numam-dpdk/lib/eal/include/rte_common.h
Shijith Thotton a0a388a897 eal: add macro to swap two variables
Add a macro to swap two variables
and updat common autotest for the same.

Signed-off-by: Shijith Thotton <sthotton@marvell.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
2021-09-27 18:33:45 +02:00

886 lines
22 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2019 Intel Corporation
*/
#ifndef _RTE_COMMON_H_
#define _RTE_COMMON_H_
/**
* @file
*
* Generic, commonly-used macro and inline function definitions
* for DPDK.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <rte_config.h>
/* OS specific include */
#include <rte_os.h>
#ifndef typeof
#define typeof __typeof__
#endif
#ifndef __cplusplus
#ifndef asm
#define asm __asm__
#endif
#endif
/** C extension macro for environments lacking C11 features. */
#if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 201112L
#define RTE_STD_C11 __extension__
#else
#define RTE_STD_C11
#endif
/*
* RTE_TOOLCHAIN_GCC is defined if the target is built with GCC,
* while a host application (like pmdinfogen) may have another compiler.
* RTE_CC_IS_GNU is true if the file is compiled with GCC,
* no matter it is a target or host application.
*/
#define RTE_CC_IS_GNU 0
#if defined __clang__
#define RTE_CC_CLANG
#elif defined __INTEL_COMPILER
#define RTE_CC_ICC
#elif defined __GNUC__
#define RTE_CC_GCC
#undef RTE_CC_IS_GNU
#define RTE_CC_IS_GNU 1
#endif
#if RTE_CC_IS_GNU
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + \
__GNUC_PATCHLEVEL__)
#endif
/**
* Force alignment
*/
#define __rte_aligned(a) __attribute__((__aligned__(a)))
#ifdef RTE_ARCH_STRICT_ALIGN
typedef uint64_t unaligned_uint64_t __rte_aligned(1);
typedef uint32_t unaligned_uint32_t __rte_aligned(1);
typedef uint16_t unaligned_uint16_t __rte_aligned(1);
#else
typedef uint64_t unaligned_uint64_t;
typedef uint32_t unaligned_uint32_t;
typedef uint16_t unaligned_uint16_t;
#endif
/**
* Force a structure to be packed
*/
#define __rte_packed __attribute__((__packed__))
/******* Macro to mark functions and fields scheduled for removal *****/
#define __rte_deprecated __attribute__((__deprecated__))
#define __rte_deprecated_msg(msg) __attribute__((__deprecated__(msg)))
/**
* Macro to mark macros and defines scheduled for removal
*/
#if defined(RTE_CC_GCC) || defined(RTE_CC_CLANG)
#define RTE_PRAGMA(x) _Pragma(#x)
#define RTE_PRAGMA_WARNING(w) RTE_PRAGMA(GCC warning #w)
#define RTE_DEPRECATED(x) RTE_PRAGMA_WARNING(#x is deprecated)
#else
#define RTE_DEPRECATED(x)
#endif
/**
* Mark a function or variable to a weak reference.
*/
#define __rte_weak __attribute__((__weak__))
/**
* Force symbol to be generated even if it appears to be unused.
*/
#define __rte_used __attribute__((used))
/*********** Macros to eliminate unused variable warnings ********/
/**
* short definition to mark a function parameter unused
*/
#define __rte_unused __attribute__((__unused__))
/**
* Mark pointer as restricted with regard to pointer aliasing.
*/
#if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 199901L
#define __rte_restrict __restrict
#else
#define __rte_restrict restrict
#endif
/**
* definition to mark a variable or function parameter as used so
* as to avoid a compiler warning
*/
#define RTE_SET_USED(x) (void)(x)
/**
* Check format string and its arguments at compile-time.
*
* GCC on Windows assumes MS-specific format string by default,
* even if the underlying stdio implementation is ANSI-compliant,
* so this must be overridden.
*/
#if RTE_CC_IS_GNU
#define __rte_format_printf(format_index, first_arg) \
__attribute__((format(gnu_printf, format_index, first_arg)))
#else
#define __rte_format_printf(format_index, first_arg) \
__attribute__((format(printf, format_index, first_arg)))
#endif
/**
* Tells compiler that the function returns a value that points to
* memory, where the size is given by the one or two arguments.
* Used by compiler to validate object size.
*/
#if defined(RTE_CC_GCC) || defined(RTE_CC_CLANG)
#define __rte_alloc_size(...) \
__attribute__((alloc_size(__VA_ARGS__)))
#else
#define __rte_alloc_size(...)
#endif
#define RTE_PRIORITY_LOG 101
#define RTE_PRIORITY_BUS 110
#define RTE_PRIORITY_CLASS 120
#define RTE_PRIORITY_LAST 65535
#define RTE_PRIO(prio) \
RTE_PRIORITY_ ## prio
/**
* Run function before main() with high priority.
*
* @param func
* Constructor function.
* @param prio
* Priority number must be above 100.
* Lowest number is the first to run.
*/
#ifndef RTE_INIT_PRIO /* Allow to override from EAL */
#define RTE_INIT_PRIO(func, prio) \
static void __attribute__((constructor(RTE_PRIO(prio)), used)) func(void)
#endif
/**
* Run function before main() with low priority.
*
* The constructor will be run after prioritized constructors.
*
* @param func
* Constructor function.
*/
#define RTE_INIT(func) \
RTE_INIT_PRIO(func, LAST)
/**
* Run after main() with low priority.
*
* @param func
* Destructor function name.
* @param prio
* Priority number must be above 100.
* Lowest number is the last to run.
*/
#ifndef RTE_FINI_PRIO /* Allow to override from EAL */
#define RTE_FINI_PRIO(func, prio) \
static void __attribute__((destructor(RTE_PRIO(prio)), used)) func(void)
#endif
/**
* Run after main() with high priority.
*
* The destructor will be run *before* prioritized destructors.
*
* @param func
* Destructor function name.
*/
#define RTE_FINI(func) \
RTE_FINI_PRIO(func, LAST)
/**
* Hint never returning function
*/
#define __rte_noreturn __attribute__((noreturn))
/**
* Force a function to be inlined
*/
#define __rte_always_inline inline __attribute__((always_inline))
/**
* Force a function to be noinlined
*/
#define __rte_noinline __attribute__((noinline))
/**
* Hint function in the hot path
*/
#define __rte_hot __attribute__((hot))
/**
* Hint function in the cold path
*/
#define __rte_cold __attribute__((cold))
/*********** Macros for pointer arithmetic ********/
/**
* add a byte-value offset to a pointer
*/
#define RTE_PTR_ADD(ptr, x) ((void*)((uintptr_t)(ptr) + (x)))
/**
* subtract a byte-value offset from a pointer
*/
#define RTE_PTR_SUB(ptr, x) ((void*)((uintptr_t)ptr - (x)))
/**
* get the difference between two pointer values, i.e. how far apart
* in bytes are the locations they point two. It is assumed that
* ptr1 is greater than ptr2.
*/
#define RTE_PTR_DIFF(ptr1, ptr2) ((uintptr_t)(ptr1) - (uintptr_t)(ptr2))
/**
* Workaround to cast a const field of a structure to non-const type.
*/
#define RTE_CAST_FIELD(var, field, type) \
(*(type *)((uintptr_t)(var) + offsetof(typeof(*(var)), field)))
/*********** Macros/static functions for doing alignment ********/
/**
* Macro to align a pointer to a given power-of-two. The resultant
* pointer will be a pointer of the same type as the first parameter, and
* point to an address no higher than the first parameter. Second parameter
* must be a power-of-two value.
*/
#define RTE_PTR_ALIGN_FLOOR(ptr, align) \
((typeof(ptr))RTE_ALIGN_FLOOR((uintptr_t)ptr, align))
/**
* Macro to align a value to a given power-of-two. The resultant value
* will be of the same type as the first parameter, and will be no
* bigger than the first parameter. Second parameter must be a
* power-of-two value.
*/
#define RTE_ALIGN_FLOOR(val, align) \
(typeof(val))((val) & (~((typeof(val))((align) - 1))))
/**
* Macro to align a pointer to a given power-of-two. The resultant
* pointer will be a pointer of the same type as the first parameter, and
* point to an address no lower than the first parameter. Second parameter
* must be a power-of-two value.
*/
#define RTE_PTR_ALIGN_CEIL(ptr, align) \
RTE_PTR_ALIGN_FLOOR((typeof(ptr))RTE_PTR_ADD(ptr, (align) - 1), align)
/**
* Macro to align a value to a given power-of-two. The resultant value
* will be of the same type as the first parameter, and will be no lower
* than the first parameter. Second parameter must be a power-of-two
* value.
*/
#define RTE_ALIGN_CEIL(val, align) \
RTE_ALIGN_FLOOR(((val) + ((typeof(val)) (align) - 1)), align)
/**
* Macro to align a pointer to a given power-of-two. The resultant
* pointer will be a pointer of the same type as the first parameter, and
* point to an address no lower than the first parameter. Second parameter
* must be a power-of-two value.
* This function is the same as RTE_PTR_ALIGN_CEIL
*/
#define RTE_PTR_ALIGN(ptr, align) RTE_PTR_ALIGN_CEIL(ptr, align)
/**
* Macro to align a value to a given power-of-two. The resultant
* value will be of the same type as the first parameter, and
* will be no lower than the first parameter. Second parameter
* must be a power-of-two value.
* This function is the same as RTE_ALIGN_CEIL
*/
#define RTE_ALIGN(val, align) RTE_ALIGN_CEIL(val, align)
/**
* Macro to align a value to the multiple of given value. The resultant
* value will be of the same type as the first parameter and will be no lower
* than the first parameter.
*/
#define RTE_ALIGN_MUL_CEIL(v, mul) \
((((v) + (typeof(v))(mul) - 1) / ((typeof(v))(mul))) * (typeof(v))(mul))
/**
* Macro to align a value to the multiple of given value. The resultant
* value will be of the same type as the first parameter and will be no higher
* than the first parameter.
*/
#define RTE_ALIGN_MUL_FLOOR(v, mul) \
(((v) / ((typeof(v))(mul))) * (typeof(v))(mul))
/**
* Macro to align value to the nearest multiple of the given value.
* The resultant value might be greater than or less than the first parameter
* whichever difference is the lowest.
*/
#define RTE_ALIGN_MUL_NEAR(v, mul) \
({ \
typeof(v) ceil = RTE_ALIGN_MUL_CEIL(v, mul); \
typeof(v) floor = RTE_ALIGN_MUL_FLOOR(v, mul); \
(ceil - (v)) > ((v) - floor) ? floor : ceil; \
})
/**
* Checks if a pointer is aligned to a given power-of-two value
*
* @param ptr
* The pointer whose alignment is to be checked
* @param align
* The power-of-two value to which the ptr should be aligned
*
* @return
* True(1) where the pointer is correctly aligned, false(0) otherwise
*/
static inline int
rte_is_aligned(void *ptr, unsigned align)
{
return RTE_PTR_ALIGN(ptr, align) == ptr;
}
/*********** Macros for compile type checks ********/
/**
* Triggers an error at compilation time if the condition is true.
*/
#define RTE_BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
/*********** Cache line related macros ********/
/** Cache line mask. */
#define RTE_CACHE_LINE_MASK (RTE_CACHE_LINE_SIZE-1)
/** Return the first cache-aligned value greater or equal to size. */
#define RTE_CACHE_LINE_ROUNDUP(size) \
(RTE_CACHE_LINE_SIZE * ((size + RTE_CACHE_LINE_SIZE - 1) / \
RTE_CACHE_LINE_SIZE))
/** Cache line size in terms of log2 */
#if RTE_CACHE_LINE_SIZE == 64
#define RTE_CACHE_LINE_SIZE_LOG2 6
#elif RTE_CACHE_LINE_SIZE == 128
#define RTE_CACHE_LINE_SIZE_LOG2 7
#else
#error "Unsupported cache line size"
#endif
/** Minimum Cache line size. */
#define RTE_CACHE_LINE_MIN_SIZE 64
/** Force alignment to cache line. */
#define __rte_cache_aligned __rte_aligned(RTE_CACHE_LINE_SIZE)
/** Force minimum cache line alignment. */
#define __rte_cache_min_aligned __rte_aligned(RTE_CACHE_LINE_MIN_SIZE)
/*********** PA/IOVA type definitions ********/
/** Physical address */
typedef uint64_t phys_addr_t;
#define RTE_BAD_PHYS_ADDR ((phys_addr_t)-1)
/**
* IO virtual address type.
* When the physical addressing mode (IOVA as PA) is in use,
* the translation from an IO virtual address (IOVA) to a physical address
* is a direct mapping, i.e. the same value.
* Otherwise, in virtual mode (IOVA as VA), an IOMMU may do the translation.
*/
typedef uint64_t rte_iova_t;
#define RTE_BAD_IOVA ((rte_iova_t)-1)
/*********** Structure alignment markers ********/
/** Generic marker for any place in a structure. */
__extension__ typedef void *RTE_MARKER[0];
/** Marker for 1B alignment in a structure. */
__extension__ typedef uint8_t RTE_MARKER8[0];
/** Marker for 2B alignment in a structure. */
__extension__ typedef uint16_t RTE_MARKER16[0];
/** Marker for 4B alignment in a structure. */
__extension__ typedef uint32_t RTE_MARKER32[0];
/** Marker for 8B alignment in a structure. */
__extension__ typedef uint64_t RTE_MARKER64[0];
/**
* Combines 32b inputs most significant set bits into the least
* significant bits to construct a value with the same MSBs as x
* but all 1's under it.
*
* @param x
* The integer whose MSBs need to be combined with its LSBs
* @return
* The combined value.
*/
static inline uint32_t
rte_combine32ms1b(uint32_t x)
{
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x;
}
/**
* Combines 64b inputs most significant set bits into the least
* significant bits to construct a value with the same MSBs as x
* but all 1's under it.
*
* @param v
* The integer whose MSBs need to be combined with its LSBs
* @return
* The combined value.
*/
static inline uint64_t
rte_combine64ms1b(uint64_t v)
{
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v |= v >> 32;
return v;
}
/*********** Macros to work with powers of 2 ********/
/**
* Macro to return 1 if n is a power of 2, 0 otherwise
*/
#define RTE_IS_POWER_OF_2(n) ((n) && !(((n) - 1) & (n)))
/**
* Returns true if n is a power of 2
* @param n
* Number to check
* @return 1 if true, 0 otherwise
*/
static inline int
rte_is_power_of_2(uint32_t n)
{
return n && !(n & (n - 1));
}
/**
* Aligns input parameter to the next power of 2
*
* @param x
* The integer value to align
*
* @return
* Input parameter aligned to the next power of 2
*/
static inline uint32_t
rte_align32pow2(uint32_t x)
{
x--;
x = rte_combine32ms1b(x);
return x + 1;
}
/**
* Aligns input parameter to the previous power of 2
*
* @param x
* The integer value to align
*
* @return
* Input parameter aligned to the previous power of 2
*/
static inline uint32_t
rte_align32prevpow2(uint32_t x)
{
x = rte_combine32ms1b(x);
return x - (x >> 1);
}
/**
* Aligns 64b input parameter to the next power of 2
*
* @param v
* The 64b value to align
*
* @return
* Input parameter aligned to the next power of 2
*/
static inline uint64_t
rte_align64pow2(uint64_t v)
{
v--;
v = rte_combine64ms1b(v);
return v + 1;
}
/**
* Aligns 64b input parameter to the previous power of 2
*
* @param v
* The 64b value to align
*
* @return
* Input parameter aligned to the previous power of 2
*/
static inline uint64_t
rte_align64prevpow2(uint64_t v)
{
v = rte_combine64ms1b(v);
return v - (v >> 1);
}
/*********** Macros for calculating min and max **********/
/**
* Macro to return the minimum of two numbers
*/
#define RTE_MIN(a, b) \
__extension__ ({ \
typeof (a) _a = (a); \
typeof (b) _b = (b); \
_a < _b ? _a : _b; \
})
/**
* Macro to return the maximum of two numbers
*/
#define RTE_MAX(a, b) \
__extension__ ({ \
typeof (a) _a = (a); \
typeof (b) _b = (b); \
_a > _b ? _a : _b; \
})
/*********** Other general functions / macros ********/
/**
* Searches the input parameter for the least significant set bit
* (starting from zero).
* If a least significant 1 bit is found, its bit index is returned.
* If the content of the input parameter is zero, then the content of the return
* value is undefined.
* @param v
* input parameter, should not be zero.
* @return
* least significant set bit in the input parameter.
*/
static inline uint32_t
rte_bsf32(uint32_t v)
{
return (uint32_t)__builtin_ctz(v);
}
/**
* Searches the input parameter for the least significant set bit
* (starting from zero). Safe version (checks for input parameter being zero).
*
* @warning ``pos`` must be a valid pointer. It is not checked!
*
* @param v
* The input parameter.
* @param pos
* If ``v`` was not 0, this value will contain position of least significant
* bit within the input parameter.
* @return
* Returns 0 if ``v`` was 0, otherwise returns 1.
*/
static inline int
rte_bsf32_safe(uint32_t v, uint32_t *pos)
{
if (v == 0)
return 0;
*pos = rte_bsf32(v);
return 1;
}
/**
* Return the rounded-up log2 of a integer.
*
* @note Contrary to the logarithm mathematical operation,
* rte_log2_u32(0) == 0 and not -inf.
*
* @param v
* The input parameter.
* @return
* The rounded-up log2 of the input, or 0 if the input is 0.
*/
static inline uint32_t
rte_log2_u32(uint32_t v)
{
if (v == 0)
return 0;
v = rte_align32pow2(v);
return rte_bsf32(v);
}
/**
* Return the last (most-significant) bit set.
*
* @note The last (most significant) bit is at position 32.
* @note rte_fls_u32(0) = 0, rte_fls_u32(1) = 1, rte_fls_u32(0x80000000) = 32
*
* @param x
* The input parameter.
* @return
* The last (most-significant) bit set, or 0 if the input is 0.
*/
static inline int
rte_fls_u32(uint32_t x)
{
return (x == 0) ? 0 : 32 - __builtin_clz(x);
}
/**
* Searches the input parameter for the least significant set bit
* (starting from zero).
* If a least significant 1 bit is found, its bit index is returned.
* If the content of the input parameter is zero, then the content of the return
* value is undefined.
* @param v
* input parameter, should not be zero.
* @return
* least significant set bit in the input parameter.
*/
static inline int
rte_bsf64(uint64_t v)
{
return (uint32_t)__builtin_ctzll(v);
}
/**
* Searches the input parameter for the least significant set bit
* (starting from zero). Safe version (checks for input parameter being zero).
*
* @warning ``pos`` must be a valid pointer. It is not checked!
*
* @param v
* The input parameter.
* @param pos
* If ``v`` was not 0, this value will contain position of least significant
* bit within the input parameter.
* @return
* Returns 0 if ``v`` was 0, otherwise returns 1.
*/
static inline int
rte_bsf64_safe(uint64_t v, uint32_t *pos)
{
if (v == 0)
return 0;
*pos = rte_bsf64(v);
return 1;
}
/**
* Return the last (most-significant) bit set.
*
* @note The last (most significant) bit is at position 64.
* @note rte_fls_u64(0) = 0, rte_fls_u64(1) = 1,
* rte_fls_u64(0x8000000000000000) = 64
*
* @param x
* The input parameter.
* @return
* The last (most-significant) bit set, or 0 if the input is 0.
*/
static inline int
rte_fls_u64(uint64_t x)
{
return (x == 0) ? 0 : 64 - __builtin_clzll(x);
}
/**
* Return the rounded-up log2 of a 64-bit integer.
*
* @note Contrary to the logarithm mathematical operation,
* rte_log2_u64(0) == 0 and not -inf.
*
* @param v
* The input parameter.
* @return
* The rounded-up log2 of the input, or 0 if the input is 0.
*/
static inline uint32_t
rte_log2_u64(uint64_t v)
{
if (v == 0)
return 0;
v = rte_align64pow2(v);
/* we checked for v being 0 already, so no undefined behavior */
return rte_bsf64(v);
}
#ifndef offsetof
/** Return the offset of a field in a structure. */
#define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER)
#endif
/**
* Return pointer to the wrapping struct instance.
*
* Example:
*
* struct wrapper {
* ...
* struct child c;
* ...
* };
*
* struct child *x = obtain(...);
* struct wrapper *w = container_of(x, struct wrapper, c);
*/
#ifndef container_of
#define container_of(ptr, type, member) __extension__ ({ \
const typeof(((type *)0)->member) *_ptr = (ptr); \
__rte_unused type *_target_ptr = \
(type *)(ptr); \
(type *)(((uintptr_t)_ptr) - offsetof(type, member)); \
})
#endif
/** Swap two variables. */
#define RTE_SWAP(a, b) \
__extension__ ({ \
typeof (a) _a = a; \
a = b; \
b = _a; \
})
/**
* Get the size of a field in a structure.
*
* @param type
* The type of the structure.
* @param field
* The field in the structure.
* @return
* The size of the field in the structure, in bytes.
*/
#define RTE_SIZEOF_FIELD(type, field) (sizeof(((type *)0)->field))
#define _RTE_STR(x) #x
/** Take a macro value and get a string version of it */
#define RTE_STR(x) _RTE_STR(x)
/**
* ISO C helpers to modify format strings using variadic macros.
* This is a replacement for the ", ## __VA_ARGS__" GNU extension.
* An empty %s argument is appended to avoid a dangling comma.
*/
#define RTE_FMT(fmt, ...) fmt "%.0s", __VA_ARGS__ ""
#define RTE_FMT_HEAD(fmt, ...) fmt
#define RTE_FMT_TAIL(fmt, ...) __VA_ARGS__
/** Mask value of type "tp" for the first "ln" bit set. */
#define RTE_LEN2MASK(ln, tp) \
((tp)((uint64_t)-1 >> (sizeof(uint64_t) * CHAR_BIT - (ln))))
/** Number of elements in the array. */
#define RTE_DIM(a) (sizeof (a) / sizeof ((a)[0]))
/**
* Converts a numeric string to the equivalent uint64_t value.
* As well as straight number conversion, also recognises the suffixes
* k, m and g for kilobytes, megabytes and gigabytes respectively.
*
* If a negative number is passed in i.e. a string with the first non-black
* character being "-", zero is returned. Zero is also returned in the case of
* an error with the strtoull call in the function.
*
* @param str
* String containing number to convert.
* @return
* Number.
*/
static inline uint64_t
rte_str_to_size(const char *str)
{
char *endptr;
unsigned long long size;
while (isspace((int)*str))
str++;
if (*str == '-')
return 0;
errno = 0;
size = strtoull(str, &endptr, 0);
if (errno)
return 0;
if (*endptr == ' ')
endptr++; /* allow 1 space gap */
switch (*endptr){
case 'G': case 'g': size *= 1024; /* fall-through */
case 'M': case 'm': size *= 1024; /* fall-through */
case 'K': case 'k': size *= 1024; /* fall-through */
default:
break;
}
return size;
}
/**
* Function to terminate the application immediately, printing an error
* message and returning the exit_code back to the shell.
*
* This function never returns
*
* @param exit_code
* The exit code to be returned by the application
* @param format
* The format string to be used for printing the message. This can include
* printf format characters which will be expanded using any further parameters
* to the function.
*/
__rte_noreturn void
rte_exit(int exit_code, const char *format, ...)
__rte_format_printf(2, 3);
#ifdef __cplusplus
}
#endif
#endif