numam-dpdk/app/test-pmd/txonly.c
Chengchang Tang b253a6bbf1 app/testpmd: fix packet header in txonly mode
In txonly forward mode, the packet header is fixed by the initial
setting, including the packet length and checksum. So when the packets
varies, this may cause a packet header error. Currently, there are two
methods in txonly mode to randomly change the packets.
1. Set txsplit random and txpkts (x[,y]*), the number of segments
   each packets will be a random value between 1 and total number of
   segments determined by txpkts settings.
   The step as follows:
     a) ./testpmd -w xxx -l xx -n 4 -- -i --disable-device-start
     b) port config 0 tx_offload multi_segs on
     c) set fwd txonly
     d) set txsplit rand
     e) set txpkts 2048,2048,2048,2048
     f) start
The nb_segs of the packets sent by testpmd will be 1~4. The real packet
length will be 2048, 4096, 6144 and 8192. But in fact the packet length
in ip header and udp header will be fixed by 8178 and 8158.

2. Set txonly-multi-flow. the ip address will be varied to generate
   multiple flow.
   The step as follows:
     a) ./testpmd -w xxx -l xx -n 4 -- -i --txonly-multi-flow
     b) set fwd txonly
     c) start
The ip address of each pkts will change randomly, but since the header
is fixed, the checksum may be a error value.

Therefore, this patch adds a function to update the packet length and
check sum in the pkts header when the txsplit mode is set to rand or
multi-flow is set.

Fixes: 82010ef55e ("app/testpmd: make txonly mode generate multiple flows")
Fixes: 79bec05b32 ("app/testpmd: add ability to split outgoing packets")
Cc: stable@dpdk.org

Signed-off-by: Chengchang Tang <tangchengchang@huawei.com>
Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2020-09-30 19:19:13 +02:00

466 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdarg.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#include <rte_flow.h>
#include "testpmd.h"
/* use RFC863 Discard Protocol */
uint16_t tx_udp_src_port = 9;
uint16_t tx_udp_dst_port = 9;
/* use RFC5735 / RFC2544 reserved network test addresses */
uint32_t tx_ip_src_addr = (198U << 24) | (18 << 16) | (0 << 8) | 1;
uint32_t tx_ip_dst_addr = (198U << 24) | (18 << 16) | (0 << 8) | 2;
#define IP_DEFTTL 64 /* from RFC 1340. */
static struct rte_ipv4_hdr pkt_ip_hdr; /**< IP header of transmitted packets. */
RTE_DEFINE_PER_LCORE(uint8_t, _ip_var); /**< IP address variation */
static struct rte_udp_hdr pkt_udp_hdr; /**< UDP header of tx packets. */
RTE_DEFINE_PER_LCORE(uint64_t, timestamp_qskew);
/**< Timestamp offset per queue */
RTE_DEFINE_PER_LCORE(uint32_t, timestamp_idone); /**< Timestamp init done. */
static uint64_t timestamp_mask; /**< Timestamp dynamic flag mask */
static int32_t timestamp_off; /**< Timestamp dynamic field offset */
static bool timestamp_enable; /**< Timestamp enable */
static uint32_t timestamp_init_req; /**< Timestamp initialization request. */
static uint64_t timestamp_initial[RTE_MAX_ETHPORTS];
static void
copy_buf_to_pkt_segs(void* buf, unsigned len, struct rte_mbuf *pkt,
unsigned offset)
{
struct rte_mbuf *seg;
void *seg_buf;
unsigned copy_len;
seg = pkt;
while (offset >= seg->data_len) {
offset -= seg->data_len;
seg = seg->next;
}
copy_len = seg->data_len - offset;
seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
while (len > copy_len) {
rte_memcpy(seg_buf, buf, (size_t) copy_len);
len -= copy_len;
buf = ((char*) buf + copy_len);
seg = seg->next;
seg_buf = rte_pktmbuf_mtod(seg, char *);
copy_len = seg->data_len;
}
rte_memcpy(seg_buf, buf, (size_t) len);
}
static inline void
copy_buf_to_pkt(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset)
{
if (offset + len <= pkt->data_len) {
rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset),
buf, (size_t) len);
return;
}
copy_buf_to_pkt_segs(buf, len, pkt, offset);
}
static void
setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
struct rte_udp_hdr *udp_hdr,
uint16_t pkt_data_len)
{
uint16_t *ptr16;
uint32_t ip_cksum;
uint16_t pkt_len;
/*
* Initialize UDP header.
*/
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
udp_hdr->src_port = rte_cpu_to_be_16(tx_udp_src_port);
udp_hdr->dst_port = rte_cpu_to_be_16(tx_udp_dst_port);
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
udp_hdr->dgram_cksum = 0; /* No UDP checksum. */
/*
* Initialize IP header.
*/
pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = IP_DEFTTL;
ip_hdr->next_proto_id = IPPROTO_UDP;
ip_hdr->packet_id = 0;
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
ip_hdr->src_addr = rte_cpu_to_be_32(tx_ip_src_addr);
ip_hdr->dst_addr = rte_cpu_to_be_32(tx_ip_dst_addr);
/*
* Compute IP header checksum.
*/
ptr16 = (unaligned_uint16_t*) ip_hdr;
ip_cksum = 0;
ip_cksum += ptr16[0]; ip_cksum += ptr16[1];
ip_cksum += ptr16[2]; ip_cksum += ptr16[3];
ip_cksum += ptr16[4];
ip_cksum += ptr16[6]; ip_cksum += ptr16[7];
ip_cksum += ptr16[8]; ip_cksum += ptr16[9];
/*
* Reduce 32 bit checksum to 16 bits and complement it.
*/
ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) +
(ip_cksum & 0x0000FFFF);
if (ip_cksum > 65535)
ip_cksum -= 65535;
ip_cksum = (~ip_cksum) & 0x0000FFFF;
if (ip_cksum == 0)
ip_cksum = 0xFFFF;
ip_hdr->hdr_checksum = (uint16_t) ip_cksum;
}
static inline void
update_pkt_header(struct rte_mbuf *pkt, uint32_t total_pkt_len)
{
struct rte_ipv4_hdr *ip_hdr;
struct rte_udp_hdr *udp_hdr;
uint16_t pkt_data_len;
uint16_t pkt_len;
pkt_data_len = (uint16_t) (total_pkt_len - (
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr)));
/* updata udp pkt length */
udp_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *,
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr));
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
/* updata ip pkt length and csum */
ip_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
ip_hdr->hdr_checksum = 0;
pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr);
}
static inline bool
pkt_burst_prepare(struct rte_mbuf *pkt, struct rte_mempool *mbp,
struct rte_ether_hdr *eth_hdr, const uint16_t vlan_tci,
const uint16_t vlan_tci_outer, const uint64_t ol_flags,
const uint16_t idx, const struct fwd_stream *fs)
{
struct rte_mbuf *pkt_segs[RTE_MAX_SEGS_PER_PKT];
struct rte_mbuf *pkt_seg;
uint32_t nb_segs, pkt_len;
uint8_t i;
if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND))
nb_segs = rte_rand() % tx_pkt_nb_segs + 1;
else
nb_segs = tx_pkt_nb_segs;
if (nb_segs > 1) {
if (rte_mempool_get_bulk(mbp, (void **)pkt_segs, nb_segs - 1))
return false;
}
rte_pktmbuf_reset_headroom(pkt);
pkt->data_len = tx_pkt_seg_lengths[0];
pkt->ol_flags &= EXT_ATTACHED_MBUF;
pkt->ol_flags |= ol_flags;
pkt->vlan_tci = vlan_tci;
pkt->vlan_tci_outer = vlan_tci_outer;
pkt->l2_len = sizeof(struct rte_ether_hdr);
pkt->l3_len = sizeof(struct rte_ipv4_hdr);
pkt_len = pkt->data_len;
pkt_seg = pkt;
for (i = 1; i < nb_segs; i++) {
pkt_seg->next = pkt_segs[i - 1];
pkt_seg = pkt_seg->next;
pkt_seg->data_len = tx_pkt_seg_lengths[i];
pkt_len += pkt_seg->data_len;
}
pkt_seg->next = NULL; /* Last segment of packet. */
/*
* Copy headers in first packet segment(s).
*/
copy_buf_to_pkt(eth_hdr, sizeof(*eth_hdr), pkt, 0);
copy_buf_to_pkt(&pkt_ip_hdr, sizeof(pkt_ip_hdr), pkt,
sizeof(struct rte_ether_hdr));
if (txonly_multi_flow) {
uint8_t ip_var = RTE_PER_LCORE(_ip_var);
struct rte_ipv4_hdr *ip_hdr;
uint32_t addr;
ip_hdr = rte_pktmbuf_mtod_offset(pkt,
struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
/*
* Generate multiple flows by varying IP src addr. This
* enables packets are well distributed by RSS in
* receiver side if any and txonly mode can be a decent
* packet generator for developer's quick performance
* regression test.
*/
addr = (tx_ip_dst_addr | (ip_var++ << 8)) + rte_lcore_id();
ip_hdr->src_addr = rte_cpu_to_be_32(addr);
RTE_PER_LCORE(_ip_var) = ip_var;
}
copy_buf_to_pkt(&pkt_udp_hdr, sizeof(pkt_udp_hdr), pkt,
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr));
if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND) || txonly_multi_flow)
update_pkt_header(pkt, pkt_len);
if (unlikely(timestamp_enable)) {
uint64_t skew = RTE_PER_LCORE(timestamp_qskew);
struct {
rte_be32_t signature;
rte_be16_t pkt_idx;
rte_be16_t queue_idx;
rte_be64_t ts;
} timestamp_mark;
if (unlikely(timestamp_init_req !=
RTE_PER_LCORE(timestamp_idone))) {
struct rte_eth_dev *dev = &rte_eth_devices[fs->tx_port];
unsigned int txqs_n = dev->data->nb_tx_queues;
uint64_t phase = tx_pkt_times_inter * fs->tx_queue /
(txqs_n ? txqs_n : 1);
/*
* Initialize the scheduling time phase shift
* depending on queue index.
*/
skew = timestamp_initial[fs->tx_port] +
tx_pkt_times_inter + phase;
RTE_PER_LCORE(timestamp_qskew) = skew;
RTE_PER_LCORE(timestamp_idone) = timestamp_init_req;
}
timestamp_mark.pkt_idx = rte_cpu_to_be_16(idx);
timestamp_mark.queue_idx = rte_cpu_to_be_16(fs->tx_queue);
timestamp_mark.signature = rte_cpu_to_be_32(0xBEEFC0DE);
if (unlikely(!idx)) {
skew += tx_pkt_times_inter;
pkt->ol_flags |= timestamp_mask;
*RTE_MBUF_DYNFIELD
(pkt, timestamp_off, uint64_t *) = skew;
RTE_PER_LCORE(timestamp_qskew) = skew;
timestamp_mark.ts = rte_cpu_to_be_64(skew);
} else if (tx_pkt_times_intra) {
skew += tx_pkt_times_intra;
pkt->ol_flags |= timestamp_mask;
*RTE_MBUF_DYNFIELD
(pkt, timestamp_off, uint64_t *) = skew;
RTE_PER_LCORE(timestamp_qskew) = skew;
timestamp_mark.ts = rte_cpu_to_be_64(skew);
} else {
timestamp_mark.ts = RTE_BE64(0);
}
copy_buf_to_pkt(&timestamp_mark, sizeof(timestamp_mark), pkt,
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(pkt_udp_hdr));
}
/*
* Complete first mbuf of packet and append it to the
* burst of packets to be transmitted.
*/
pkt->nb_segs = nb_segs;
pkt->pkt_len = pkt_len;
return true;
}
/*
* Transmit a burst of multi-segments packets.
*/
static void
pkt_burst_transmit(struct fwd_stream *fs)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_port *txp;
struct rte_mbuf *pkt;
struct rte_mempool *mbp;
struct rte_ether_hdr eth_hdr;
uint16_t nb_tx;
uint16_t nb_pkt;
uint16_t vlan_tci, vlan_tci_outer;
uint32_t retry;
uint64_t ol_flags = 0;
uint64_t tx_offloads;
uint64_t start_tsc = 0;
get_start_cycles(&start_tsc);
mbp = current_fwd_lcore()->mbp;
txp = &ports[fs->tx_port];
tx_offloads = txp->dev_conf.txmode.offloads;
vlan_tci = txp->tx_vlan_id;
vlan_tci_outer = txp->tx_vlan_id_outer;
if (tx_offloads & DEV_TX_OFFLOAD_VLAN_INSERT)
ol_flags = PKT_TX_VLAN_PKT;
if (tx_offloads & DEV_TX_OFFLOAD_QINQ_INSERT)
ol_flags |= PKT_TX_QINQ_PKT;
if (tx_offloads & DEV_TX_OFFLOAD_MACSEC_INSERT)
ol_flags |= PKT_TX_MACSEC;
/*
* Initialize Ethernet header.
*/
rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], &eth_hdr.d_addr);
rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, &eth_hdr.s_addr);
eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
if (rte_mempool_get_bulk(mbp, (void **)pkts_burst,
nb_pkt_per_burst) == 0) {
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
if (unlikely(!pkt_burst_prepare(pkts_burst[nb_pkt], mbp,
&eth_hdr, vlan_tci,
vlan_tci_outer,
ol_flags,
nb_pkt, fs))) {
rte_mempool_put_bulk(mbp,
(void **)&pkts_burst[nb_pkt],
nb_pkt_per_burst - nb_pkt);
break;
}
}
} else {
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
pkt = rte_mbuf_raw_alloc(mbp);
if (pkt == NULL)
break;
if (unlikely(!pkt_burst_prepare(pkt, mbp, &eth_hdr,
vlan_tci,
vlan_tci_outer,
ol_flags,
nb_pkt, fs))) {
rte_pktmbuf_free(pkt);
break;
}
pkts_burst[nb_pkt] = pkt;
}
}
if (nb_pkt == 0)
return;
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt);
/*
* Retry if necessary
*/
if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) {
retry = 0;
while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
&pkts_burst[nb_tx], nb_pkt - nb_tx);
}
}
fs->tx_packets += nb_tx;
if (txonly_multi_flow)
RTE_PER_LCORE(_ip_var) -= nb_pkt - nb_tx;
inc_tx_burst_stats(fs, nb_tx);
if (unlikely(nb_tx < nb_pkt)) {
if (verbose_level > 0 && fs->fwd_dropped == 0)
printf("port %d tx_queue %d - drop "
"(nb_pkt:%u - nb_tx:%u)=%u packets\n",
fs->tx_port, fs->tx_queue,
(unsigned) nb_pkt, (unsigned) nb_tx,
(unsigned) (nb_pkt - nb_tx));
fs->fwd_dropped += (nb_pkt - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_pkt);
}
get_end_cycles(fs, start_tsc);
}
static void
tx_only_begin(portid_t pi)
{
uint16_t pkt_data_len;
int dynf;
pkt_data_len = (uint16_t) (tx_pkt_length - (
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr)));
setup_pkt_udp_ip_headers(&pkt_ip_hdr, &pkt_udp_hdr, pkt_data_len);
timestamp_enable = false;
timestamp_mask = 0;
timestamp_off = -1;
RTE_PER_LCORE(timestamp_qskew) = 0;
dynf = rte_mbuf_dynflag_lookup
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
if (dynf >= 0)
timestamp_mask = 1ULL << dynf;
dynf = rte_mbuf_dynfield_lookup
(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
if (dynf >= 0)
timestamp_off = dynf;
timestamp_enable = tx_pkt_times_inter &&
timestamp_mask &&
timestamp_off >= 0 &&
!rte_eth_read_clock(pi, &timestamp_initial[pi]);
if (timestamp_enable)
timestamp_init_req++;
/* Make sure all settings are visible on forwarding cores.*/
rte_wmb();
}
struct fwd_engine tx_only_engine = {
.fwd_mode_name = "txonly",
.port_fwd_begin = tx_only_begin,
.port_fwd_end = NULL,
.packet_fwd = pkt_burst_transmit,
};