run(acx, test_data, k);
|
|
if (rc != 0) {
|
|
printf("%s#%d failed at [%u, %u) interval\n",
|
|
__func__, __LINE__, i, i + k);
|
|
break;
|
|
}
|
|
}
|
|
|
|
rte_acl_free(acx);
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
test_acl(void)
|
|
{
|
|
if (test_invalid_parameters() < 0)
|
|
return -1;
|
|
if (test_invalid_rules() < 0)
|
|
return -1;
|
|
if (test_create_find_add() < 0)
|
|
return -1;
|
|
if (test_invalid_layout() < 0)
|
|
return -1;
|
|
if (test_misc() < 0)
|
|
return -1;
|
|
if (test_classify() < 0)
|
|
return -1;
|
|
if (test_build_ports_range() < 0)
|
|
return -1;
|
|
if (test_convert() < 0)
|
|
return -1;
|
|
if (test_u32_range() < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* !RTE_EXEC_ENV_WINDOWS */
|
|
|
|
REGISTER_TEST_COMMAND(acl_autotest, test_acl);
|