numam-dpdk/drivers/raw/ntb/ntb_hw_intel.c
Chengwen Feng 403f21feb8 raw/ntb: check memory allocations
This patch adds checking for rte_zmalloc() result when init Intel ntb
device, also fix the same bug when start ntb device.

Fixes: 034c328eb025 ("raw/ntb: support Intel NTB")
Fixes: c39d1e082a4b ("raw/ntb: setup queues")
Cc: stable@dpdk.org

Signed-off-by: Chengwen Feng <fengchengwen@huawei.com>
Signed-off-by: Min Hu (Connor) <humin29@huawei.com>
Acked-by: Xiaoyun Li <xiaoyun.li@intel.com>
2021-05-05 22:53:04 +02:00

580 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation.
*/
#include <stdint.h>
#include <stdio.h>
#include <errno.h>
#include <rte_io.h>
#include <rte_eal.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include "ntb.h"
#include "ntb_hw_intel.h"
enum xeon_ntb_bar {
XEON_NTB_BAR23 = 2,
XEON_NTB_BAR45 = 4,
};
static enum xeon_ntb_bar intel_ntb_bar[] = {
XEON_NTB_BAR23,
XEON_NTB_BAR45,
};
static inline int
is_gen3_ntb(const struct ntb_hw *hw)
{
if (hw->pci_dev->id.device_id == NTB_INTEL_DEV_ID_B2B_SKX)
return 1;
return 0;
}
static inline int
is_gen4_ntb(const struct ntb_hw *hw)
{
if (hw->pci_dev->id.device_id == NTB_INTEL_DEV_ID_B2B_ICX)
return 1;
return 0;
}
static int
intel_ntb3_check_ppd(struct ntb_hw *hw)
{
uint8_t reg_val;
int ret;
ret = rte_pci_read_config(hw->pci_dev, &reg_val,
sizeof(reg_val), XEON_PPD_OFFSET);
if (ret < 0) {
NTB_LOG(ERR, "Cannot get NTB PPD (PCIe port definition).");
return -EIO;
}
/* Check connection topo type. Only support B2B. */
switch (reg_val & XEON_PPD_CONN_MASK) {
case XEON_PPD_CONN_B2B:
NTB_LOG(INFO, "Topo B2B (back to back) is using.");
break;
case XEON_PPD_CONN_TRANSPARENT:
case XEON_PPD_CONN_RP:
default:
NTB_LOG(ERR, "Not supported conn topo. Please use B2B.");
return -EINVAL;
}
/* Check device type. */
if (reg_val & XEON_PPD_DEV_DSD) {
NTB_LOG(INFO, "DSD, Downstream Device.");
hw->topo = NTB_TOPO_B2B_DSD;
} else {
NTB_LOG(INFO, "USD, Upstream device.");
hw->topo = NTB_TOPO_B2B_USD;
}
/* Check if bar4 is split. Do not support split bar. */
if (reg_val & XEON_PPD_SPLIT_BAR_MASK) {
NTB_LOG(ERR, "Do not support split bar.");
return -EINVAL;
}
return 0;
}
static int
intel_ntb4_check_ppd(struct ntb_hw *hw)
{
uint32_t reg_val;
reg_val = rte_read32(hw->hw_addr + XEON_GEN4_PPD1_OFFSET);
/* Check connection topo type. Only support B2B. */
switch (reg_val & XEON_GEN4_PPD_CONN_MASK) {
case XEON_GEN4_PPD_CONN_B2B:
NTB_LOG(INFO, "Topo B2B (back to back) is using.");
break;
default:
NTB_LOG(ERR, "Not supported conn topo. Please use B2B.");
return -EINVAL;
}
/* Check device type. */
if (reg_val & XEON_GEN4_PPD_DEV_DSD) {
NTB_LOG(INFO, "DSD, Downstream Device.");
hw->topo = NTB_TOPO_B2B_DSD;
} else {
NTB_LOG(INFO, "USD, Upstream device.");
hw->topo = NTB_TOPO_B2B_USD;
}
return 0;
}
static int
intel_ntb_dev_init(const struct rte_rawdev *dev)
{
struct ntb_hw *hw = dev->dev_private;
uint8_t bar;
int ret, i;
if (hw == NULL) {
NTB_LOG(ERR, "Invalid device.");
return -EINVAL;
}
hw->hw_addr = (char *)hw->pci_dev->mem_resource[0].addr;
if (is_gen3_ntb(hw))
ret = intel_ntb3_check_ppd(hw);
else if (is_gen4_ntb(hw))
/* PPD is in MMIO but not config space for NTB Gen4 */
ret = intel_ntb4_check_ppd(hw);
else {
NTB_LOG(ERR, "Cannot init device for unsupported device.");
return -ENOTSUP;
}
if (ret)
return ret;
hw->mw_cnt = XEON_MW_COUNT;
hw->db_cnt = XEON_DB_COUNT;
hw->spad_cnt = XEON_SPAD_COUNT;
hw->mw_size = rte_zmalloc("ntb_mw_size",
hw->mw_cnt * sizeof(uint64_t), 0);
if (hw->mw_size == NULL) {
NTB_LOG(ERR, "Cannot allocate memory for mw size.");
return -ENOMEM;
}
for (i = 0; i < hw->mw_cnt; i++) {
bar = intel_ntb_bar[i];
hw->mw_size[i] = hw->pci_dev->mem_resource[bar].len;
}
/* Reserve the last 2 spad registers for users. */
for (i = 0; i < NTB_SPAD_USER_MAX_NUM; i++)
hw->spad_user_list[i] = hw->spad_cnt;
hw->spad_user_list[0] = hw->spad_cnt - 2;
hw->spad_user_list[1] = hw->spad_cnt - 1;
return 0;
}
static void *
intel_ntb_get_peer_mw_addr(const struct rte_rawdev *dev, int mw_idx)
{
struct ntb_hw *hw = dev->dev_private;
uint8_t bar;
if (hw == NULL) {
NTB_LOG(ERR, "Invalid device.");
return 0;
}
if (mw_idx < 0 || mw_idx >= hw->mw_cnt) {
NTB_LOG(ERR, "Invalid memory window index (0 - %u).",
hw->mw_cnt - 1);
return 0;
}
bar = intel_ntb_bar[mw_idx];
return hw->pci_dev->mem_resource[bar].addr;
}
static int
intel_ntb_mw_set_trans(const struct rte_rawdev *dev, int mw_idx,
uint64_t addr, uint64_t size)
{
struct ntb_hw *hw = dev->dev_private;
void *xlat_addr, *limit_addr;
uint64_t xlat_off, limit_off;
uint64_t base, limit;
uint8_t bar;
if (hw == NULL) {
NTB_LOG(ERR, "Invalid device.");
return -EINVAL;
}
if (mw_idx < 0 || mw_idx >= hw->mw_cnt) {
NTB_LOG(ERR, "Invalid memory window index (0 - %u).",
hw->mw_cnt - 1);
return -EINVAL;
}
bar = intel_ntb_bar[mw_idx];
xlat_off = XEON_IMBAR1XBASE_OFFSET + mw_idx * XEON_BAR_INTERVAL_OFFSET;
limit_off = XEON_IMBAR1XLMT_OFFSET + mw_idx * XEON_BAR_INTERVAL_OFFSET;
xlat_addr = hw->hw_addr + xlat_off;
limit_addr = hw->hw_addr + limit_off;
/* Limit reg val should be EMBAR base address plus MW size. */
base = addr;
limit = hw->pci_dev->mem_resource[bar].phys_addr + size;
rte_write64(base, xlat_addr);
rte_write64(limit, limit_addr);
if (is_gen3_ntb(hw)) {
/* Setup the external point so that remote can access. */
xlat_off = XEON_EMBAR1_OFFSET + 8 * mw_idx;
xlat_addr = hw->hw_addr + xlat_off;
limit_off = XEON_EMBAR1XLMT_OFFSET +
mw_idx * XEON_BAR_INTERVAL_OFFSET;
limit_addr = hw->hw_addr + limit_off;
base = rte_read64(xlat_addr);
base &= ~0xf;
limit = base + size;
rte_write64(limit, limit_addr);
} else if (is_gen4_ntb(hw)) {
/* Set translate base address index register */
xlat_off = XEON_GEN4_IM1XBASEIDX_OFFSET +
mw_idx * XEON_GEN4_XBASEIDX_INTERVAL;
xlat_addr = hw->hw_addr + xlat_off;
rte_write16(rte_log2_u64(size), xlat_addr);
} else {
NTB_LOG(ERR, "Cannot set translation of memory windows for unsupported device.");
rte_write64(base, limit_addr);
rte_write64(0, xlat_addr);
return -ENOTSUP;
}
return 0;
}
static void *
intel_ntb_ioremap(const struct rte_rawdev *dev, uint64_t addr)
{
struct ntb_hw *hw = dev->dev_private;
void *mapped = NULL;
void *base;
int i;
for (i = 0; i < hw->peer_used_mws; i++) {
if (addr >= hw->peer_mw_base[i] &&
addr <= hw->peer_mw_base[i] + hw->mw_size[i]) {
base = intel_ntb_get_peer_mw_addr(dev, i);
mapped = (void *)(size_t)(addr - hw->peer_mw_base[i] +
(size_t)base);
break;
}
}
return mapped;
}
static int
intel_ntb_get_link_status(const struct rte_rawdev *dev)
{
struct ntb_hw *hw = dev->dev_private;
uint16_t reg_val, reg_off;
int ret;
if (hw == NULL) {
NTB_LOG(ERR, "Invalid device.");
return -EINVAL;
}
if (is_gen3_ntb(hw)) {
reg_off = XEON_GEN3_LINK_STATUS_OFFSET;
ret = rte_pci_read_config(hw->pci_dev, &reg_val,
sizeof(reg_val), reg_off);
if (ret < 0) {
NTB_LOG(ERR, "Unable to get link status.");
return -EIO;
}
} else if (is_gen4_ntb(hw)) {
reg_off = XEON_GEN4_LINK_STATUS_OFFSET;
reg_val = rte_read16(hw->hw_addr + reg_off);
} else {
NTB_LOG(ERR, "Cannot get link status for unsupported device.");
return -ENOTSUP;
}
hw->link_status = NTB_LNK_STA_ACTIVE(reg_val);
if (hw->link_status) {
hw->link_speed = NTB_LNK_STA_SPEED(reg_val);
hw->link_width = NTB_LNK_STA_WIDTH(reg_val);
} else {
hw->link_speed = NTB_SPEED_NONE;
hw->link_width = NTB_WIDTH_NONE;
}
return 0;
}
static int
intel_ntb_gen3_set_link(const struct ntb_hw *hw, bool up)
{
uint32_t ntb_ctrl, reg_off;
void *reg_addr;
reg_off = XEON_NTBCNTL_OFFSET;
reg_addr = hw->hw_addr + reg_off;
ntb_ctrl = rte_read32(reg_addr);
if (up) {
ntb_ctrl &= ~(NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK);
ntb_ctrl |= NTB_CTL_P2S_BAR2_SNOOP | NTB_CTL_S2P_BAR2_SNOOP;
ntb_ctrl |= NTB_CTL_P2S_BAR4_SNOOP | NTB_CTL_S2P_BAR4_SNOOP;
} else {
ntb_ctrl &= ~(NTB_CTL_P2S_BAR2_SNOOP | NTB_CTL_S2P_BAR2_SNOOP);
ntb_ctrl &= ~(NTB_CTL_P2S_BAR4_SNOOP | NTB_CTL_S2P_BAR4_SNOOP);
ntb_ctrl |= NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK;
}
rte_write32(ntb_ctrl, reg_addr);
return 0;
}
static int
intel_ntb_gen4_set_link(const struct ntb_hw *hw, bool up)
{
uint32_t ntb_ctrl, ppd0;
uint16_t link_ctrl;
void *reg_addr;
if (up) {
reg_addr = hw->hw_addr + XEON_NTBCNTL_OFFSET;
ntb_ctrl = NTB_CTL_P2S_BAR2_SNOOP | NTB_CTL_S2P_BAR2_SNOOP;
ntb_ctrl |= NTB_CTL_P2S_BAR4_SNOOP | NTB_CTL_S2P_BAR4_SNOOP;
rte_write32(ntb_ctrl, reg_addr);
reg_addr = hw->hw_addr + XEON_GEN4_LINK_CTRL_OFFSET;
link_ctrl = rte_read16(reg_addr);
link_ctrl &= ~XEON_GEN4_LINK_CTRL_LINK_DIS;
rte_write16(link_ctrl, reg_addr);
/* start link training */
reg_addr = hw->hw_addr + XEON_GEN4_PPD0_OFFSET;
ppd0 = rte_read32(reg_addr);
ppd0 |= XEON_GEN4_PPD_LINKTRN;
rte_write32(ppd0, reg_addr);
/* make sure link training has started */
ppd0 = rte_read32(reg_addr);
if (!(ppd0 & XEON_GEN4_PPD_LINKTRN)) {
NTB_LOG(ERR, "Link is not training.");
return -EINVAL;
}
} else {
reg_addr = hw->hw_addr + XEON_NTBCNTL_OFFSET;
ntb_ctrl = rte_read32(reg_addr);
ntb_ctrl &= ~(NTB_CTL_P2S_BAR2_SNOOP | NTB_CTL_S2P_BAR2_SNOOP);
ntb_ctrl &= ~(NTB_CTL_P2S_BAR4_SNOOP | NTB_CTL_S2P_BAR4_SNOOP);
rte_write32(ntb_ctrl, reg_addr);
reg_addr = hw->hw_addr + XEON_GEN4_LINK_CTRL_OFFSET;
link_ctrl = rte_read16(reg_addr);
link_ctrl |= XEON_GEN4_LINK_CTRL_LINK_DIS;
rte_write16(link_ctrl, reg_addr);
}
return 0;
}
static int
intel_ntb_set_link(const struct rte_rawdev *dev, bool up)
{
struct ntb_hw *hw = dev->dev_private;
int ret = 0;
if (is_gen3_ntb(hw))
ret = intel_ntb_gen3_set_link(hw, up);
else if (is_gen4_ntb(hw))
ret = intel_ntb_gen4_set_link(hw, up);
else {
NTB_LOG(ERR, "Cannot set link for unsupported device.");
ret = -ENOTSUP;
}
return ret;
}
static uint32_t
intel_ntb_spad_read(const struct rte_rawdev *dev, int spad, bool peer)
{
struct ntb_hw *hw = dev->dev_private;
uint32_t spad_v, reg_off;
void *reg_addr;
if (spad < 0 || spad >= hw->spad_cnt) {
NTB_LOG(ERR, "Invalid spad reg index.");
return 0;
}
/* When peer is true, read peer spad reg */
if (is_gen3_ntb(hw))
reg_off = peer ? XEON_GEN3_B2B_SPAD_OFFSET :
XEON_IM_SPAD_OFFSET;
else if (is_gen4_ntb(hw))
reg_off = peer ? XEON_GEN4_B2B_SPAD_OFFSET :
XEON_IM_SPAD_OFFSET;
else {
NTB_LOG(ERR, "Cannot read spad for unsupported device.");
return -ENOTSUP;
}
reg_addr = hw->hw_addr + reg_off + (spad << 2);
spad_v = rte_read32(reg_addr);
return spad_v;
}
static int
intel_ntb_spad_write(const struct rte_rawdev *dev, int spad,
bool peer, uint32_t spad_v)
{
struct ntb_hw *hw = dev->dev_private;
uint32_t reg_off;
void *reg_addr;
if (spad < 0 || spad >= hw->spad_cnt) {
NTB_LOG(ERR, "Invalid spad reg index.");
return -EINVAL;
}
/* When peer is true, write peer spad reg */
if (is_gen3_ntb(hw))
reg_off = peer ? XEON_GEN3_B2B_SPAD_OFFSET :
XEON_IM_SPAD_OFFSET;
else if (is_gen4_ntb(hw))
reg_off = peer ? XEON_GEN4_B2B_SPAD_OFFSET :
XEON_IM_SPAD_OFFSET;
else {
NTB_LOG(ERR, "Cannot write spad for unsupported device.");
return -ENOTSUP;
}
reg_addr = hw->hw_addr + reg_off + (spad << 2);
rte_write32(spad_v, reg_addr);
return 0;
}
static uint64_t
intel_ntb_db_read(const struct rte_rawdev *dev)
{
struct ntb_hw *hw = dev->dev_private;
uint64_t db_off, db_bits;
void *db_addr;
db_off = XEON_IM_INT_STATUS_OFFSET;
db_addr = hw->hw_addr + db_off;
db_bits = rte_read64(db_addr);
return db_bits;
}
static int
intel_ntb_db_clear(const struct rte_rawdev *dev, uint64_t db_bits)
{
struct ntb_hw *hw = dev->dev_private;
uint64_t db_off;
void *db_addr;
db_off = XEON_IM_INT_STATUS_OFFSET;
db_addr = hw->hw_addr + db_off;
if (is_gen4_ntb(hw))
rte_write16(XEON_GEN4_SLOTSTS_DLLSCS,
hw->hw_addr + XEON_GEN4_SLOTSTS);
rte_write64(db_bits, db_addr);
return 0;
}
static int
intel_ntb_db_set_mask(const struct rte_rawdev *dev, uint64_t db_mask)
{
struct ntb_hw *hw = dev->dev_private;
uint64_t db_m_off;
void *db_m_addr;
db_m_off = XEON_IM_INT_DISABLE_OFFSET;
db_m_addr = hw->hw_addr + db_m_off;
db_mask |= hw->db_mask;
rte_write64(db_mask, db_m_addr);
hw->db_mask = db_mask;
return 0;
}
static int
intel_ntb_peer_db_set(const struct rte_rawdev *dev, uint8_t db_idx)
{
struct ntb_hw *hw = dev->dev_private;
uint32_t db_off;
void *db_addr;
if (((uint64_t)1 << db_idx) & ~hw->db_valid_mask) {
NTB_LOG(ERR, "Invalid doorbell.");
return -EINVAL;
}
db_off = XEON_IM_DOORBELL_OFFSET + db_idx * 4;
db_addr = hw->hw_addr + db_off;
rte_write32(1, db_addr);
return 0;
}
static int
intel_ntb_vector_bind(const struct rte_rawdev *dev, uint8_t intr, uint8_t msix)
{
struct ntb_hw *hw = dev->dev_private;
uint8_t reg_off;
void *reg_addr;
if (intr >= hw->db_cnt) {
NTB_LOG(ERR, "Invalid intr source.");
return -EINVAL;
}
/* Bind intr source to msix vector */
if (is_gen3_ntb(hw))
reg_off = XEON_GEN3_INTVEC_OFFSET;
else if (is_gen4_ntb(hw))
reg_off = XEON_GEN4_INTVEC_OFFSET;
else {
NTB_LOG(ERR, "Cannot bind vectors for unsupported device.");
return -ENOTSUP;
}
reg_addr = hw->hw_addr + reg_off + intr;
rte_write8(msix, reg_addr);
return 0;
}
/* operations for primary side of local ntb */
const struct ntb_dev_ops intel_ntb_ops = {
.ntb_dev_init = intel_ntb_dev_init,
.get_peer_mw_addr = intel_ntb_get_peer_mw_addr,
.mw_set_trans = intel_ntb_mw_set_trans,
.ioremap = intel_ntb_ioremap,
.get_link_status = intel_ntb_get_link_status,
.set_link = intel_ntb_set_link,
.spad_read = intel_ntb_spad_read,
.spad_write = intel_ntb_spad_write,
.db_read = intel_ntb_db_read,
.db_clear = intel_ntb_db_clear,
.db_set_mask = intel_ntb_db_set_mask,
.peer_db_set = intel_ntb_peer_db_set,
.vector_bind = intel_ntb_vector_bind,
};