numam-dpdk/drivers/net/mlx5/mlx5_rxtx_vec_altivec.h
Viacheslav Ovsiienko a2854c4de1 net/mlx5: convert Rx timestamps in real-time format
The ConnectX-6DX supports the timestamps in various formats,
the new realtime format is introduced - the upper 32-bit word
of timestamp contains the UTC seconds and the lower 32-bit word
contains the nanoseconds. This patch detects what format is
configured in the NIC and performs the conversion accordingly.

Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Acked-by: Matan Azrad <matan@mellanox.com>
2020-07-21 15:44:36 +02:00

1140 lines
38 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
#ifndef RTE_PMD_MLX5_RXTX_VEC_ALTIVEC_H_
#define RTE_PMD_MLX5_RXTX_VEC_ALTIVEC_H_
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <rte_altivec.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <mlx5_prm.h>
#include "mlx5_defs.h"
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_rxtx_vec.h"
#include "mlx5_autoconf.h"
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
/**
* Store free buffers to RX SW ring.
*
* @param rxq
* Pointer to RX queue structure.
* @param pkts
* Pointer to array of packets to be stored.
* @param pkts_n
* Number of packets to be stored.
*/
static inline void
rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
{
const uint16_t q_mask = (1 << rxq->elts_n) - 1;
struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
unsigned int pos;
uint16_t p = n & -2;
for (pos = 0; pos < p; pos += 2) {
vector unsigned char mbp;
mbp = (vector unsigned char)vec_vsx_ld(0,
(signed int const *)&elts[pos]);
*(vector unsigned char *)&pkts[pos] = mbp;
}
if (n & 1)
pkts[pos] = elts[pos];
}
/**
* Decompress a compressed completion and fill in mbufs in RX SW ring with data
* extracted from the title completion descriptor.
*
* @param rxq
* Pointer to RX queue structure.
* @param cq
* Pointer to completion array having a compressed completion at first.
* @param elts
* Pointer to SW ring to be filled. The first mbuf has to be pre-built from
* the title completion descriptor to be copied to the rest of mbufs.
*
* @return
* Number of mini-CQEs successfully decompressed.
*/
static inline uint16_t
rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
struct rte_mbuf **elts)
{
volatile struct mlx5_mini_cqe8 *mcq = (void *)&(cq + 1)->pkt_info;
struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
const vector unsigned char zero = (vector unsigned char){0};
/* Mask to shuffle from extracted mini CQE to mbuf. */
const vector unsigned char shuf_mask1 = (vector unsigned char){
-1, -1, -1, -1, /* skip packet_type */
7, 6, -1, -1, /* bswap16, pkt_len */
7, 6, /* bswap16, data_len */
-1, -1, /* skip vlan_tci */
3, 2, 1, 0}; /* bswap32, rss */
const vector unsigned char shuf_mask2 = (vector unsigned char){
-1, -1, -1, -1, /* skip packet_type */
15, 14, -1, -1, /* bswap16, pkt_len */
15, 14, /* data_len, bswap16 */
-1, -1, /* skip vlan_tci */
11, 10, 9, 8}; /* bswap32, rss */
/* Restore the compressed count. Must be 16 bits. */
const uint16_t mcqe_n = t_pkt->data_len +
(rxq->crc_present * RTE_ETHER_CRC_LEN);
const vector unsigned char rearm =
(vector unsigned char)vec_vsx_ld(0,
(signed int const *)&t_pkt->rearm_data);
const vector unsigned char rxdf =
(vector unsigned char)vec_vsx_ld(0,
(signed int const *)&t_pkt->rx_descriptor_fields1);
const vector unsigned char crc_adj =
(vector unsigned char)(vector unsigned short){
0, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
rxq->crc_present * RTE_ETHER_CRC_LEN, 0, 0, 0};
const vector unsigned short rxdf_sel_mask =
(vector unsigned short){
0xffff, 0xffff, 0, 0, 0, 0xffff, 0, 0};
const uint32_t flow_tag = t_pkt->hash.fdir.hi;
unsigned int pos;
unsigned int i;
unsigned int inv = 0;
#ifdef MLX5_PMD_SOFT_COUNTERS
const vector unsigned char ones = vec_splat_u8(-1);
uint32_t rcvd_byte = 0;
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
const vector unsigned char len_shuf_mask = (vector unsigned char){
3, 2, 11, 10,
7, 6, 15, 14,
-1, -1, -1, -1,
-1, -1, -1, -1};
#endif
/*
* A. load mCQEs into a 128bit register.
* B. store rearm data to mbuf.
* C. combine data from mCQEs with rx_descriptor_fields1.
* D. store rx_descriptor_fields1.
* E. store flow tag (rte_flow mark).
*/
for (pos = 0; pos < mcqe_n; ) {
vector unsigned char mcqe1, mcqe2;
vector unsigned char rxdf1, rxdf2;
#ifdef MLX5_PMD_SOFT_COUNTERS
const vector unsigned short mcqe_sel_mask =
(vector unsigned short){0, 0, 0xffff, 0xffff,
0, 0, 0xfff, 0xffff};
const vector unsigned char lower_half = {
0, 1, 4, 5, 8, 9, 12, 13, 16,
17, 20, 21, 24, 25, 28, 29};
const vector unsigned char upper_half = {
2, 3, 6, 7, 10, 11, 14, 15,
18, 19, 22, 23, 26, 27, 30, 31};
vector unsigned short left, right;
vector unsigned char byte_cnt, invalid_mask;
vector unsigned long lshift;
__attribute__((altivec(vector__)))
__attribute__((altivec(bool__)))
unsigned long long shmask;
const vector unsigned long shmax = {64, 64};
#endif
for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
if (likely(pos + i < mcqe_n))
rte_prefetch0((void *)(cq + pos + i));
/* A.1 load mCQEs into a 128bit register. */
mcqe1 = (vector unsigned char)vec_vsx_ld(0,
(signed int const *)&mcq[pos % 8]);
mcqe2 = (vector unsigned char)vec_vsx_ld(0,
(signed int const *)&mcq[pos % 8 + 2]);
/* B.1 store rearm data to mbuf. */
*(vector unsigned char *)
&elts[pos]->rearm_data = rearm;
*(vector unsigned char *)
&elts[pos + 1]->rearm_data = rearm;
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
rxdf1 = vec_perm(mcqe1, zero, shuf_mask1);
rxdf2 = vec_perm(mcqe1, zero, shuf_mask2);
rxdf1 = (vector unsigned char)
((vector unsigned short)rxdf1 -
(vector unsigned short)crc_adj);
rxdf2 = (vector unsigned char)
((vector unsigned short)rxdf2 -
(vector unsigned short)crc_adj);
rxdf1 = (vector unsigned char)
vec_sel((vector unsigned short)rxdf1,
(vector unsigned short)rxdf, rxdf_sel_mask);
rxdf2 = (vector unsigned char)
vec_sel((vector unsigned short)rxdf2,
(vector unsigned short)rxdf, rxdf_sel_mask);
/* D.1 store rx_descriptor_fields1. */
*(vector unsigned char *)
&elts[pos]->rx_descriptor_fields1 = rxdf1;
*(vector unsigned char *)
&elts[pos + 1]->rx_descriptor_fields1 = rxdf2;
/* B.1 store rearm data to mbuf. */
*(vector unsigned char *)
&elts[pos + 2]->rearm_data = rearm;
*(vector unsigned char *)
&elts[pos + 3]->rearm_data = rearm;
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
rxdf1 = vec_perm(mcqe2, zero, shuf_mask1);
rxdf2 = vec_perm(mcqe2, zero, shuf_mask2);
rxdf1 = (vector unsigned char)
((vector unsigned short)rxdf1 -
(vector unsigned short)crc_adj);
rxdf2 = (vector unsigned char)
((vector unsigned short)rxdf2 -
(vector unsigned short)crc_adj);
rxdf1 = (vector unsigned char)
vec_sel((vector unsigned short)rxdf1,
(vector unsigned short)rxdf, rxdf_sel_mask);
rxdf2 = (vector unsigned char)
vec_sel((vector unsigned short)rxdf2,
(vector unsigned short)rxdf, rxdf_sel_mask);
/* D.1 store rx_descriptor_fields1. */
*(vector unsigned char *)
&elts[pos + 2]->rx_descriptor_fields1 = rxdf1;
*(vector unsigned char *)
&elts[pos + 3]->rx_descriptor_fields1 = rxdf2;
#ifdef MLX5_PMD_SOFT_COUNTERS
invalid_mask = (vector unsigned char)(vector unsigned long){
(mcqe_n - pos) * sizeof(uint16_t) * 8, 0};
lshift =
vec_splat((vector unsigned long)invalid_mask, 0);
shmask = vec_cmpgt(shmax, lshift);
invalid_mask = (vector unsigned char)
vec_sl((vector unsigned long)ones, lshift);
invalid_mask = (vector unsigned char)
vec_sel((vector unsigned long)shmask,
(vector unsigned long)invalid_mask, shmask);
mcqe1 = (vector unsigned char)
vec_sro((vector unsigned short)mcqe1,
(vector unsigned char){32}),
byte_cnt = (vector unsigned char)
vec_sel((vector unsigned short)mcqe1,
(vector unsigned short)mcqe2, mcqe_sel_mask);
byte_cnt = vec_perm(byte_cnt, zero, len_shuf_mask);
byte_cnt = (vector unsigned char)
vec_andc((vector unsigned long)byte_cnt,
(vector unsigned long)invalid_mask);
left = vec_perm((vector unsigned short)byte_cnt,
(vector unsigned short)zero, lower_half);
right = vec_perm((vector unsigned short)byte_cnt,
(vector unsigned short)zero, upper_half);
byte_cnt = (vector unsigned char)vec_add(left, right);
left = vec_perm((vector unsigned short)byte_cnt,
(vector unsigned short)zero, lower_half);
right = vec_perm((vector unsigned short)byte_cnt,
(vector unsigned short)zero, upper_half);
byte_cnt = (vector unsigned char)vec_add(left, right);
rcvd_byte += ((vector unsigned long)byte_cnt)[0];
#endif
if (rxq->mark) {
/* E.1 store flow tag (rte_flow mark). */
elts[pos]->hash.fdir.hi = flow_tag;
elts[pos + 1]->hash.fdir.hi = flow_tag;
elts[pos + 2]->hash.fdir.hi = flow_tag;
elts[pos + 3]->hash.fdir.hi = flow_tag;
}
if (rxq->dynf_meta) {
int32_t offs = rxq->flow_meta_offset;
const uint32_t meta =
*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
/* Check if title packet has valid metadata. */
if (meta) {
MLX5_ASSERT(t_pkt->ol_flags &
rxq->flow_meta_mask);
*RTE_MBUF_DYNFIELD(elts[pos], offs,
uint32_t *) = meta;
*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
uint32_t *) = meta;
*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
uint32_t *) = meta;
*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
uint32_t *) = meta;
}
}
pos += MLX5_VPMD_DESCS_PER_LOOP;
/* Move to next CQE and invalidate consumed CQEs. */
if (!(pos & 0x7) && pos < mcqe_n) {
mcq = (void *)&(cq + pos)->pkt_info;
for (i = 0; i < 8; ++i)
cq[inv++].op_own = MLX5_CQE_INVALIDATE;
}
}
/* Invalidate the rest of CQEs. */
for (; inv < mcqe_n; ++inv)
cq[inv].op_own = MLX5_CQE_INVALIDATE;
#ifdef MLX5_PMD_SOFT_COUNTERS
rxq->stats.ipackets += mcqe_n;
rxq->stats.ibytes += rcvd_byte;
#endif
rxq->cq_ci += mcqe_n;
return mcqe_n;
}
/**
* Calculate packet type and offload flag for mbuf and store it.
*
* @param rxq
* Pointer to RX queue structure.
* @param cqes[4]
* Array of four 16bytes completions extracted from the original completion
* descriptor.
* @param op_err
* Opcode vector having responder error status. Each field is 4B.
* @param pkts
* Pointer to array of packets to be filled.
*/
static inline void
rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq,
vector unsigned char cqes[4], vector unsigned char op_err,
struct rte_mbuf **pkts)
{
vector unsigned char pinfo0, pinfo1;
vector unsigned char pinfo, ptype;
vector unsigned char ol_flags = (vector unsigned char)
(vector unsigned int){
rxq->rss_hash * PKT_RX_RSS_HASH |
rxq->hw_timestamp * PKT_RX_TIMESTAMP,
rxq->rss_hash * PKT_RX_RSS_HASH |
rxq->hw_timestamp * PKT_RX_TIMESTAMP,
rxq->rss_hash * PKT_RX_RSS_HASH |
rxq->hw_timestamp * PKT_RX_TIMESTAMP,
rxq->rss_hash * PKT_RX_RSS_HASH |
rxq->hw_timestamp * PKT_RX_TIMESTAMP};
vector unsigned char cv_flags;
const vector unsigned char zero = (vector unsigned char){0};
const vector unsigned char ptype_mask =
(vector unsigned char)(vector unsigned int){
0x0000fd06, 0x0000fd06, 0x0000fd06, 0x0000fd06};
const vector unsigned char ptype_ol_mask =
(vector unsigned char)(vector unsigned int){
0x00000106, 0x00000106, 0x00000106, 0x00000106};
const vector unsigned char pinfo_mask =
(vector unsigned char)(vector unsigned int){
0x00000003, 0x00000003, 0x00000003, 0x00000003};
const vector unsigned char cv_flag_sel = (vector unsigned char){
0, (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
(uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1), 0,
(uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1), 0,
(uint8_t)((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
0, 0, 0, 0, 0, 0, 0, 0, 0};
const vector unsigned char cv_mask =
(vector unsigned char)(vector unsigned int){
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED};
const vector unsigned char mbuf_init =
(vector unsigned char)vec_vsx_ld
(0, (vector unsigned char *)&rxq->mbuf_initializer);
const vector unsigned short rearm_sel_mask =
(vector unsigned short){0, 0, 0, 0, 0xffff, 0xffff, 0, 0};
vector unsigned char rearm0, rearm1, rearm2, rearm3;
uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
/* Extract pkt_info field. */
pinfo0 = (vector unsigned char)
vec_mergeh((vector unsigned int)cqes[0],
(vector unsigned int)cqes[1]);
pinfo1 = (vector unsigned char)
vec_mergeh((vector unsigned int)cqes[2],
(vector unsigned int)cqes[3]);
pinfo = (vector unsigned char)
vec_mergeh((vector unsigned long)pinfo0,
(vector unsigned long)pinfo1);
/* Extract hdr_type_etc field. */
pinfo0 = (vector unsigned char)
vec_mergel((vector unsigned int)cqes[0],
(vector unsigned int)cqes[1]);
pinfo1 = (vector unsigned char)
vec_mergel((vector unsigned int)cqes[2],
(vector unsigned int)cqes[3]);
ptype = (vector unsigned char)
vec_mergeh((vector unsigned long)pinfo0,
(vector unsigned long)pinfo1);
if (rxq->mark) {
const vector unsigned char pinfo_ft_mask =
(vector unsigned char)(vector unsigned int){
0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00};
const vector unsigned char fdir_flags =
(vector unsigned char)(vector unsigned int){
PKT_RX_FDIR, PKT_RX_FDIR,
PKT_RX_FDIR, PKT_RX_FDIR};
vector unsigned char fdir_id_flags =
(vector unsigned char)(vector unsigned int){
PKT_RX_FDIR_ID, PKT_RX_FDIR_ID,
PKT_RX_FDIR_ID, PKT_RX_FDIR_ID};
vector unsigned char flow_tag, invalid_mask;
flow_tag = (vector unsigned char)
vec_and((vector unsigned long)pinfo,
(vector unsigned long)pinfo_ft_mask);
/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
invalid_mask = (vector unsigned char)
vec_cmpeq((vector unsigned int)flow_tag,
(vector unsigned int)zero);
ol_flags = (vector unsigned char)
vec_or((vector unsigned long)ol_flags,
(vector unsigned long)
vec_andc((vector unsigned long)fdir_flags,
(vector unsigned long)invalid_mask));
/* Mask out invalid entries. */
fdir_id_flags = (vector unsigned char)
vec_andc((vector unsigned long)fdir_id_flags,
(vector unsigned long)invalid_mask);
/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
ol_flags = (vector unsigned char)
vec_or((vector unsigned long)ol_flags,
(vector unsigned long)
vec_andc((vector unsigned long)fdir_id_flags,
(vector unsigned long)
vec_cmpeq((vector unsigned int)flow_tag,
(vector unsigned int)pinfo_ft_mask)));
}
/*
* Merge the two fields to generate the following:
* bit[1] = l3_ok
* bit[2] = l4_ok
* bit[8] = cv
* bit[11:10] = l3_hdr_type
* bit[14:12] = l4_hdr_type
* bit[15] = ip_frag
* bit[16] = tunneled
* bit[17] = outer_l3_type
*/
ptype = (vector unsigned char)
vec_and((vector unsigned long)ptype,
(vector unsigned long)ptype_mask);
pinfo = (vector unsigned char)
vec_and((vector unsigned long)pinfo,
(vector unsigned long)pinfo_mask);
pinfo = (vector unsigned char)
vec_sl((vector unsigned int)pinfo,
(vector unsigned int){16, 16, 16, 16});
/* Make pinfo has merged fields for ol_flags calculation. */
pinfo = (vector unsigned char)
vec_or((vector unsigned long)ptype,
(vector unsigned long)pinfo);
ptype = (vector unsigned char)
vec_sr((vector unsigned int)pinfo,
(vector unsigned int){10, 10, 10, 10});
ptype = (vector unsigned char)
vec_packs((vector unsigned int)ptype,
(vector unsigned int)zero);
/* Errored packets will have RTE_PTYPE_ALL_MASK. */
op_err = (vector unsigned char)
vec_sr((vector unsigned short)op_err,
(vector unsigned short){8, 8, 8, 8, 8, 8, 8, 8});
ptype = (vector unsigned char)
vec_or((vector unsigned long)ptype,
(vector unsigned long)op_err);
pt_idx0 = (uint8_t)((vector unsigned char)ptype)[0];
pt_idx1 = (uint8_t)((vector unsigned char)ptype)[2];
pt_idx2 = (uint8_t)((vector unsigned char)ptype)[4];
pt_idx3 = (uint8_t)((vector unsigned char)ptype)[6];
pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
!!(pt_idx0 & (1 << 6)) * rxq->tunnel;
pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
!!(pt_idx1 & (1 << 6)) * rxq->tunnel;
pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
!!(pt_idx2 & (1 << 6)) * rxq->tunnel;
pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
!!(pt_idx3 & (1 << 6)) * rxq->tunnel;
/* Fill flags for checksum and VLAN. */
pinfo = (vector unsigned char)
vec_and((vector unsigned long)pinfo,
(vector unsigned long)ptype_ol_mask);
pinfo = vec_perm(cv_flag_sel, zero, pinfo);
/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
cv_flags = (vector unsigned char)
vec_sl((vector unsigned int)pinfo,
(vector unsigned int){9, 9, 9, 9});
cv_flags = (vector unsigned char)
vec_or((vector unsigned long)pinfo,
(vector unsigned long)cv_flags);
/* Move back flags to start from byte[0]. */
cv_flags = (vector unsigned char)
vec_sr((vector unsigned int)cv_flags,
(vector unsigned int){8, 8, 8, 8});
/* Mask out garbage bits. */
cv_flags = (vector unsigned char)
vec_and((vector unsigned long)cv_flags,
(vector unsigned long)cv_mask);
/* Merge to ol_flags. */
ol_flags = (vector unsigned char)
vec_or((vector unsigned long)ol_flags,
(vector unsigned long)cv_flags);
/* Merge mbuf_init and ol_flags. */
rearm0 = (vector unsigned char)
vec_sel((vector unsigned short)mbuf_init,
(vector unsigned short)
vec_slo((vector unsigned short)ol_flags,
(vector unsigned char){64}), rearm_sel_mask);
rearm1 = (vector unsigned char)
vec_sel((vector unsigned short)mbuf_init,
(vector unsigned short)
vec_slo((vector unsigned short)ol_flags,
(vector unsigned char){32}), rearm_sel_mask);
rearm2 = (vector unsigned char)
vec_sel((vector unsigned short)mbuf_init,
(vector unsigned short)ol_flags, rearm_sel_mask);
rearm3 = (vector unsigned char)
vec_sel((vector unsigned short)mbuf_init,
(vector unsigned short)
vec_sro((vector unsigned short)ol_flags,
(vector unsigned char){32}), rearm_sel_mask);
/* Write 8B rearm_data and 8B ol_flags. */
vec_vsx_st(rearm0, 0,
(vector unsigned char *)&pkts[0]->rearm_data);
vec_vsx_st(rearm1, 0,
(vector unsigned char *)&pkts[1]->rearm_data);
vec_vsx_st(rearm2, 0,
(vector unsigned char *)&pkts[2]->rearm_data);
vec_vsx_st(rearm3, 0,
(vector unsigned char *)&pkts[3]->rearm_data);
}
/**
* Receive burst of packets. An errored completion also consumes a mbuf, but the
* packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
* before returning to application.
*
* @param rxq
* Pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
* @param[out] err
* Pointer to a flag. Set non-zero value if pkts array has at least one error
* packet to handle.
* @param[out] no_cq
* Pointer to a boolean. Set true if no new CQE seen.
*
* @return
* Number of packets received including errors (<= pkts_n).
*/
static inline uint16_t
rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
uint64_t *err, bool *no_cq)
{
const uint16_t q_n = 1 << rxq->cqe_n;
const uint16_t q_mask = q_n - 1;
volatile struct mlx5_cqe *cq;
struct rte_mbuf **elts;
unsigned int pos;
uint64_t n;
uint16_t repl_n;
uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
uint16_t nocmp_n = 0;
uint16_t rcvd_pkt = 0;
unsigned int cq_idx = rxq->cq_ci & q_mask;
unsigned int elts_idx;
unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
const vector unsigned char zero = (vector unsigned char){0};
const vector unsigned char ones = vec_splat_u8(-1);
const vector unsigned char owner_check =
(vector unsigned char)(vector unsigned long){
0x0100000001000000LL, 0x0100000001000000LL};
const vector unsigned char opcode_check =
(vector unsigned char)(vector unsigned long){
0xf0000000f0000000LL, 0xf0000000f0000000LL};
const vector unsigned char format_check =
(vector unsigned char)(vector unsigned long){
0x0c0000000c000000LL, 0x0c0000000c000000LL};
const vector unsigned char resp_err_check =
(vector unsigned char)(vector unsigned long){
0xe0000000e0000000LL, 0xe0000000e0000000LL};
#ifdef MLX5_PMD_SOFT_COUNTERS
uint32_t rcvd_byte = 0;
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
const vector unsigned char len_shuf_mask = (vector unsigned char){
1, 0, 5, 4,
9, 8, 13, 12,
-1, -1, -1, -1,
-1, -1, -1, -1};
#endif
/* Mask to shuffle from extracted CQE to mbuf. */
const vector unsigned char shuf_mask = (vector unsigned char){
5, 4, /* bswap16, pkt_len */
-1, -1, /* zero out 2nd half of pkt_len */
5, 4, /* bswap16, data_len */
11, 10, /* bswap16, vlan+tci */
15, 14, 13, 12, /* bswap32, rss */
1, 2, 3, -1}; /* fdir.hi */
/* Mask to blend from the last Qword to the first DQword. */
/* Mask to blend from the last Qword to the first DQword. */
const vector unsigned char blend_mask = (vector unsigned char){
-1, 0, 0, 0,
0, 0, 0, 0,
-1, -1, -1, -1,
-1, -1, -1, -1};
const vector unsigned char crc_adj =
(vector unsigned char)(vector unsigned short){
rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
rxq->crc_present * RTE_ETHER_CRC_LEN, 0, 0, 0, 0, 0};
const vector unsigned char flow_mark_adj =
(vector unsigned char)(vector unsigned int){
0, 0, 0, rxq->mark * (-1)};
const vector unsigned short cqe_sel_mask1 =
(vector unsigned short){0, 0, 0, 0, 0xffff, 0xffff, 0, 0};
const vector unsigned short cqe_sel_mask2 =
(vector unsigned short){0, 0, 0xffff, 0, 0, 0, 0, 0};
MLX5_ASSERT(rxq->sges_n == 0);
MLX5_ASSERT(rxq->cqe_n == rxq->elts_n);
cq = &(*rxq->cqes)[cq_idx];
rte_prefetch0(cq);
rte_prefetch0(cq + 1);
rte_prefetch0(cq + 2);
rte_prefetch0(cq + 3);
pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
if (repl_n >= rxq->rq_repl_thresh)
mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
/* See if there're unreturned mbufs from compressed CQE. */
rcvd_pkt = rxq->decompressed;
if (rcvd_pkt > 0) {
rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
rxq->rq_pi += rcvd_pkt;
rxq->decompressed -= rcvd_pkt;
pkts += rcvd_pkt;
}
elts_idx = rxq->rq_pi & q_mask;
elts = &(*rxq->elts)[elts_idx];
/* Not to overflow pkts array. */
pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
/* Not to cross queue end. */
pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
if (!pkts_n) {
*no_cq = !rcvd_pkt;
return rcvd_pkt;
}
/* At this point, there shouldn't be any remaining packets. */
MLX5_ASSERT(rxq->decompressed == 0);
/*
* A. load first Qword (8bytes) in one loop.
* B. copy 4 mbuf pointers from elts ring to returing pkts.
* C. load remaining CQE data and extract necessary fields.
* Final 16bytes cqes[] extracted from original 64bytes CQE has the
* following structure:
* struct {
* uint8_t pkt_info;
* uint8_t flow_tag[3];
* uint16_t byte_cnt;
* uint8_t rsvd4;
* uint8_t op_own;
* uint16_t hdr_type_etc;
* uint16_t vlan_info;
* uint32_t rx_has_res;
* } c;
* D. fill in mbuf.
* E. get valid CQEs.
* F. find compressed CQE.
*/
for (pos = 0;
pos < pkts_n;
pos += MLX5_VPMD_DESCS_PER_LOOP) {
vector unsigned char cqes[MLX5_VPMD_DESCS_PER_LOOP];
vector unsigned char cqe_tmp1, cqe_tmp2;
vector unsigned char pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
vector unsigned char op_own, op_own_tmp1, op_own_tmp2;
vector unsigned char opcode, owner_mask, invalid_mask;
vector unsigned char comp_mask;
vector unsigned char mask;
#ifdef MLX5_PMD_SOFT_COUNTERS
const vector unsigned char lower_half = {
0, 1, 4, 5, 8, 9, 12, 13,
16, 17, 20, 21, 24, 25, 28, 29};
const vector unsigned char upper_half = {
2, 3, 6, 7, 10, 11, 14, 15,
18, 19, 22, 23, 26, 27, 30, 31};
const vector unsigned long shmax = {64, 64};
vector unsigned char byte_cnt;
vector unsigned short left, right;
vector unsigned long lshift;
vector __attribute__((altivec(bool__)))
unsigned long shmask;
#endif
vector unsigned char mbp1, mbp2;
vector unsigned char p =
(vector unsigned char)(vector unsigned short){
0, 1, 2, 3, 0, 0, 0, 0};
unsigned int p1, p2, p3;
/* Prefetch next 4 CQEs. */
if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
}
/* A.0 do not cross the end of CQ. */
mask = (vector unsigned char)(vector unsigned long){
(pkts_n - pos) * sizeof(uint16_t) * 8, 0};
{
vector unsigned long lshift;
vector __attribute__((altivec(bool__)))
unsigned long shmask;
const vector unsigned long shmax = {64, 64};
lshift = vec_splat((vector unsigned long)mask, 0);
shmask = vec_cmpgt(shmax, lshift);
mask = (vector unsigned char)
vec_sl((vector unsigned long)ones, lshift);
mask = (vector unsigned char)
vec_sel((vector unsigned long)shmask,
(vector unsigned long)mask, shmask);
}
p = (vector unsigned char)
vec_andc((vector unsigned long)p,
(vector unsigned long)mask);
/* A.1 load cqes. */
p3 = (unsigned int)((vector unsigned short)p)[3];
cqes[3] = (vector unsigned char)(vector unsigned long){
*(__rte_aligned(8) unsigned long *)
&cq[pos + p3].sop_drop_qpn, 0LL};
rte_compiler_barrier();
p2 = (unsigned int)((vector unsigned short)p)[2];
cqes[2] = (vector unsigned char)(vector unsigned long){
*(__rte_aligned(8) unsigned long *)
&cq[pos + p2].sop_drop_qpn, 0LL};
rte_compiler_barrier();
/* B.1 load mbuf pointers. */
mbp1 = (vector unsigned char)vec_vsx_ld(0,
(signed int const *)&elts[pos]);
mbp2 = (vector unsigned char)vec_vsx_ld(0,
(signed int const *)&elts[pos + 2]);
/* A.1 load a block having op_own. */
p1 = (unsigned int)((vector unsigned short)p)[1];
cqes[1] = (vector unsigned char)(vector unsigned long){
*(__rte_aligned(8) unsigned long *)
&cq[pos + p1].sop_drop_qpn, 0LL};
rte_compiler_barrier();
cqes[0] = (vector unsigned char)(vector unsigned long){
*(__rte_aligned(8) unsigned long *)
&cq[pos].sop_drop_qpn, 0LL};
rte_compiler_barrier();
/* B.2 copy mbuf pointers. */
*(vector unsigned char *)&pkts[pos] = mbp1;
*(vector unsigned char *)&pkts[pos + 2] = mbp2;
rte_cio_rmb();
/* C.1 load remaining CQE data and extract necessary fields. */
cqe_tmp2 = *(vector unsigned char *)
&cq[pos + p3].pkt_info;
cqe_tmp1 = *(vector unsigned char *)
&cq[pos + p2].pkt_info;
cqes[3] = vec_sel(cqes[3], cqe_tmp2, blend_mask);
cqes[2] = vec_sel(cqes[2], cqe_tmp1, blend_mask);
cqe_tmp2 = (vector unsigned char)vec_vsx_ld(0,
(signed int const *)&cq[pos + p3].csum);
cqe_tmp1 = (vector unsigned char)vec_vsx_ld(0,
(signed int const *)&cq[pos + p2].csum);
cqes[3] = (vector unsigned char)
vec_sel((vector unsigned short)cqes[3],
(vector unsigned short)cqe_tmp2, cqe_sel_mask1);
cqes[2] = (vector unsigned char)
vec_sel((vector unsigned short)cqes[2],
(vector unsigned short)cqe_tmp1, cqe_sel_mask1);
cqe_tmp2 = (vector unsigned char)(vector unsigned long){
*(__rte_aligned(8) unsigned long *)
&cq[pos + p3].rsvd3[9], 0LL};
cqe_tmp1 = (vector unsigned char)(vector unsigned long){
*(__rte_aligned(8) unsigned long *)
&cq[pos + p2].rsvd3[9], 0LL};
cqes[3] = (vector unsigned char)
vec_sel((vector unsigned short)cqes[3],
(vector unsigned short)cqe_tmp2,
(vector unsigned short)cqe_sel_mask2);
cqes[2] = (vector unsigned char)
vec_sel((vector unsigned short)cqes[2],
(vector unsigned short)cqe_tmp1,
(vector unsigned short)cqe_sel_mask2);
/* C.2 generate final structure for mbuf with swapping bytes. */
pkt_mb3 = vec_perm(cqes[3], zero, shuf_mask);
pkt_mb2 = vec_perm(cqes[2], zero, shuf_mask);
/* C.3 adjust CRC length. */
pkt_mb3 = (vector unsigned char)
((vector unsigned short)pkt_mb3 -
(vector unsigned short)crc_adj);
pkt_mb2 = (vector unsigned char)
((vector unsigned short)pkt_mb2 -
(vector unsigned short)crc_adj);
/* C.4 adjust flow mark. */
pkt_mb3 = (vector unsigned char)
((vector unsigned int)pkt_mb3 +
(vector unsigned int)flow_mark_adj);
pkt_mb2 = (vector unsigned char)
((vector unsigned int)pkt_mb2 +
(vector unsigned int)flow_mark_adj);
/* D.1 fill in mbuf - rx_descriptor_fields1. */
*(vector unsigned char *)
&pkts[pos + 3]->pkt_len = pkt_mb3;
*(vector unsigned char *)
&pkts[pos + 2]->pkt_len = pkt_mb2;
/* E.1 extract op_own field. */
op_own_tmp2 = (vector unsigned char)
vec_mergeh((vector unsigned int)cqes[2],
(vector unsigned int)cqes[3]);
/* C.1 load remaining CQE data and extract necessary fields. */
cqe_tmp2 = *(vector unsigned char *)
&cq[pos + p1].pkt_info;
cqe_tmp1 = *(vector unsigned char *)
&cq[pos].pkt_info;
cqes[1] = vec_sel(cqes[1], cqe_tmp2, blend_mask);
cqes[0] = vec_sel(cqes[0], cqe_tmp2, blend_mask);
cqe_tmp2 = (vector unsigned char)vec_vsx_ld(0,
(signed int const *)&cq[pos + p1].csum);
cqe_tmp1 = (vector unsigned char)vec_vsx_ld(0,
(signed int const *)&cq[pos].csum);
cqes[1] = (vector unsigned char)
vec_sel((vector unsigned short)cqes[1],
(vector unsigned short)cqe_tmp2, cqe_sel_mask1);
cqes[0] = (vector unsigned char)
vec_sel((vector unsigned short)cqes[0],
(vector unsigned short)cqe_tmp1, cqe_sel_mask1);
cqe_tmp2 = (vector unsigned char)(vector unsigned long){
*(__rte_aligned(8) unsigned long *)
&cq[pos + p1].rsvd3[9], 0LL};
cqe_tmp1 = (vector unsigned char)(vector unsigned long){
*(__rte_aligned(8) unsigned long *)
&cq[pos].rsvd3[9], 0LL};
cqes[1] = (vector unsigned char)
vec_sel((vector unsigned short)cqes[1],
(vector unsigned short)cqe_tmp2, cqe_sel_mask2);
cqes[0] = (vector unsigned char)
vec_sel((vector unsigned short)cqes[0],
(vector unsigned short)cqe_tmp1, cqe_sel_mask2);
/* C.2 generate final structure for mbuf with swapping bytes. */
pkt_mb1 = vec_perm(cqes[1], zero, shuf_mask);
pkt_mb0 = vec_perm(cqes[0], zero, shuf_mask);
/* C.3 adjust CRC length. */
pkt_mb1 = (vector unsigned char)
((vector unsigned short)pkt_mb1 -
(vector unsigned short)crc_adj);
pkt_mb0 = (vector unsigned char)
((vector unsigned short)pkt_mb0 -
(vector unsigned short)crc_adj);
/* C.4 adjust flow mark. */
pkt_mb1 = (vector unsigned char)
((vector unsigned int)pkt_mb1 +
(vector unsigned int)flow_mark_adj);
pkt_mb0 = (vector unsigned char)
((vector unsigned int)pkt_mb0 +
(vector unsigned int)flow_mark_adj);
/* E.1 extract op_own byte. */
op_own_tmp1 = (vector unsigned char)
vec_mergeh((vector unsigned int)cqes[0],
(vector unsigned int)cqes[1]);
op_own = (vector unsigned char)
vec_mergel((vector unsigned long)op_own_tmp1,
(vector unsigned long)op_own_tmp2);
/* D.1 fill in mbuf - rx_descriptor_fields1. */
*(vector unsigned char *)
&pkts[pos + 1]->pkt_len = pkt_mb1;
*(vector unsigned char *)
&pkts[pos]->pkt_len = pkt_mb0;
/* E.2 flip owner bit to mark CQEs from last round. */
owner_mask = (vector unsigned char)
vec_and((vector unsigned long)op_own,
(vector unsigned long)owner_check);
if (ownership)
owner_mask = (vector unsigned char)
vec_xor((vector unsigned long)owner_mask,
(vector unsigned long)owner_check);
owner_mask = (vector unsigned char)
vec_cmpeq((vector unsigned int)owner_mask,
(vector unsigned int)owner_check);
owner_mask = (vector unsigned char)
vec_packs((vector unsigned int)owner_mask,
(vector unsigned int)zero);
/* E.3 get mask for invalidated CQEs. */
opcode = (vector unsigned char)
vec_and((vector unsigned long)op_own,
(vector unsigned long)opcode_check);
invalid_mask = (vector unsigned char)
vec_cmpeq((vector unsigned int)opcode_check,
(vector unsigned int)opcode);
invalid_mask = (vector unsigned char)
vec_packs((vector unsigned int)invalid_mask,
(vector unsigned int)zero);
/* E.4 mask out beyond boundary. */
invalid_mask = (vector unsigned char)
vec_or((vector unsigned long)invalid_mask,
(vector unsigned long)mask);
/* E.5 merge invalid_mask with invalid owner. */
invalid_mask = (vector unsigned char)
vec_or((vector unsigned long)invalid_mask,
(vector unsigned long)owner_mask);
/* F.1 find compressed CQE format. */
comp_mask = (vector unsigned char)
vec_and((vector unsigned long)op_own,
(vector unsigned long)format_check);
comp_mask = (vector unsigned char)
vec_cmpeq((vector unsigned int)comp_mask,
(vector unsigned int)format_check);
comp_mask = (vector unsigned char)
vec_packs((vector unsigned int)comp_mask,
(vector unsigned int)zero);
/* F.2 mask out invalid entries. */
comp_mask = (vector unsigned char)
vec_andc((vector unsigned long)comp_mask,
(vector unsigned long)invalid_mask);
comp_idx = ((vector unsigned long)comp_mask)[0];
/* F.3 get the first compressed CQE. */
comp_idx = comp_idx ? __builtin_ctzll(comp_idx) /
(sizeof(uint16_t) * 8) : MLX5_VPMD_DESCS_PER_LOOP;
/* E.6 mask out entries after the compressed CQE. */
mask = (vector unsigned char)(vector unsigned long){
(comp_idx * sizeof(uint16_t) * 8), 0};
lshift = vec_splat((vector unsigned long)mask, 0);
shmask = vec_cmpgt(shmax, lshift);
mask = (vector unsigned char)
vec_sl((vector unsigned long)ones, lshift);
mask = (vector unsigned char)
vec_sel((vector unsigned long)shmask,
(vector unsigned long)mask, shmask);
invalid_mask = (vector unsigned char)
vec_or((vector unsigned long)invalid_mask,
(vector unsigned long)mask);
/* E.7 count non-compressed valid CQEs. */
n = ((vector unsigned long)invalid_mask)[0];
n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
MLX5_VPMD_DESCS_PER_LOOP;
nocmp_n += n;
/* D.2 get the final invalid mask. */
mask = (vector unsigned char)(vector unsigned long){
(n * sizeof(uint16_t) * 8), 0};
lshift = vec_splat((vector unsigned long)mask, 0);
shmask = vec_cmpgt(shmax, lshift);
mask = (vector unsigned char)
vec_sl((vector unsigned long)ones, lshift);
mask = (vector unsigned char)
vec_sel((vector unsigned long)shmask,
(vector unsigned long)mask, shmask);
invalid_mask = (vector unsigned char)
vec_or((vector unsigned long)invalid_mask,
(vector unsigned long)mask);
/* D.3 check error in opcode. */
opcode = (vector unsigned char)
vec_cmpeq((vector unsigned int)resp_err_check,
(vector unsigned int)opcode);
opcode = (vector unsigned char)
vec_packs((vector unsigned int)opcode,
(vector unsigned int)zero);
opcode = (vector unsigned char)
vec_andc((vector unsigned long)opcode,
(vector unsigned long)invalid_mask);
/* D.4 mark if any error is set */
*err |= ((vector unsigned long)opcode)[0];
/* D.5 fill in mbuf - rearm_data and packet_type. */
rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
if (rxq->hw_timestamp) {
if (rxq->rt_timestamp) {
struct mlx5_dev_ctx_shared *sh = rxq->sh;
uint64_t ts;
ts = rte_be_to_cpu_64(cq[pos].timestamp);
pkts[pos]->timestamp =
mlx5_txpp_convert_rx_ts(sh, ts);
ts = rte_be_to_cpu_64(cq[pos + p1].timestamp);
pkts[pos + 1]->timestamp =
mlx5_txpp_convert_rx_ts(sh, ts);
ts = rte_be_to_cpu_64(cq[pos + p2].timestamp);
pkts[pos + 2]->timestamp =
mlx5_txpp_convert_rx_ts(sh, ts);
ts = rte_be_to_cpu_64(cq[pos + p3].timestamp);
pkts[pos + 3]->timestamp =
mlx5_txpp_convert_rx_ts(sh, ts);
} else {
pkts[pos]->timestamp = rte_be_to_cpu_64
(cq[pos].timestamp);
pkts[pos + 1]->timestamp = rte_be_to_cpu_64
(cq[pos + p1].timestamp);
pkts[pos + 2]->timestamp = rte_be_to_cpu_64
(cq[pos + p2].timestamp);
pkts[pos + 3]->timestamp = rte_be_to_cpu_64
(cq[pos + p3].timestamp);
}
}
if (rxq->dynf_meta) {
uint64_t flag = rxq->flow_meta_mask;
int32_t offs = rxq->flow_meta_offset;
uint32_t metadata;
/* This code is subject for futher optimization. */
metadata = cq[pos].flow_table_metadata;
*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
metadata;
pkts[pos]->ol_flags |= metadata ? flag : 0ULL;
metadata = cq[pos + 1].flow_table_metadata;
*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
metadata;
pkts[pos + 1]->ol_flags |= metadata ? flag : 0ULL;
metadata = cq[pos + 2].flow_table_metadata;
*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
metadata;
pkts[pos + 2]->ol_flags |= metadata ? flag : 0ULL;
metadata = cq[pos + 3].flow_table_metadata;
*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
metadata;
pkts[pos + 3]->ol_flags |= metadata ? flag : 0ULL;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Add up received bytes count. */
byte_cnt = vec_perm(op_own, zero, len_shuf_mask);
byte_cnt = (vector unsigned char)
vec_andc((vector unsigned long)byte_cnt,
(vector unsigned long)invalid_mask);
left = vec_perm((vector unsigned short)byte_cnt,
(vector unsigned short)zero, lower_half);
right = vec_perm((vector unsigned short)byte_cnt,
(vector unsigned short)zero, upper_half);
byte_cnt = (vector unsigned char)vec_add(left, right);
left = vec_perm((vector unsigned short)byte_cnt,
(vector unsigned short)zero, lower_half);
right = vec_perm((vector unsigned short)byte_cnt,
(vector unsigned short)zero, upper_half);
byte_cnt = (vector unsigned char)vec_add(left, right);
rcvd_byte += ((vector unsigned long)byte_cnt)[0];
#endif
/*
* Break the loop unless more valid CQE is expected, or if
* there's a compressed CQE.
*/
if (n != MLX5_VPMD_DESCS_PER_LOOP)
break;
}
/* If no new CQE seen, return without updating cq_db. */
if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) {
*no_cq = true;
return rcvd_pkt;
}
/* Update the consumer indexes for non-compressed CQEs. */
MLX5_ASSERT(nocmp_n <= pkts_n);
rxq->cq_ci += nocmp_n;
rxq->rq_pi += nocmp_n;
rcvd_pkt += nocmp_n;
#ifdef MLX5_PMD_SOFT_COUNTERS
rxq->stats.ipackets += nocmp_n;
rxq->stats.ibytes += rcvd_byte;
#endif
/* Decompress the last CQE if compressed. */
if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
rxq->decompressed =
rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
/* Return more packets if needed. */
if (nocmp_n < pkts_n) {
uint16_t n = rxq->decompressed;
n = RTE_MIN(n, pkts_n - nocmp_n);
rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
rxq->rq_pi += n;
rcvd_pkt += n;
rxq->decompressed -= n;
}
}
rte_compiler_barrier();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
*no_cq = !rcvd_pkt;
return rcvd_pkt;
}
#endif /* RTE_PMD_MLX5_RXTX_VEC_ALTIVEC_H_ */