numam-dpdk/lib/rib/rte_rib6.c
Owen Hilyard 03b8372a9a rib: fix max depth IPv6 lookup
ASAN found a stack buffer overflow in lib/rib/rte_rib6.c:get_dir.
The fix for the stack buffer overflow was to make sure depth
was always < 128, since when depth = 128 it caused the index
into the ip address to be 16, which read off the end of the array.

While trying to solve the buffer overflow, I noticed that a few
changes could be made to remove the for loop entirely.

Fixes: f7e861e21c ("rib: support IPv6")
Cc: stable@dpdk.org

Signed-off-by: Owen Hilyard <ohilyard@iol.unh.edu>
Acked-by: Vladimir Medvedkin <vladimir.medvedkin@intel.com>
2021-06-24 15:34:45 +02:00

613 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Vladimir Medvedkin <medvedkinv@gmail.com>
* Copyright(c) 2019 Intel Corporation
*/
#include <stdbool.h>
#include <stdint.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_rwlock.h>
#include <rte_string_fns.h>
#include <rte_tailq.h>
#include <rte_rib6.h>
#define RTE_RIB_VALID_NODE 1
#define RIB6_MAXDEPTH 128
/* Maximum length of a RIB6 name. */
#define RTE_RIB6_NAMESIZE 64
TAILQ_HEAD(rte_rib6_list, rte_tailq_entry);
static struct rte_tailq_elem rte_rib6_tailq = {
.name = "RTE_RIB6",
};
EAL_REGISTER_TAILQ(rte_rib6_tailq)
struct rte_rib6_node {
struct rte_rib6_node *left;
struct rte_rib6_node *right;
struct rte_rib6_node *parent;
uint64_t nh;
uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE];
uint8_t depth;
uint8_t flag;
__extension__ uint64_t ext[0];
};
struct rte_rib6 {
char name[RTE_RIB6_NAMESIZE];
struct rte_rib6_node *tree;
struct rte_mempool *node_pool;
uint32_t cur_nodes;
uint32_t cur_routes;
int max_nodes;
};
static inline bool
is_valid_node(struct rte_rib6_node *node)
{
return (node->flag & RTE_RIB_VALID_NODE) == RTE_RIB_VALID_NODE;
}
static inline bool
is_right_node(struct rte_rib6_node *node)
{
return node->parent->right == node;
}
/*
* Check if ip1 is covered by ip2/depth prefix
*/
static inline bool
is_covered(const uint8_t ip1[RTE_RIB6_IPV6_ADDR_SIZE],
const uint8_t ip2[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth)
{
int i;
for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++)
if ((ip1[i] ^ ip2[i]) & get_msk_part(depth, i))
return false;
return true;
}
static inline int
get_dir(const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth)
{
uint8_t index, msk;
/*
* depth & 127 clamps depth to values that will not
* read off the end of ip.
* depth is the number of bits deep into ip to traverse, and
* is incremented in blocks of 8 (1 byte). This means the last
* 3 bits are irrelevant to what the index of ip should be.
*/
index = (depth & (UINT8_MAX - 1)) / CHAR_BIT;
/*
* msk is the bitmask used to extract the bit used to decide the
* direction of the next step of the binary search.
*/
msk = 1 << (7 - (depth & 7));
return (ip[index] & msk) != 0;
}
static inline struct rte_rib6_node *
get_nxt_node(struct rte_rib6_node *node,
const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE])
{
if (node->depth == RIB6_MAXDEPTH)
return NULL;
return (get_dir(ip, node->depth)) ? node->right : node->left;
}
static struct rte_rib6_node *
node_alloc(struct rte_rib6 *rib)
{
struct rte_rib6_node *ent;
int ret;
ret = rte_mempool_get(rib->node_pool, (void *)&ent);
if (unlikely(ret != 0))
return NULL;
++rib->cur_nodes;
return ent;
}
static void
node_free(struct rte_rib6 *rib, struct rte_rib6_node *ent)
{
--rib->cur_nodes;
rte_mempool_put(rib->node_pool, ent);
}
struct rte_rib6_node *
rte_rib6_lookup(struct rte_rib6 *rib,
const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE])
{
struct rte_rib6_node *cur;
struct rte_rib6_node *prev = NULL;
if (unlikely(rib == NULL)) {
rte_errno = EINVAL;
return NULL;
}
cur = rib->tree;
while ((cur != NULL) && is_covered(ip, cur->ip, cur->depth)) {
if (is_valid_node(cur))
prev = cur;
cur = get_nxt_node(cur, ip);
}
return prev;
}
struct rte_rib6_node *
rte_rib6_lookup_parent(struct rte_rib6_node *ent)
{
struct rte_rib6_node *tmp;
if (ent == NULL)
return NULL;
tmp = ent->parent;
while ((tmp != NULL) && (!is_valid_node(tmp)))
tmp = tmp->parent;
return tmp;
}
struct rte_rib6_node *
rte_rib6_lookup_exact(struct rte_rib6 *rib,
const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth)
{
struct rte_rib6_node *cur;
uint8_t tmp_ip[RTE_RIB6_IPV6_ADDR_SIZE];
int i;
if ((rib == NULL) || (ip == NULL) || (depth > RIB6_MAXDEPTH)) {
rte_errno = EINVAL;
return NULL;
}
cur = rib->tree;
for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++)
tmp_ip[i] = ip[i] & get_msk_part(depth, i);
while (cur != NULL) {
if (rte_rib6_is_equal(cur->ip, tmp_ip) &&
(cur->depth == depth) &&
is_valid_node(cur))
return cur;
if (!(is_covered(tmp_ip, cur->ip, cur->depth)) ||
(cur->depth >= depth))
break;
cur = get_nxt_node(cur, tmp_ip);
}
return NULL;
}
/*
* Traverses on subtree and retreeves more specific routes
* for a given in args ip/depth prefix
* last = NULL means the first invocation
*/
struct rte_rib6_node *
rte_rib6_get_nxt(struct rte_rib6 *rib,
const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE],
uint8_t depth, struct rte_rib6_node *last, int flag)
{
struct rte_rib6_node *tmp, *prev = NULL;
uint8_t tmp_ip[RTE_RIB6_IPV6_ADDR_SIZE];
int i;
if ((rib == NULL) || (ip == NULL) || (depth > RIB6_MAXDEPTH)) {
rte_errno = EINVAL;
return NULL;
}
for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++)
tmp_ip[i] = ip[i] & get_msk_part(depth, i);
if (last == NULL) {
tmp = rib->tree;
while ((tmp) && (tmp->depth < depth))
tmp = get_nxt_node(tmp, tmp_ip);
} else {
tmp = last;
while ((tmp->parent != NULL) && (is_right_node(tmp) ||
(tmp->parent->right == NULL))) {
tmp = tmp->parent;
if (is_valid_node(tmp) &&
(is_covered(tmp->ip, tmp_ip, depth) &&
(tmp->depth > depth)))
return tmp;
}
tmp = (tmp->parent != NULL) ? tmp->parent->right : NULL;
}
while (tmp) {
if (is_valid_node(tmp) &&
(is_covered(tmp->ip, tmp_ip, depth) &&
(tmp->depth > depth))) {
prev = tmp;
if (flag == RTE_RIB6_GET_NXT_COVER)
return prev;
}
tmp = (tmp->left != NULL) ? tmp->left : tmp->right;
}
return prev;
}
void
rte_rib6_remove(struct rte_rib6 *rib,
const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth)
{
struct rte_rib6_node *cur, *prev, *child;
cur = rte_rib6_lookup_exact(rib, ip, depth);
if (cur == NULL)
return;
--rib->cur_routes;
cur->flag &= ~RTE_RIB_VALID_NODE;
while (!is_valid_node(cur)) {
if ((cur->left != NULL) && (cur->right != NULL))
return;
child = (cur->left == NULL) ? cur->right : cur->left;
if (child != NULL)
child->parent = cur->parent;
if (cur->parent == NULL) {
rib->tree = child;
node_free(rib, cur);
return;
}
if (cur->parent->left == cur)
cur->parent->left = child;
else
cur->parent->right = child;
prev = cur;
cur = cur->parent;
node_free(rib, prev);
}
}
struct rte_rib6_node *
rte_rib6_insert(struct rte_rib6 *rib,
const uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE], uint8_t depth)
{
struct rte_rib6_node **tmp;
struct rte_rib6_node *prev = NULL;
struct rte_rib6_node *new_node = NULL;
struct rte_rib6_node *common_node = NULL;
uint8_t common_prefix[RTE_RIB6_IPV6_ADDR_SIZE];
uint8_t tmp_ip[RTE_RIB6_IPV6_ADDR_SIZE];
int i, d;
uint8_t common_depth, ip_xor;
if (unlikely((rib == NULL) || (ip == NULL) ||
(depth > RIB6_MAXDEPTH))) {
rte_errno = EINVAL;
return NULL;
}
tmp = &rib->tree;
for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++)
tmp_ip[i] = ip[i] & get_msk_part(depth, i);
new_node = rte_rib6_lookup_exact(rib, tmp_ip, depth);
if (new_node != NULL) {
rte_errno = EEXIST;
return NULL;
}
new_node = node_alloc(rib);
if (new_node == NULL) {
rte_errno = ENOMEM;
return NULL;
}
new_node->left = NULL;
new_node->right = NULL;
new_node->parent = NULL;
rte_rib6_copy_addr(new_node->ip, tmp_ip);
new_node->depth = depth;
new_node->flag = RTE_RIB_VALID_NODE;
/* traverse down the tree to find matching node or closest matching */
while (1) {
/* insert as the last node in the branch */
if (*tmp == NULL) {
*tmp = new_node;
new_node->parent = prev;
++rib->cur_routes;
return *tmp;
}
/*
* Intermediate node found.
* Previous rte_rib6_lookup_exact() returned NULL
* but node with proper search criteria is found.
* Validate intermediate node and return.
*/
if (rte_rib6_is_equal(tmp_ip, (*tmp)->ip) &&
(depth == (*tmp)->depth)) {
node_free(rib, new_node);
(*tmp)->flag |= RTE_RIB_VALID_NODE;
++rib->cur_routes;
return *tmp;
}
if (!is_covered(tmp_ip, (*tmp)->ip, (*tmp)->depth) ||
((*tmp)->depth >= depth)) {
break;
}
prev = *tmp;
tmp = (get_dir(tmp_ip, (*tmp)->depth)) ? &(*tmp)->right :
&(*tmp)->left;
}
/* closest node found, new_node should be inserted in the middle */
common_depth = RTE_MIN(depth, (*tmp)->depth);
for (i = 0, d = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++) {
ip_xor = tmp_ip[i] ^ (*tmp)->ip[i];
if (ip_xor == 0)
d += 8;
else {
d += __builtin_clz(ip_xor << 24);
break;
}
}
common_depth = RTE_MIN(d, common_depth);
for (i = 0; i < RTE_RIB6_IPV6_ADDR_SIZE; i++)
common_prefix[i] = tmp_ip[i] & get_msk_part(common_depth, i);
if (rte_rib6_is_equal(common_prefix, tmp_ip) &&
(common_depth == depth)) {
/* insert as a parent */
if (get_dir((*tmp)->ip, depth))
new_node->right = *tmp;
else
new_node->left = *tmp;
new_node->parent = (*tmp)->parent;
(*tmp)->parent = new_node;
*tmp = new_node;
} else {
/* create intermediate node */
common_node = node_alloc(rib);
if (common_node == NULL) {
node_free(rib, new_node);
rte_errno = ENOMEM;
return NULL;
}
rte_rib6_copy_addr(common_node->ip, common_prefix);
common_node->depth = common_depth;
common_node->flag = 0;
common_node->parent = (*tmp)->parent;
new_node->parent = common_node;
(*tmp)->parent = common_node;
if (get_dir((*tmp)->ip, common_depth) == 1) {
common_node->left = new_node;
common_node->right = *tmp;
} else {
common_node->left = *tmp;
common_node->right = new_node;
}
*tmp = common_node;
}
++rib->cur_routes;
return new_node;
}
int
rte_rib6_get_ip(const struct rte_rib6_node *node,
uint8_t ip[RTE_RIB6_IPV6_ADDR_SIZE])
{
if ((node == NULL) || (ip == NULL)) {
rte_errno = EINVAL;
return -1;
}
rte_rib6_copy_addr(ip, node->ip);
return 0;
}
int
rte_rib6_get_depth(const struct rte_rib6_node *node, uint8_t *depth)
{
if ((node == NULL) || (depth == NULL)) {
rte_errno = EINVAL;
return -1;
}
*depth = node->depth;
return 0;
}
void *
rte_rib6_get_ext(struct rte_rib6_node *node)
{
return (node == NULL) ? NULL : &node->ext[0];
}
int
rte_rib6_get_nh(const struct rte_rib6_node *node, uint64_t *nh)
{
if ((node == NULL) || (nh == NULL)) {
rte_errno = EINVAL;
return -1;
}
*nh = node->nh;
return 0;
}
int
rte_rib6_set_nh(struct rte_rib6_node *node, uint64_t nh)
{
if (node == NULL) {
rte_errno = EINVAL;
return -1;
}
node->nh = nh;
return 0;
}
struct rte_rib6 *
rte_rib6_create(const char *name, int socket_id,
const struct rte_rib6_conf *conf)
{
char mem_name[RTE_RIB6_NAMESIZE];
struct rte_rib6 *rib = NULL;
struct rte_tailq_entry *te;
struct rte_rib6_list *rib6_list;
struct rte_mempool *node_pool;
/* Check user arguments. */
if (name == NULL || conf == NULL || conf->max_nodes <= 0) {
rte_errno = EINVAL;
return NULL;
}
snprintf(mem_name, sizeof(mem_name), "MP_%s", name);
node_pool = rte_mempool_create(mem_name, conf->max_nodes,
sizeof(struct rte_rib6_node) + conf->ext_sz, 0, 0,
NULL, NULL, NULL, NULL, socket_id, 0);
if (node_pool == NULL) {
RTE_LOG(ERR, LPM,
"Can not allocate mempool for RIB6 %s\n", name);
return NULL;
}
snprintf(mem_name, sizeof(mem_name), "RIB6_%s", name);
rib6_list = RTE_TAILQ_CAST(rte_rib6_tailq.head, rte_rib6_list);
rte_mcfg_tailq_write_lock();
/* guarantee there's no existing */
TAILQ_FOREACH(te, rib6_list, next) {
rib = (struct rte_rib6 *)te->data;
if (strncmp(name, rib->name, RTE_RIB6_NAMESIZE) == 0)
break;
}
rib = NULL;
if (te != NULL) {
rte_errno = EEXIST;
goto exit;
}
/* allocate tailq entry */
te = rte_zmalloc("RIB6_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, LPM,
"Can not allocate tailq entry for RIB6 %s\n", name);
rte_errno = ENOMEM;
goto exit;
}
/* Allocate memory to store the RIB6 data structures. */
rib = rte_zmalloc_socket(mem_name,
sizeof(struct rte_rib6), RTE_CACHE_LINE_SIZE, socket_id);
if (rib == NULL) {
RTE_LOG(ERR, LPM, "RIB6 %s memory allocation failed\n", name);
rte_errno = ENOMEM;
goto free_te;
}
rte_strlcpy(rib->name, name, sizeof(rib->name));
rib->tree = NULL;
rib->max_nodes = conf->max_nodes;
rib->node_pool = node_pool;
te->data = (void *)rib;
TAILQ_INSERT_TAIL(rib6_list, te, next);
rte_mcfg_tailq_write_unlock();
return rib;
free_te:
rte_free(te);
exit:
rte_mcfg_tailq_write_unlock();
rte_mempool_free(node_pool);
return NULL;
}
struct rte_rib6 *
rte_rib6_find_existing(const char *name)
{
struct rte_rib6 *rib = NULL;
struct rte_tailq_entry *te;
struct rte_rib6_list *rib6_list;
if (unlikely(name == NULL)) {
rte_errno = EINVAL;
return NULL;
}
rib6_list = RTE_TAILQ_CAST(rte_rib6_tailq.head, rte_rib6_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, rib6_list, next) {
rib = (struct rte_rib6 *) te->data;
if (strncmp(name, rib->name, RTE_RIB6_NAMESIZE) == 0)
break;
}
rte_mcfg_tailq_read_unlock();
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return rib;
}
void
rte_rib6_free(struct rte_rib6 *rib)
{
struct rte_tailq_entry *te;
struct rte_rib6_list *rib6_list;
struct rte_rib6_node *tmp = NULL;
if (unlikely(rib == NULL)) {
rte_errno = EINVAL;
return;
}
rib6_list = RTE_TAILQ_CAST(rte_rib6_tailq.head, rte_rib6_list);
rte_mcfg_tailq_write_lock();
/* find our tailq entry */
TAILQ_FOREACH(te, rib6_list, next) {
if (te->data == (void *)rib)
break;
}
if (te != NULL)
TAILQ_REMOVE(rib6_list, te, next);
rte_mcfg_tailq_write_unlock();
while ((tmp = rte_rib6_get_nxt(rib, 0, 0, tmp,
RTE_RIB6_GET_NXT_ALL)) != NULL)
rte_rib6_remove(rib, tmp->ip, tmp->depth);
rte_mempool_free(rib->node_pool);
rte_free(rib);
rte_free(te);
}