numam-dpdk/app/test/test_mbuf.c
Olivier Matz 4ccd2bb3a9 app/test: enhance mbuf refcnt check
Check that the data in the cloned mbuf is the same than in the
reference mbuf.
Check that the reference counter is incremented for each segment.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2015-04-28 11:38:41 +02:00

878 lines
21 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_debug.h>
#include <rte_log.h>
#include <rte_common.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_random.h>
#include <rte_cycles.h>
#include "test.h"
#define MBUF_DATA_SIZE 2048
#define NB_MBUF 128
#define MBUF_TEST_DATA_LEN 1464
#define MBUF_TEST_DATA_LEN2 50
#define MBUF_TEST_HDR1_LEN 20
#define MBUF_TEST_HDR2_LEN 30
#define MBUF_TEST_ALL_HDRS_LEN (MBUF_TEST_HDR1_LEN+MBUF_TEST_HDR2_LEN)
#define REFCNT_MAX_ITER 64
#define REFCNT_MAX_TIMEOUT 10
#define REFCNT_MAX_REF (RTE_MAX_LCORE)
#define REFCNT_MBUF_NUM 64
#define REFCNT_RING_SIZE (REFCNT_MBUF_NUM * REFCNT_MAX_REF)
#define MAGIC_DATA 0x42424242
#define MAKE_STRING(x) # x
static struct rte_mempool *pktmbuf_pool = NULL;
#ifdef RTE_MBUF_REFCNT_ATOMIC
static struct rte_mempool *refcnt_pool = NULL;
static struct rte_ring *refcnt_mbuf_ring = NULL;
static volatile uint32_t refcnt_stop_slaves;
static unsigned refcnt_lcore[RTE_MAX_LCORE];
#endif
/*
* MBUF
* ====
*
* #. Allocate a mbuf pool.
*
* - The pool contains NB_MBUF elements, where each mbuf is MBUF_SIZE
* bytes long.
*
* #. Test multiple allocations of mbufs from this pool.
*
* - Allocate NB_MBUF and store pointers in a table.
* - If an allocation fails, return an error.
* - Free all these mbufs.
* - Repeat the same test to check that mbufs were freed correctly.
*
* #. Test data manipulation in pktmbuf.
*
* - Alloc an mbuf.
* - Append data using rte_pktmbuf_append().
* - Test for error in rte_pktmbuf_append() when len is too large.
* - Trim data at the end of mbuf using rte_pktmbuf_trim().
* - Test for error in rte_pktmbuf_trim() when len is too large.
* - Prepend a header using rte_pktmbuf_prepend().
* - Test for error in rte_pktmbuf_prepend() when len is too large.
* - Remove data at the beginning of mbuf using rte_pktmbuf_adj().
* - Test for error in rte_pktmbuf_adj() when len is too large.
* - Check that appended data is not corrupt.
* - Free the mbuf.
* - Between all these tests, check data_len and pkt_len, and
* that the mbuf is contiguous.
* - Repeat the test to check that allocation operations
* reinitialize the mbuf correctly.
*
* #. Test packet cloning
* - Clone a mbuf and verify the data
*/
#define GOTO_FAIL(str, ...) do { \
printf("mbuf test FAILED (l.%d): <" str ">\n", \
__LINE__, ##__VA_ARGS__); \
goto fail; \
} while(0)
/*
* test data manipulation in mbuf with non-ascii data
*/
static int
test_pktmbuf_with_non_ascii_data(void)
{
struct rte_mbuf *m = NULL;
char *data;
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("Cannot allocate mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN);
if (data == NULL)
GOTO_FAIL("Cannot append data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
memset(data, 0xff, rte_pktmbuf_pkt_len(m));
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN);
rte_pktmbuf_free(m);
return 0;
fail:
if(m) {
rte_pktmbuf_free(m);
}
return -1;
}
/*
* test data manipulation in mbuf
*/
static int
test_one_pktmbuf(void)
{
struct rte_mbuf *m = NULL;
char *data, *data2, *hdr;
unsigned i;
printf("Test pktmbuf API\n");
/* alloc a mbuf */
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("Cannot allocate mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
rte_pktmbuf_dump(stdout, m, 0);
/* append data */
data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN);
if (data == NULL)
GOTO_FAIL("Cannot append data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
memset(data, 0x66, rte_pktmbuf_pkt_len(m));
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN);
rte_pktmbuf_dump(stdout, m, 2*MBUF_TEST_DATA_LEN);
/* this append should fail */
data2 = rte_pktmbuf_append(m, (uint16_t)(rte_pktmbuf_tailroom(m) + 1));
if (data2 != NULL)
GOTO_FAIL("Append should not succeed");
/* append some more data */
data2 = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN2);
if (data2 == NULL)
GOTO_FAIL("Cannot append data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
/* trim data at the end of mbuf */
if (rte_pktmbuf_trim(m, MBUF_TEST_DATA_LEN2) < 0)
GOTO_FAIL("Cannot trim data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
/* this trim should fail */
if (rte_pktmbuf_trim(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) == 0)
GOTO_FAIL("trim should not succeed");
/* prepend one header */
hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR1_LEN);
if (hdr == NULL)
GOTO_FAIL("Cannot prepend");
if (data - hdr != MBUF_TEST_HDR1_LEN)
GOTO_FAIL("Prepend failed");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
memset(hdr, 0x55, MBUF_TEST_HDR1_LEN);
/* prepend another header */
hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR2_LEN);
if (hdr == NULL)
GOTO_FAIL("Cannot prepend");
if (data - hdr != MBUF_TEST_ALL_HDRS_LEN)
GOTO_FAIL("Prepend failed");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
memset(hdr, 0x55, MBUF_TEST_HDR2_LEN);
rte_mbuf_sanity_check(m, 1);
rte_mbuf_sanity_check(m, 0);
rte_pktmbuf_dump(stdout, m, 0);
/* this prepend should fail */
hdr = rte_pktmbuf_prepend(m, (uint16_t)(rte_pktmbuf_headroom(m) + 1));
if (hdr != NULL)
GOTO_FAIL("prepend should not succeed");
/* remove data at beginning of mbuf (adj) */
if (data != rte_pktmbuf_adj(m, MBUF_TEST_ALL_HDRS_LEN))
GOTO_FAIL("rte_pktmbuf_adj failed");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
/* this adj should fail */
if (rte_pktmbuf_adj(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) != NULL)
GOTO_FAIL("rte_pktmbuf_adj should not succeed");
/* check data */
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
for (i=0; i<MBUF_TEST_DATA_LEN; i++) {
if (data[i] != 0x66)
GOTO_FAIL("Data corrupted at offset %u", i);
}
/* free mbuf */
rte_pktmbuf_free(m);
m = NULL;
return 0;
fail:
if (m)
rte_pktmbuf_free(m);
return -1;
}
static int
testclone_testupdate_testdetach(void)
{
struct rte_mbuf *m = NULL;
struct rte_mbuf *clone = NULL;
uint32_t *data;
/* alloc a mbuf */
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("ooops not allocating mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
rte_pktmbuf_append(m, sizeof(uint32_t));
data = rte_pktmbuf_mtod(m, uint32_t *);
*data = MAGIC_DATA;
/* clone the allocated mbuf */
clone = rte_pktmbuf_clone(m, pktmbuf_pool);
if (clone == NULL)
GOTO_FAIL("cannot clone data\n");
data = rte_pktmbuf_mtod(clone, uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone\n");
if (rte_mbuf_refcnt_read(m) != 2)
GOTO_FAIL("invalid refcnt in m\n");
/* free the clone */
rte_pktmbuf_free(clone);
clone = NULL;
/* same test with a chained mbuf */
m->next = rte_pktmbuf_alloc(pktmbuf_pool);
if (m->next == NULL)
GOTO_FAIL("Next Pkt Null\n");
rte_pktmbuf_append(m->next, sizeof(uint32_t));
data = rte_pktmbuf_mtod(m->next, uint32_t *);
*data = MAGIC_DATA;
clone = rte_pktmbuf_clone(m, pktmbuf_pool);
if (clone == NULL)
GOTO_FAIL("cannot clone data\n");
data = rte_pktmbuf_mtod(clone, uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone\n");
data = rte_pktmbuf_mtod(clone->next, uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone->next\n");
if (rte_mbuf_refcnt_read(m) != 2)
GOTO_FAIL("invalid refcnt in m\n");
if (rte_mbuf_refcnt_read(m->next) != 2)
GOTO_FAIL("invalid refcnt in m->next\n");
/* free mbuf */
rte_pktmbuf_free(m);
rte_pktmbuf_free(clone);
m = NULL;
clone = NULL;
return 0;
fail:
if (m)
rte_pktmbuf_free(m);
if (clone)
rte_pktmbuf_free(clone);
return -1;
}
#undef GOTO_FAIL
/*
* test allocation and free of mbufs
*/
static int
test_pktmbuf_pool(void)
{
unsigned i;
struct rte_mbuf *m[NB_MBUF];
int ret = 0;
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
}
}
struct rte_mbuf *extra = NULL;
extra = rte_pktmbuf_alloc(pktmbuf_pool);
if(extra != NULL) {
printf("Error pool not empty");
ret = -1;
}
extra = rte_pktmbuf_clone(m[0], pktmbuf_pool);
if(extra != NULL) {
printf("Error pool not empty");
ret = -1;
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL)
rte_pktmbuf_free(m[i]);
}
return ret;
}
/*
* test that the pointer to the data on a packet mbuf is set properly
*/
static int
test_pktmbuf_pool_ptr(void)
{
unsigned i;
struct rte_mbuf *m[NB_MBUF];
int ret = 0;
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
}
m[i]->data_off += 64;
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL)
rte_pktmbuf_free(m[i]);
}
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
}
if (m[i]->data_off != RTE_PKTMBUF_HEADROOM) {
printf("invalid data_off\n");
ret = -1;
}
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL)
rte_pktmbuf_free(m[i]);
}
return ret;
}
static int
test_pktmbuf_free_segment(void)
{
unsigned i;
struct rte_mbuf *m[NB_MBUF];
int ret = 0;
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
}
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL) {
struct rte_mbuf *mb, *mt;
mb = m[i];
while(mb != NULL) {
mt = mb;
mb = mb->next;
rte_pktmbuf_free_seg(mt);
}
}
}
return ret;
}
/*
* Stress test for rte_mbuf atomic refcnt.
* Implies that RTE_MBUF_REFCNT_ATOMIC is defined.
* For more efficency, recomended to run with RTE_LIBRTE_MBUF_DEBUG defined.
*/
#ifdef RTE_MBUF_REFCNT_ATOMIC
static int
test_refcnt_slave(__attribute__((unused)) void *arg)
{
unsigned lcore, free;
void *mp = 0;
lcore = rte_lcore_id();
printf("%s started at lcore %u\n", __func__, lcore);
free = 0;
while (refcnt_stop_slaves == 0) {
if (rte_ring_dequeue(refcnt_mbuf_ring, &mp) == 0) {
free++;
rte_pktmbuf_free((struct rte_mbuf *)mp);
}
}
refcnt_lcore[lcore] += free;
printf("%s finished at lcore %u, "
"number of freed mbufs: %u\n",
__func__, lcore, free);
return (0);
}
static void
test_refcnt_iter(unsigned lcore, unsigned iter)
{
uint16_t ref;
unsigned i, n, tref, wn;
struct rte_mbuf *m;
tref = 0;
/* For each mbuf in the pool:
* - allocate mbuf,
* - increment it's reference up to N+1,
* - enqueue it N times into the ring for slave cores to free.
*/
for (i = 0, n = rte_mempool_count(refcnt_pool);
i != n && (m = rte_pktmbuf_alloc(refcnt_pool)) != NULL;
i++) {
ref = RTE_MAX(rte_rand() % REFCNT_MAX_REF, 1UL);
tref += ref;
if ((ref & 1) != 0) {
rte_pktmbuf_refcnt_update(m, ref);
while (ref-- != 0)
rte_ring_enqueue(refcnt_mbuf_ring, m);
} else {
while (ref-- != 0) {
rte_pktmbuf_refcnt_update(m, 1);
rte_ring_enqueue(refcnt_mbuf_ring, m);
}
}
rte_pktmbuf_free(m);
}
if (i != n)
rte_panic("(lcore=%u, iter=%u): was able to allocate only "
"%u from %u mbufs\n", lcore, iter, i, n);
/* wait till slave lcores will consume all mbufs */
while (!rte_ring_empty(refcnt_mbuf_ring))
;
/* check that all mbufs are back into mempool by now */
for (wn = 0; wn != REFCNT_MAX_TIMEOUT; wn++) {
if ((i = rte_mempool_count(refcnt_pool)) == n) {
refcnt_lcore[lcore] += tref;
printf("%s(lcore=%u, iter=%u) completed, "
"%u references processed\n",
__func__, lcore, iter, tref);
return;
}
rte_delay_ms(1000);
}
rte_panic("(lcore=%u, iter=%u): after %us only "
"%u of %u mbufs left free\n", lcore, iter, wn, i, n);
}
static int
test_refcnt_master(void)
{
unsigned i, lcore;
lcore = rte_lcore_id();
printf("%s started at lcore %u\n", __func__, lcore);
for (i = 0; i != REFCNT_MAX_ITER; i++)
test_refcnt_iter(lcore, i);
refcnt_stop_slaves = 1;
rte_wmb();
printf("%s finished at lcore %u\n", __func__, lcore);
return (0);
}
#endif
static int
test_refcnt_mbuf(void)
{
#ifdef RTE_MBUF_REFCNT_ATOMIC
unsigned lnum, master, slave, tref;
if ((lnum = rte_lcore_count()) == 1) {
printf("skipping %s, number of lcores: %u is not enough\n",
__func__, lnum);
return (0);
}
printf("starting %s, at %u lcores\n", __func__, lnum);
/* create refcnt pool & ring if they don't exist */
if (refcnt_pool == NULL &&
(refcnt_pool = rte_pktmbuf_pool_create(
MAKE_STRING(refcnt_pool),
REFCNT_MBUF_NUM, 0, 0, 0,
SOCKET_ID_ANY)) == NULL) {
printf("%s: cannot allocate " MAKE_STRING(refcnt_pool) "\n",
__func__);
return (-1);
}
if (refcnt_mbuf_ring == NULL &&
(refcnt_mbuf_ring = rte_ring_create("refcnt_mbuf_ring",
REFCNT_RING_SIZE, SOCKET_ID_ANY,
RING_F_SP_ENQ)) == NULL) {
printf("%s: cannot allocate " MAKE_STRING(refcnt_mbuf_ring)
"\n", __func__);
return (-1);
}
refcnt_stop_slaves = 0;
memset(refcnt_lcore, 0, sizeof (refcnt_lcore));
rte_eal_mp_remote_launch(test_refcnt_slave, NULL, SKIP_MASTER);
test_refcnt_master();
rte_eal_mp_wait_lcore();
/* check that we porcessed all references */
tref = 0;
master = rte_get_master_lcore();
RTE_LCORE_FOREACH_SLAVE(slave)
tref += refcnt_lcore[slave];
if (tref != refcnt_lcore[master])
rte_panic("refernced mbufs: %u, freed mbufs: %u\n",
tref, refcnt_lcore[master]);
rte_mempool_dump(stdout, refcnt_pool);
rte_ring_dump(stdout, refcnt_mbuf_ring);
#endif
return (0);
}
#include <unistd.h>
#include <sys/wait.h>
/* use fork() to test mbuf errors panic */
static int
verify_mbuf_check_panics(struct rte_mbuf *buf)
{
int pid;
int status;
pid = fork();
if (pid == 0) {
rte_mbuf_sanity_check(buf, 1); /* should panic */
exit(0); /* return normally if it doesn't panic */
} else if (pid < 0){
printf("Fork Failed\n");
return -1;
}
wait(&status);
if(status == 0)
return -1;
return 0;
}
static int
test_failing_mbuf_sanity_check(void)
{
struct rte_mbuf *buf;
struct rte_mbuf badbuf;
printf("Checking rte_mbuf_sanity_check for failure conditions\n");
/* get a good mbuf to use to make copies */
buf = rte_pktmbuf_alloc(pktmbuf_pool);
if (buf == NULL)
return -1;
printf("Checking good mbuf initially\n");
if (verify_mbuf_check_panics(buf) != -1)
return -1;
printf("Now checking for error conditions\n");
if (verify_mbuf_check_panics(NULL)) {
printf("Error with NULL mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.pool = NULL;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-pool mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.buf_physaddr = 0;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-physaddr mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.buf_addr = NULL;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-addr mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.refcnt = 0;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-refcnt(0) mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.refcnt = UINT16_MAX;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-refcnt(MAX) mbuf test\n");
return -1;
}
return 0;
}
static int
test_mbuf(void)
{
RTE_BUILD_BUG_ON(sizeof(struct rte_mbuf) != RTE_CACHE_LINE_SIZE * 2);
/* create pktmbuf pool if it does not exist */
if (pktmbuf_pool == NULL) {
pktmbuf_pool = rte_pktmbuf_pool_create("test_pktmbuf_pool",
NB_MBUF, 32, 0, MBUF_DATA_SIZE, SOCKET_ID_ANY);
}
if (pktmbuf_pool == NULL) {
printf("cannot allocate mbuf pool\n");
return -1;
}
/* test multiple mbuf alloc */
if (test_pktmbuf_pool() < 0) {
printf("test_mbuf_pool() failed\n");
return -1;
}
/* do it another time to check that all mbufs were freed */
if (test_pktmbuf_pool() < 0) {
printf("test_mbuf_pool() failed (2)\n");
return -1;
}
/* test that the pointer to the data on a packet mbuf is set properly */
if (test_pktmbuf_pool_ptr() < 0) {
printf("test_pktmbuf_pool_ptr() failed\n");
return -1;
}
/* test data manipulation in mbuf */
if (test_one_pktmbuf() < 0) {
printf("test_one_mbuf() failed\n");
return -1;
}
/*
* do it another time, to check that allocation reinitialize
* the mbuf correctly
*/
if (test_one_pktmbuf() < 0) {
printf("test_one_mbuf() failed (2)\n");
return -1;
}
if (test_pktmbuf_with_non_ascii_data() < 0) {
printf("test_pktmbuf_with_non_ascii_data() failed\n");
return -1;
}
/* test free pktmbuf segment one by one */
if (test_pktmbuf_free_segment() < 0) {
printf("test_pktmbuf_free_segment() failed.\n");
return -1;
}
if (testclone_testupdate_testdetach()<0){
printf("testclone_and_testupdate() failed \n");
return -1;
}
if (test_refcnt_mbuf()<0){
printf("test_refcnt_mbuf() failed \n");
return -1;
}
if (test_failing_mbuf_sanity_check() < 0) {
printf("test_failing_mbuf_sanity_check() failed\n");
return -1;
}
return 0;
}
static struct test_command mbuf_cmd = {
.command = "mbuf_autotest",
.callback = test_mbuf,
};
REGISTER_TEST_COMMAND(mbuf_cmd);