numam-dpdk/drivers/net/bonding/rte_eth_bond_pmd.c
Shreyansh Jain 50a3345fa9 vdev: rename init/uninit ops to probe/remove
Inline with PCI probe and remove, VDEV probe and remove hooks provide
a uniform naming.
PCI probe represents scan and driver initialization. For VDEV, it will
represent argument parsing and initialization.

Signed-off-by: Shreyansh Jain <shreyansh.jain@nxp.com>
2016-10-06 16:02:14 +02:00

2528 lines
71 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include <netinet/in.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ethdev.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_ip.h>
#include <rte_ip_frag.h>
#include <rte_devargs.h>
#include <rte_kvargs.h>
#include <rte_vdev.h>
#include <rte_alarm.h>
#include <rte_cycles.h>
#include "rte_eth_bond.h"
#include "rte_eth_bond_private.h"
#include "rte_eth_bond_8023ad_private.h"
#define REORDER_PERIOD_MS 10
#define HASH_L4_PORTS(h) ((h)->src_port ^ (h)->dst_port)
/* Table for statistics in mode 5 TLB */
static uint64_t tlb_last_obytets[RTE_MAX_ETHPORTS];
static inline size_t
get_vlan_offset(struct ether_hdr *eth_hdr, uint16_t *proto)
{
size_t vlan_offset = 0;
if (rte_cpu_to_be_16(ETHER_TYPE_VLAN) == *proto) {
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
vlan_offset = sizeof(struct vlan_hdr);
*proto = vlan_hdr->eth_proto;
if (rte_cpu_to_be_16(ETHER_TYPE_VLAN) == *proto) {
vlan_hdr = vlan_hdr + 1;
*proto = vlan_hdr->eth_proto;
vlan_offset += sizeof(struct vlan_hdr);
}
}
return vlan_offset;
}
static uint16_t
bond_ethdev_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_dev_private *internals;
uint16_t num_rx_slave = 0;
uint16_t num_rx_total = 0;
int i;
/* Cast to structure, containing bonded device's port id and queue id */
struct bond_rx_queue *bd_rx_q = (struct bond_rx_queue *)queue;
internals = bd_rx_q->dev_private;
for (i = 0; i < internals->active_slave_count && nb_pkts; i++) {
/* Offset of pointer to *bufs increases as packets are received
* from other slaves */
num_rx_slave = rte_eth_rx_burst(internals->active_slaves[i],
bd_rx_q->queue_id, bufs + num_rx_total, nb_pkts);
if (num_rx_slave) {
num_rx_total += num_rx_slave;
nb_pkts -= num_rx_slave;
}
}
return num_rx_total;
}
static uint16_t
bond_ethdev_rx_burst_active_backup(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct bond_dev_private *internals;
/* Cast to structure, containing bonded device's port id and queue id */
struct bond_rx_queue *bd_rx_q = (struct bond_rx_queue *)queue;
internals = bd_rx_q->dev_private;
return rte_eth_rx_burst(internals->current_primary_port,
bd_rx_q->queue_id, bufs, nb_pkts);
}
static uint16_t
bond_ethdev_rx_burst_8023ad(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
/* Cast to structure, containing bonded device's port id and queue id */
struct bond_rx_queue *bd_rx_q = (struct bond_rx_queue *)queue;
struct bond_dev_private *internals = bd_rx_q->dev_private;
struct ether_addr bond_mac;
struct ether_hdr *hdr;
const uint16_t ether_type_slow_be = rte_be_to_cpu_16(ETHER_TYPE_SLOW);
uint16_t num_rx_total = 0; /* Total number of received packets */
uint8_t slaves[RTE_MAX_ETHPORTS];
uint8_t slave_count;
uint8_t collecting; /* current slave collecting status */
const uint8_t promisc = internals->promiscuous_en;
uint8_t i, j, k;
rte_eth_macaddr_get(internals->port_id, &bond_mac);
/* Copy slave list to protect against slave up/down changes during tx
* bursting */
slave_count = internals->active_slave_count;
memcpy(slaves, internals->active_slaves,
sizeof(internals->active_slaves[0]) * slave_count);
for (i = 0; i < slave_count && num_rx_total < nb_pkts; i++) {
j = num_rx_total;
collecting = ACTOR_STATE(&mode_8023ad_ports[slaves[i]], COLLECTING);
/* Read packets from this slave */
num_rx_total += rte_eth_rx_burst(slaves[i], bd_rx_q->queue_id,
&bufs[num_rx_total], nb_pkts - num_rx_total);
for (k = j; k < 2 && k < num_rx_total; k++)
rte_prefetch0(rte_pktmbuf_mtod(bufs[k], void *));
/* Handle slow protocol packets. */
while (j < num_rx_total) {
if (j + 3 < num_rx_total)
rte_prefetch0(rte_pktmbuf_mtod(bufs[j + 3], void *));
hdr = rte_pktmbuf_mtod(bufs[j], struct ether_hdr *);
/* Remove packet from array if it is slow packet or slave is not
* in collecting state or bondign interface is not in promiscus
* mode and packet address does not match. */
if (unlikely(hdr->ether_type == ether_type_slow_be ||
!collecting || (!promisc &&
!is_multicast_ether_addr(&hdr->d_addr) &&
!is_same_ether_addr(&bond_mac, &hdr->d_addr)))) {
if (hdr->ether_type == ether_type_slow_be) {
bond_mode_8023ad_handle_slow_pkt(internals, slaves[i],
bufs[j]);
} else
rte_pktmbuf_free(bufs[j]);
/* Packet is managed by mode 4 or dropped, shift the array */
num_rx_total--;
if (j < num_rx_total) {
memmove(&bufs[j], &bufs[j + 1], sizeof(bufs[0]) *
(num_rx_total - j));
}
} else
j++;
}
}
return num_rx_total;
}
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
uint32_t burstnumberRX;
uint32_t burstnumberTX;
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
static void
arp_op_name(uint16_t arp_op, char *buf)
{
switch (arp_op) {
case ARP_OP_REQUEST:
snprintf(buf, sizeof("ARP Request"), "%s", "ARP Request");
return;
case ARP_OP_REPLY:
snprintf(buf, sizeof("ARP Reply"), "%s", "ARP Reply");
return;
case ARP_OP_REVREQUEST:
snprintf(buf, sizeof("Reverse ARP Request"), "%s",
"Reverse ARP Request");
return;
case ARP_OP_REVREPLY:
snprintf(buf, sizeof("Reverse ARP Reply"), "%s",
"Reverse ARP Reply");
return;
case ARP_OP_INVREQUEST:
snprintf(buf, sizeof("Peer Identify Request"), "%s",
"Peer Identify Request");
return;
case ARP_OP_INVREPLY:
snprintf(buf, sizeof("Peer Identify Reply"), "%s",
"Peer Identify Reply");
return;
default:
break;
}
snprintf(buf, sizeof("Unknown"), "%s", "Unknown");
return;
}
#endif
#define MaxIPv4String 16
static void
ipv4_addr_to_dot(uint32_t be_ipv4_addr, char *buf, uint8_t buf_size)
{
uint32_t ipv4_addr;
ipv4_addr = rte_be_to_cpu_32(be_ipv4_addr);
snprintf(buf, buf_size, "%d.%d.%d.%d", (ipv4_addr >> 24) & 0xFF,
(ipv4_addr >> 16) & 0xFF, (ipv4_addr >> 8) & 0xFF,
ipv4_addr & 0xFF);
}
#define MAX_CLIENTS_NUMBER 128
uint8_t active_clients;
struct client_stats_t {
uint8_t port;
uint32_t ipv4_addr;
uint32_t ipv4_rx_packets;
uint32_t ipv4_tx_packets;
};
struct client_stats_t client_stats[MAX_CLIENTS_NUMBER];
static void
update_client_stats(uint32_t addr, uint8_t port, uint32_t *TXorRXindicator)
{
int i = 0;
for (; i < MAX_CLIENTS_NUMBER; i++) {
if ((client_stats[i].ipv4_addr == addr) && (client_stats[i].port == port)) {
/* Just update RX packets number for this client */
if (TXorRXindicator == &burstnumberRX)
client_stats[i].ipv4_rx_packets++;
else
client_stats[i].ipv4_tx_packets++;
return;
}
}
/* We have a new client. Insert him to the table, and increment stats */
if (TXorRXindicator == &burstnumberRX)
client_stats[active_clients].ipv4_rx_packets++;
else
client_stats[active_clients].ipv4_tx_packets++;
client_stats[active_clients].ipv4_addr = addr;
client_stats[active_clients].port = port;
active_clients++;
}
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
#define MODE6_DEBUG(info, src_ip, dst_ip, eth_h, arp_op, port, burstnumber) \
RTE_LOG(DEBUG, PMD, \
"%s " \
"port:%d " \
"SrcMAC:%02X:%02X:%02X:%02X:%02X:%02X " \
"SrcIP:%s " \
"DstMAC:%02X:%02X:%02X:%02X:%02X:%02X " \
"DstIP:%s " \
"%s " \
"%d\n", \
info, \
port, \
eth_h->s_addr.addr_bytes[0], \
eth_h->s_addr.addr_bytes[1], \
eth_h->s_addr.addr_bytes[2], \
eth_h->s_addr.addr_bytes[3], \
eth_h->s_addr.addr_bytes[4], \
eth_h->s_addr.addr_bytes[5], \
src_ip, \
eth_h->d_addr.addr_bytes[0], \
eth_h->d_addr.addr_bytes[1], \
eth_h->d_addr.addr_bytes[2], \
eth_h->d_addr.addr_bytes[3], \
eth_h->d_addr.addr_bytes[4], \
eth_h->d_addr.addr_bytes[5], \
dst_ip, \
arp_op, \
++burstnumber)
#endif
static void
mode6_debug(const char __attribute__((unused)) *info, struct ether_hdr *eth_h,
uint8_t port, uint32_t __attribute__((unused)) *burstnumber)
{
struct ipv4_hdr *ipv4_h;
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
struct arp_hdr *arp_h;
char dst_ip[16];
char ArpOp[24];
char buf[16];
#endif
char src_ip[16];
uint16_t ether_type = eth_h->ether_type;
uint16_t offset = get_vlan_offset(eth_h, &ether_type);
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
snprintf(buf, 16, "%s", info);
#endif
if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
ipv4_h = (struct ipv4_hdr *)((char *)(eth_h + 1) + offset);
ipv4_addr_to_dot(ipv4_h->src_addr, src_ip, MaxIPv4String);
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
ipv4_addr_to_dot(ipv4_h->dst_addr, dst_ip, MaxIPv4String);
MODE6_DEBUG(buf, src_ip, dst_ip, eth_h, "", port, *burstnumber);
#endif
update_client_stats(ipv4_h->src_addr, port, burstnumber);
}
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_ARP)) {
arp_h = (struct arp_hdr *)((char *)(eth_h + 1) + offset);
ipv4_addr_to_dot(arp_h->arp_data.arp_sip, src_ip, MaxIPv4String);
ipv4_addr_to_dot(arp_h->arp_data.arp_tip, dst_ip, MaxIPv4String);
arp_op_name(rte_be_to_cpu_16(arp_h->arp_op), ArpOp);
MODE6_DEBUG(buf, src_ip, dst_ip, eth_h, ArpOp, port, *burstnumber);
}
#endif
}
#endif
static uint16_t
bond_ethdev_rx_burst_alb(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)queue;
struct bond_dev_private *internals = bd_tx_q->dev_private;
struct ether_hdr *eth_h;
uint16_t ether_type, offset;
uint16_t nb_recv_pkts;
int i;
nb_recv_pkts = bond_ethdev_rx_burst(queue, bufs, nb_pkts);
for (i = 0; i < nb_recv_pkts; i++) {
eth_h = rte_pktmbuf_mtod(bufs[i], struct ether_hdr *);
ether_type = eth_h->ether_type;
offset = get_vlan_offset(eth_h, &ether_type);
if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_ARP)) {
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
mode6_debug("RX ARP:", eth_h, bufs[i]->port, &burstnumberRX);
#endif
bond_mode_alb_arp_recv(eth_h, offset, internals);
}
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4))
mode6_debug("RX IPv4:", eth_h, bufs[i]->port, &burstnumberRX);
#endif
}
return nb_recv_pkts;
}
static uint16_t
bond_ethdev_tx_burst_round_robin(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct bond_dev_private *internals;
struct bond_tx_queue *bd_tx_q;
struct rte_mbuf *slave_bufs[RTE_MAX_ETHPORTS][nb_pkts];
uint16_t slave_nb_pkts[RTE_MAX_ETHPORTS] = { 0 };
uint8_t num_of_slaves;
uint8_t slaves[RTE_MAX_ETHPORTS];
uint16_t num_tx_total = 0, num_tx_slave;
static int slave_idx = 0;
int i, cslave_idx = 0, tx_fail_total = 0;
bd_tx_q = (struct bond_tx_queue *)queue;
internals = bd_tx_q->dev_private;
/* Copy slave list to protect against slave up/down changes during tx
* bursting */
num_of_slaves = internals->active_slave_count;
memcpy(slaves, internals->active_slaves,
sizeof(internals->active_slaves[0]) * num_of_slaves);
if (num_of_slaves < 1)
return num_tx_total;
/* Populate slaves mbuf with which packets are to be sent on it */
for (i = 0; i < nb_pkts; i++) {
cslave_idx = (slave_idx + i) % num_of_slaves;
slave_bufs[cslave_idx][(slave_nb_pkts[cslave_idx])++] = bufs[i];
}
/* increment current slave index so the next call to tx burst starts on the
* next slave */
slave_idx = ++cslave_idx;
/* Send packet burst on each slave device */
for (i = 0; i < num_of_slaves; i++) {
if (slave_nb_pkts[i] > 0) {
num_tx_slave = rte_eth_tx_burst(slaves[i], bd_tx_q->queue_id,
slave_bufs[i], slave_nb_pkts[i]);
/* if tx burst fails move packets to end of bufs */
if (unlikely(num_tx_slave < slave_nb_pkts[i])) {
int tx_fail_slave = slave_nb_pkts[i] - num_tx_slave;
tx_fail_total += tx_fail_slave;
memcpy(&bufs[nb_pkts - tx_fail_total],
&slave_bufs[i][num_tx_slave],
tx_fail_slave * sizeof(bufs[0]));
}
num_tx_total += num_tx_slave;
}
}
return num_tx_total;
}
static uint16_t
bond_ethdev_tx_burst_active_backup(void *queue,
struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_dev_private *internals;
struct bond_tx_queue *bd_tx_q;
bd_tx_q = (struct bond_tx_queue *)queue;
internals = bd_tx_q->dev_private;
if (internals->active_slave_count < 1)
return 0;
return rte_eth_tx_burst(internals->current_primary_port, bd_tx_q->queue_id,
bufs, nb_pkts);
}
static inline uint16_t
ether_hash(struct ether_hdr *eth_hdr)
{
unaligned_uint16_t *word_src_addr =
(unaligned_uint16_t *)eth_hdr->s_addr.addr_bytes;
unaligned_uint16_t *word_dst_addr =
(unaligned_uint16_t *)eth_hdr->d_addr.addr_bytes;
return (word_src_addr[0] ^ word_dst_addr[0]) ^
(word_src_addr[1] ^ word_dst_addr[1]) ^
(word_src_addr[2] ^ word_dst_addr[2]);
}
static inline uint32_t
ipv4_hash(struct ipv4_hdr *ipv4_hdr)
{
return ipv4_hdr->src_addr ^ ipv4_hdr->dst_addr;
}
static inline uint32_t
ipv6_hash(struct ipv6_hdr *ipv6_hdr)
{
unaligned_uint32_t *word_src_addr =
(unaligned_uint32_t *)&(ipv6_hdr->src_addr[0]);
unaligned_uint32_t *word_dst_addr =
(unaligned_uint32_t *)&(ipv6_hdr->dst_addr[0]);
return (word_src_addr[0] ^ word_dst_addr[0]) ^
(word_src_addr[1] ^ word_dst_addr[1]) ^
(word_src_addr[2] ^ word_dst_addr[2]) ^
(word_src_addr[3] ^ word_dst_addr[3]);
}
uint16_t
xmit_l2_hash(const struct rte_mbuf *buf, uint8_t slave_count)
{
struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(buf, struct ether_hdr *);
uint32_t hash = ether_hash(eth_hdr);
return (hash ^= hash >> 8) % slave_count;
}
uint16_t
xmit_l23_hash(const struct rte_mbuf *buf, uint8_t slave_count)
{
struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(buf, struct ether_hdr *);
uint16_t proto = eth_hdr->ether_type;
size_t vlan_offset = get_vlan_offset(eth_hdr, &proto);
uint32_t hash, l3hash = 0;
hash = ether_hash(eth_hdr);
if (rte_cpu_to_be_16(ETHER_TYPE_IPv4) == proto) {
struct ipv4_hdr *ipv4_hdr = (struct ipv4_hdr *)
((char *)(eth_hdr + 1) + vlan_offset);
l3hash = ipv4_hash(ipv4_hdr);
} else if (rte_cpu_to_be_16(ETHER_TYPE_IPv6) == proto) {
struct ipv6_hdr *ipv6_hdr = (struct ipv6_hdr *)
((char *)(eth_hdr + 1) + vlan_offset);
l3hash = ipv6_hash(ipv6_hdr);
}
hash = hash ^ l3hash;
hash ^= hash >> 16;
hash ^= hash >> 8;
return hash % slave_count;
}
uint16_t
xmit_l34_hash(const struct rte_mbuf *buf, uint8_t slave_count)
{
struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(buf, struct ether_hdr *);
uint16_t proto = eth_hdr->ether_type;
size_t vlan_offset = get_vlan_offset(eth_hdr, &proto);
struct udp_hdr *udp_hdr = NULL;
struct tcp_hdr *tcp_hdr = NULL;
uint32_t hash, l3hash = 0, l4hash = 0;
if (rte_cpu_to_be_16(ETHER_TYPE_IPv4) == proto) {
struct ipv4_hdr *ipv4_hdr = (struct ipv4_hdr *)
((char *)(eth_hdr + 1) + vlan_offset);
size_t ip_hdr_offset;
l3hash = ipv4_hash(ipv4_hdr);
/* there is no L4 header in fragmented packet */
if (likely(rte_ipv4_frag_pkt_is_fragmented(ipv4_hdr) == 0)) {
ip_hdr_offset = (ipv4_hdr->version_ihl & IPV4_HDR_IHL_MASK) *
IPV4_IHL_MULTIPLIER;
if (ipv4_hdr->next_proto_id == IPPROTO_TCP) {
tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr +
ip_hdr_offset);
l4hash = HASH_L4_PORTS(tcp_hdr);
} else if (ipv4_hdr->next_proto_id == IPPROTO_UDP) {
udp_hdr = (struct udp_hdr *)((char *)ipv4_hdr +
ip_hdr_offset);
l4hash = HASH_L4_PORTS(udp_hdr);
}
}
} else if (rte_cpu_to_be_16(ETHER_TYPE_IPv6) == proto) {
struct ipv6_hdr *ipv6_hdr = (struct ipv6_hdr *)
((char *)(eth_hdr + 1) + vlan_offset);
l3hash = ipv6_hash(ipv6_hdr);
if (ipv6_hdr->proto == IPPROTO_TCP) {
tcp_hdr = (struct tcp_hdr *)(ipv6_hdr + 1);
l4hash = HASH_L4_PORTS(tcp_hdr);
} else if (ipv6_hdr->proto == IPPROTO_UDP) {
udp_hdr = (struct udp_hdr *)(ipv6_hdr + 1);
l4hash = HASH_L4_PORTS(udp_hdr);
}
}
hash = l3hash ^ l4hash;
hash ^= hash >> 16;
hash ^= hash >> 8;
return hash % slave_count;
}
struct bwg_slave {
uint64_t bwg_left_int;
uint64_t bwg_left_remainder;
uint8_t slave;
};
void
bond_tlb_activate_slave(struct bond_dev_private *internals) {
int i;
for (i = 0; i < internals->active_slave_count; i++) {
tlb_last_obytets[internals->active_slaves[i]] = 0;
}
}
static int
bandwidth_cmp(const void *a, const void *b)
{
const struct bwg_slave *bwg_a = a;
const struct bwg_slave *bwg_b = b;
int64_t diff = (int64_t)bwg_b->bwg_left_int - (int64_t)bwg_a->bwg_left_int;
int64_t diff2 = (int64_t)bwg_b->bwg_left_remainder -
(int64_t)bwg_a->bwg_left_remainder;
if (diff > 0)
return 1;
else if (diff < 0)
return -1;
else if (diff2 > 0)
return 1;
else if (diff2 < 0)
return -1;
else
return 0;
}
static void
bandwidth_left(uint8_t port_id, uint64_t load, uint8_t update_idx,
struct bwg_slave *bwg_slave)
{
struct rte_eth_link link_status;
rte_eth_link_get(port_id, &link_status);
uint64_t link_bwg = link_status.link_speed * 1000000ULL / 8;
if (link_bwg == 0)
return;
link_bwg = link_bwg * (update_idx+1) * REORDER_PERIOD_MS;
bwg_slave->bwg_left_int = (link_bwg - 1000*load) / link_bwg;
bwg_slave->bwg_left_remainder = (link_bwg - 1000*load) % link_bwg;
}
static void
bond_ethdev_update_tlb_slave_cb(void *arg)
{
struct bond_dev_private *internals = arg;
struct rte_eth_stats slave_stats;
struct bwg_slave bwg_array[RTE_MAX_ETHPORTS];
uint8_t slave_count;
uint64_t tx_bytes;
uint8_t update_stats = 0;
uint8_t i, slave_id;
internals->slave_update_idx++;
if (internals->slave_update_idx >= REORDER_PERIOD_MS)
update_stats = 1;
for (i = 0; i < internals->active_slave_count; i++) {
slave_id = internals->active_slaves[i];
rte_eth_stats_get(slave_id, &slave_stats);
tx_bytes = slave_stats.obytes - tlb_last_obytets[slave_id];
bandwidth_left(slave_id, tx_bytes,
internals->slave_update_idx, &bwg_array[i]);
bwg_array[i].slave = slave_id;
if (update_stats) {
tlb_last_obytets[slave_id] = slave_stats.obytes;
}
}
if (update_stats == 1)
internals->slave_update_idx = 0;
slave_count = i;
qsort(bwg_array, slave_count, sizeof(bwg_array[0]), bandwidth_cmp);
for (i = 0; i < slave_count; i++)
internals->tlb_slaves_order[i] = bwg_array[i].slave;
rte_eal_alarm_set(REORDER_PERIOD_MS * 1000, bond_ethdev_update_tlb_slave_cb,
(struct bond_dev_private *)internals);
}
static uint16_t
bond_ethdev_tx_burst_tlb(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)queue;
struct bond_dev_private *internals = bd_tx_q->dev_private;
struct rte_eth_dev *primary_port =
&rte_eth_devices[internals->primary_port];
uint16_t num_tx_total = 0;
uint8_t i, j;
uint8_t num_of_slaves = internals->active_slave_count;
uint8_t slaves[RTE_MAX_ETHPORTS];
struct ether_hdr *ether_hdr;
struct ether_addr primary_slave_addr;
struct ether_addr active_slave_addr;
if (num_of_slaves < 1)
return num_tx_total;
memcpy(slaves, internals->tlb_slaves_order,
sizeof(internals->tlb_slaves_order[0]) * num_of_slaves);
ether_addr_copy(primary_port->data->mac_addrs, &primary_slave_addr);
if (nb_pkts > 3) {
for (i = 0; i < 3; i++)
rte_prefetch0(rte_pktmbuf_mtod(bufs[i], void*));
}
for (i = 0; i < num_of_slaves; i++) {
rte_eth_macaddr_get(slaves[i], &active_slave_addr);
for (j = num_tx_total; j < nb_pkts; j++) {
if (j + 3 < nb_pkts)
rte_prefetch0(rte_pktmbuf_mtod(bufs[j+3], void*));
ether_hdr = rte_pktmbuf_mtod(bufs[j], struct ether_hdr *);
if (is_same_ether_addr(&ether_hdr->s_addr, &primary_slave_addr))
ether_addr_copy(&active_slave_addr, &ether_hdr->s_addr);
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
mode6_debug("TX IPv4:", ether_hdr, slaves[i], &burstnumberTX);
#endif
}
num_tx_total += rte_eth_tx_burst(slaves[i], bd_tx_q->queue_id,
bufs + num_tx_total, nb_pkts - num_tx_total);
if (num_tx_total == nb_pkts)
break;
}
return num_tx_total;
}
void
bond_tlb_disable(struct bond_dev_private *internals)
{
rte_eal_alarm_cancel(bond_ethdev_update_tlb_slave_cb, internals);
}
void
bond_tlb_enable(struct bond_dev_private *internals)
{
bond_ethdev_update_tlb_slave_cb(internals);
}
static uint16_t
bond_ethdev_tx_burst_alb(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)queue;
struct bond_dev_private *internals = bd_tx_q->dev_private;
struct ether_hdr *eth_h;
uint16_t ether_type, offset;
struct client_data *client_info;
/*
* We create transmit buffers for every slave and one additional to send
* through tlb. In worst case every packet will be send on one port.
*/
struct rte_mbuf *slave_bufs[RTE_MAX_ETHPORTS + 1][nb_pkts];
uint16_t slave_bufs_pkts[RTE_MAX_ETHPORTS + 1] = { 0 };
/*
* We create separate transmit buffers for update packets as they wont be
* counted in num_tx_total.
*/
struct rte_mbuf *update_bufs[RTE_MAX_ETHPORTS][ALB_HASH_TABLE_SIZE];
uint16_t update_bufs_pkts[RTE_MAX_ETHPORTS] = { 0 };
struct rte_mbuf *upd_pkt;
size_t pkt_size;
uint16_t num_send, num_not_send = 0;
uint16_t num_tx_total = 0;
uint8_t slave_idx;
int i, j;
/* Search tx buffer for ARP packets and forward them to alb */
for (i = 0; i < nb_pkts; i++) {
eth_h = rte_pktmbuf_mtod(bufs[i], struct ether_hdr *);
ether_type = eth_h->ether_type;
offset = get_vlan_offset(eth_h, &ether_type);
if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_ARP)) {
slave_idx = bond_mode_alb_arp_xmit(eth_h, offset, internals);
/* Change src mac in eth header */
rte_eth_macaddr_get(slave_idx, &eth_h->s_addr);
/* Add packet to slave tx buffer */
slave_bufs[slave_idx][slave_bufs_pkts[slave_idx]] = bufs[i];
slave_bufs_pkts[slave_idx]++;
} else {
/* If packet is not ARP, send it with TLB policy */
slave_bufs[RTE_MAX_ETHPORTS][slave_bufs_pkts[RTE_MAX_ETHPORTS]] =
bufs[i];
slave_bufs_pkts[RTE_MAX_ETHPORTS]++;
}
}
/* Update connected client ARP tables */
if (internals->mode6.ntt) {
for (i = 0; i < ALB_HASH_TABLE_SIZE; i++) {
client_info = &internals->mode6.client_table[i];
if (client_info->in_use) {
/* Allocate new packet to send ARP update on current slave */
upd_pkt = rte_pktmbuf_alloc(internals->mode6.mempool);
if (upd_pkt == NULL) {
RTE_LOG(ERR, PMD, "Failed to allocate ARP packet from pool\n");
continue;
}
pkt_size = sizeof(struct ether_hdr) + sizeof(struct arp_hdr)
+ client_info->vlan_count * sizeof(struct vlan_hdr);
upd_pkt->data_len = pkt_size;
upd_pkt->pkt_len = pkt_size;
slave_idx = bond_mode_alb_arp_upd(client_info, upd_pkt,
internals);
/* Add packet to update tx buffer */
update_bufs[slave_idx][update_bufs_pkts[slave_idx]] = upd_pkt;
update_bufs_pkts[slave_idx]++;
}
}
internals->mode6.ntt = 0;
}
/* Send ARP packets on proper slaves */
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (slave_bufs_pkts[i] > 0) {
num_send = rte_eth_tx_burst(i, bd_tx_q->queue_id,
slave_bufs[i], slave_bufs_pkts[i]);
for (j = 0; j < slave_bufs_pkts[i] - num_send; j++) {
bufs[nb_pkts - 1 - num_not_send - j] =
slave_bufs[i][nb_pkts - 1 - j];
}
num_tx_total += num_send;
num_not_send += slave_bufs_pkts[i] - num_send;
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
/* Print TX stats including update packets */
for (j = 0; j < slave_bufs_pkts[i]; j++) {
eth_h = rte_pktmbuf_mtod(slave_bufs[i][j], struct ether_hdr *);
mode6_debug("TX ARP:", eth_h, i, &burstnumberTX);
}
#endif
}
}
/* Send update packets on proper slaves */
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (update_bufs_pkts[i] > 0) {
num_send = rte_eth_tx_burst(i, bd_tx_q->queue_id, update_bufs[i],
update_bufs_pkts[i]);
for (j = num_send; j < update_bufs_pkts[i]; j++) {
rte_pktmbuf_free(update_bufs[i][j]);
}
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
for (j = 0; j < update_bufs_pkts[i]; j++) {
eth_h = rte_pktmbuf_mtod(update_bufs[i][j], struct ether_hdr *);
mode6_debug("TX ARPupd:", eth_h, i, &burstnumberTX);
}
#endif
}
}
/* Send non-ARP packets using tlb policy */
if (slave_bufs_pkts[RTE_MAX_ETHPORTS] > 0) {
num_send = bond_ethdev_tx_burst_tlb(queue,
slave_bufs[RTE_MAX_ETHPORTS],
slave_bufs_pkts[RTE_MAX_ETHPORTS]);
for (j = 0; j < slave_bufs_pkts[RTE_MAX_ETHPORTS]; j++) {
bufs[nb_pkts - 1 - num_not_send - j] =
slave_bufs[RTE_MAX_ETHPORTS][nb_pkts - 1 - j];
}
num_tx_total += num_send;
num_not_send += slave_bufs_pkts[RTE_MAX_ETHPORTS] - num_send;
}
return num_tx_total;
}
static uint16_t
bond_ethdev_tx_burst_balance(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct bond_dev_private *internals;
struct bond_tx_queue *bd_tx_q;
uint8_t num_of_slaves;
uint8_t slaves[RTE_MAX_ETHPORTS];
uint16_t num_tx_total = 0, num_tx_slave = 0, tx_fail_total = 0;
int i, op_slave_id;
struct rte_mbuf *slave_bufs[RTE_MAX_ETHPORTS][nb_pkts];
uint16_t slave_nb_pkts[RTE_MAX_ETHPORTS] = { 0 };
bd_tx_q = (struct bond_tx_queue *)queue;
internals = bd_tx_q->dev_private;
/* Copy slave list to protect against slave up/down changes during tx
* bursting */
num_of_slaves = internals->active_slave_count;
memcpy(slaves, internals->active_slaves,
sizeof(internals->active_slaves[0]) * num_of_slaves);
if (num_of_slaves < 1)
return num_tx_total;
/* Populate slaves mbuf with the packets which are to be sent on it */
for (i = 0; i < nb_pkts; i++) {
/* Select output slave using hash based on xmit policy */
op_slave_id = internals->xmit_hash(bufs[i], num_of_slaves);
/* Populate slave mbuf arrays with mbufs for that slave */
slave_bufs[op_slave_id][slave_nb_pkts[op_slave_id]++] = bufs[i];
}
/* Send packet burst on each slave device */
for (i = 0; i < num_of_slaves; i++) {
if (slave_nb_pkts[i] > 0) {
num_tx_slave = rte_eth_tx_burst(slaves[i], bd_tx_q->queue_id,
slave_bufs[i], slave_nb_pkts[i]);
/* if tx burst fails move packets to end of bufs */
if (unlikely(num_tx_slave < slave_nb_pkts[i])) {
int slave_tx_fail_count = slave_nb_pkts[i] - num_tx_slave;
tx_fail_total += slave_tx_fail_count;
memcpy(&bufs[nb_pkts - tx_fail_total],
&slave_bufs[i][num_tx_slave],
slave_tx_fail_count * sizeof(bufs[0]));
}
num_tx_total += num_tx_slave;
}
}
return num_tx_total;
}
static uint16_t
bond_ethdev_tx_burst_8023ad(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct bond_dev_private *internals;
struct bond_tx_queue *bd_tx_q;
uint8_t num_of_slaves;
uint8_t slaves[RTE_MAX_ETHPORTS];
/* positions in slaves, not ID */
uint8_t distributing_offsets[RTE_MAX_ETHPORTS];
uint8_t distributing_count;
uint16_t num_tx_slave, num_tx_total = 0, num_tx_fail_total = 0;
uint16_t i, j, op_slave_idx;
const uint16_t buffs_size = nb_pkts + BOND_MODE_8023AX_SLAVE_TX_PKTS + 1;
/* Allocate additional packets in case 8023AD mode. */
struct rte_mbuf *slave_bufs[RTE_MAX_ETHPORTS][buffs_size];
void *slow_pkts[BOND_MODE_8023AX_SLAVE_TX_PKTS] = { NULL };
/* Total amount of packets in slave_bufs */
uint16_t slave_nb_pkts[RTE_MAX_ETHPORTS] = { 0 };
/* Slow packets placed in each slave */
uint8_t slave_slow_nb_pkts[RTE_MAX_ETHPORTS] = { 0 };
bd_tx_q = (struct bond_tx_queue *)queue;
internals = bd_tx_q->dev_private;
/* Copy slave list to protect against slave up/down changes during tx
* bursting */
num_of_slaves = internals->active_slave_count;
if (num_of_slaves < 1)
return num_tx_total;
memcpy(slaves, internals->active_slaves, sizeof(slaves[0]) * num_of_slaves);
distributing_count = 0;
for (i = 0; i < num_of_slaves; i++) {
struct port *port = &mode_8023ad_ports[slaves[i]];
slave_slow_nb_pkts[i] = rte_ring_dequeue_burst(port->tx_ring,
slow_pkts, BOND_MODE_8023AX_SLAVE_TX_PKTS);
slave_nb_pkts[i] = slave_slow_nb_pkts[i];
for (j = 0; j < slave_slow_nb_pkts[i]; j++)
slave_bufs[i][j] = slow_pkts[j];
if (ACTOR_STATE(port, DISTRIBUTING))
distributing_offsets[distributing_count++] = i;
}
if (likely(distributing_count > 0)) {
/* Populate slaves mbuf with the packets which are to be sent on it */
for (i = 0; i < nb_pkts; i++) {
/* Select output slave using hash based on xmit policy */
op_slave_idx = internals->xmit_hash(bufs[i], distributing_count);
/* Populate slave mbuf arrays with mbufs for that slave. Use only
* slaves that are currently distributing. */
uint8_t slave_offset = distributing_offsets[op_slave_idx];
slave_bufs[slave_offset][slave_nb_pkts[slave_offset]] = bufs[i];
slave_nb_pkts[slave_offset]++;
}
}
/* Send packet burst on each slave device */
for (i = 0; i < num_of_slaves; i++) {
if (slave_nb_pkts[i] == 0)
continue;
num_tx_slave = rte_eth_tx_burst(slaves[i], bd_tx_q->queue_id,
slave_bufs[i], slave_nb_pkts[i]);
/* If tx burst fails drop slow packets */
for ( ; num_tx_slave < slave_slow_nb_pkts[i]; num_tx_slave++)
rte_pktmbuf_free(slave_bufs[i][num_tx_slave]);
num_tx_total += num_tx_slave - slave_slow_nb_pkts[i];
num_tx_fail_total += slave_nb_pkts[i] - num_tx_slave;
/* If tx burst fails move packets to end of bufs */
if (unlikely(num_tx_slave < slave_nb_pkts[i])) {
uint16_t j = nb_pkts - num_tx_fail_total;
for ( ; num_tx_slave < slave_nb_pkts[i]; j++, num_tx_slave++)
bufs[j] = slave_bufs[i][num_tx_slave];
}
}
return num_tx_total;
}
static uint16_t
bond_ethdev_tx_burst_broadcast(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct bond_dev_private *internals;
struct bond_tx_queue *bd_tx_q;
uint8_t tx_failed_flag = 0, num_of_slaves;
uint8_t slaves[RTE_MAX_ETHPORTS];
uint16_t max_nb_of_tx_pkts = 0;
int slave_tx_total[RTE_MAX_ETHPORTS];
int i, most_successful_tx_slave = -1;
bd_tx_q = (struct bond_tx_queue *)queue;
internals = bd_tx_q->dev_private;
/* Copy slave list to protect against slave up/down changes during tx
* bursting */
num_of_slaves = internals->active_slave_count;
memcpy(slaves, internals->active_slaves,
sizeof(internals->active_slaves[0]) * num_of_slaves);
if (num_of_slaves < 1)
return 0;
/* Increment reference count on mbufs */
for (i = 0; i < nb_pkts; i++)
rte_mbuf_refcnt_update(bufs[i], num_of_slaves - 1);
/* Transmit burst on each active slave */
for (i = 0; i < num_of_slaves; i++) {
slave_tx_total[i] = rte_eth_tx_burst(slaves[i], bd_tx_q->queue_id,
bufs, nb_pkts);
if (unlikely(slave_tx_total[i] < nb_pkts))
tx_failed_flag = 1;
/* record the value and slave index for the slave which transmits the
* maximum number of packets */
if (slave_tx_total[i] > max_nb_of_tx_pkts) {
max_nb_of_tx_pkts = slave_tx_total[i];
most_successful_tx_slave = i;
}
}
/* if slaves fail to transmit packets from burst, the calling application
* is not expected to know about multiple references to packets so we must
* handle failures of all packets except those of the most successful slave
*/
if (unlikely(tx_failed_flag))
for (i = 0; i < num_of_slaves; i++)
if (i != most_successful_tx_slave)
while (slave_tx_total[i] < nb_pkts)
rte_pktmbuf_free(bufs[slave_tx_total[i]++]);
return max_nb_of_tx_pkts;
}
void
link_properties_set(struct rte_eth_dev *bonded_eth_dev,
struct rte_eth_link *slave_dev_link)
{
struct rte_eth_link *bonded_dev_link = &bonded_eth_dev->data->dev_link;
struct bond_dev_private *internals = bonded_eth_dev->data->dev_private;
if (slave_dev_link->link_status &&
bonded_eth_dev->data->dev_started) {
bonded_dev_link->link_duplex = slave_dev_link->link_duplex;
bonded_dev_link->link_speed = slave_dev_link->link_speed;
internals->link_props_set = 1;
}
}
void
link_properties_reset(struct rte_eth_dev *bonded_eth_dev)
{
struct bond_dev_private *internals = bonded_eth_dev->data->dev_private;
memset(&(bonded_eth_dev->data->dev_link), 0,
sizeof(bonded_eth_dev->data->dev_link));
internals->link_props_set = 0;
}
int
link_properties_valid(struct rte_eth_link *bonded_dev_link,
struct rte_eth_link *slave_dev_link)
{
if (bonded_dev_link->link_duplex != slave_dev_link->link_duplex ||
bonded_dev_link->link_speed != slave_dev_link->link_speed)
return -1;
return 0;
}
int
mac_address_get(struct rte_eth_dev *eth_dev, struct ether_addr *dst_mac_addr)
{
struct ether_addr *mac_addr;
if (eth_dev == NULL) {
RTE_LOG(ERR, PMD, "%s: NULL pointer eth_dev specified\n", __func__);
return -1;
}
if (dst_mac_addr == NULL) {
RTE_LOG(ERR, PMD, "%s: NULL pointer MAC specified\n", __func__);
return -1;
}
mac_addr = eth_dev->data->mac_addrs;
ether_addr_copy(mac_addr, dst_mac_addr);
return 0;
}
int
mac_address_set(struct rte_eth_dev *eth_dev, struct ether_addr *new_mac_addr)
{
struct ether_addr *mac_addr;
if (eth_dev == NULL) {
RTE_BOND_LOG(ERR, "NULL pointer eth_dev specified");
return -1;
}
if (new_mac_addr == NULL) {
RTE_BOND_LOG(ERR, "NULL pointer MAC specified");
return -1;
}
mac_addr = eth_dev->data->mac_addrs;
/* If new MAC is different to current MAC then update */
if (memcmp(mac_addr, new_mac_addr, sizeof(*mac_addr)) != 0)
memcpy(mac_addr, new_mac_addr, sizeof(*mac_addr));
return 0;
}
int
mac_address_slaves_update(struct rte_eth_dev *bonded_eth_dev)
{
struct bond_dev_private *internals = bonded_eth_dev->data->dev_private;
int i;
/* Update slave devices MAC addresses */
if (internals->slave_count < 1)
return -1;
switch (internals->mode) {
case BONDING_MODE_ROUND_ROBIN:
case BONDING_MODE_BALANCE:
case BONDING_MODE_BROADCAST:
for (i = 0; i < internals->slave_count; i++) {
if (mac_address_set(&rte_eth_devices[internals->slaves[i].port_id],
bonded_eth_dev->data->mac_addrs)) {
RTE_BOND_LOG(ERR, "Failed to update port Id %d MAC address",
internals->slaves[i].port_id);
return -1;
}
}
break;
case BONDING_MODE_8023AD:
bond_mode_8023ad_mac_address_update(bonded_eth_dev);
break;
case BONDING_MODE_ACTIVE_BACKUP:
case BONDING_MODE_TLB:
case BONDING_MODE_ALB:
default:
for (i = 0; i < internals->slave_count; i++) {
if (internals->slaves[i].port_id ==
internals->current_primary_port) {
if (mac_address_set(&rte_eth_devices[internals->primary_port],
bonded_eth_dev->data->mac_addrs)) {
RTE_BOND_LOG(ERR, "Failed to update port Id %d MAC address",
internals->current_primary_port);
return -1;
}
} else {
if (mac_address_set(
&rte_eth_devices[internals->slaves[i].port_id],
&internals->slaves[i].persisted_mac_addr)) {
RTE_BOND_LOG(ERR, "Failed to update port Id %d MAC address",
internals->slaves[i].port_id);
return -1;
}
}
}
}
return 0;
}
int
bond_ethdev_mode_set(struct rte_eth_dev *eth_dev, int mode)
{
struct bond_dev_private *internals;
internals = eth_dev->data->dev_private;
switch (mode) {
case BONDING_MODE_ROUND_ROBIN:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_round_robin;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst;
break;
case BONDING_MODE_ACTIVE_BACKUP:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_active_backup;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst_active_backup;
break;
case BONDING_MODE_BALANCE:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_balance;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst;
break;
case BONDING_MODE_BROADCAST:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_broadcast;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst;
break;
case BONDING_MODE_8023AD:
if (bond_mode_8023ad_enable(eth_dev) != 0)
return -1;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst_8023ad;
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_8023ad;
RTE_LOG(WARNING, PMD,
"Using mode 4, it is necessary to do TX burst and RX burst "
"at least every 100ms.\n");
break;
case BONDING_MODE_TLB:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_tlb;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst_active_backup;
break;
case BONDING_MODE_ALB:
if (bond_mode_alb_enable(eth_dev) != 0)
return -1;
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_alb;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst_alb;
break;
default:
return -1;
}
internals->mode = mode;
return 0;
}
int
slave_configure(struct rte_eth_dev *bonded_eth_dev,
struct rte_eth_dev *slave_eth_dev)
{
struct bond_rx_queue *bd_rx_q;
struct bond_tx_queue *bd_tx_q;
uint16_t old_nb_tx_queues = slave_eth_dev->data->nb_tx_queues;
uint16_t old_nb_rx_queues = slave_eth_dev->data->nb_rx_queues;
int errval;
uint16_t q_id;
/* Stop slave */
rte_eth_dev_stop(slave_eth_dev->data->port_id);
/* Enable interrupts on slave device if supported */
if (slave_eth_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)
slave_eth_dev->data->dev_conf.intr_conf.lsc = 1;
/* If RSS is enabled for bonding, try to enable it for slaves */
if (bonded_eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
if (bonded_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key_len
!= 0) {
slave_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key_len =
bonded_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key_len;
slave_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key =
bonded_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key;
} else {
slave_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL;
}
slave_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf =
bonded_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
slave_eth_dev->data->dev_conf.rxmode.mq_mode =
bonded_eth_dev->data->dev_conf.rxmode.mq_mode;
}
/* Configure device */
errval = rte_eth_dev_configure(slave_eth_dev->data->port_id,
bonded_eth_dev->data->nb_rx_queues,
bonded_eth_dev->data->nb_tx_queues,
&(slave_eth_dev->data->dev_conf));
if (errval != 0) {
RTE_BOND_LOG(ERR, "Cannot configure slave device: port %u , err (%d)",
slave_eth_dev->data->port_id, errval);
return errval;
}
/* Setup Rx Queues */
/* Use existing queues, if any */
for (q_id = old_nb_rx_queues;
q_id < bonded_eth_dev->data->nb_rx_queues; q_id++) {
bd_rx_q = (struct bond_rx_queue *)bonded_eth_dev->data->rx_queues[q_id];
errval = rte_eth_rx_queue_setup(slave_eth_dev->data->port_id, q_id,
bd_rx_q->nb_rx_desc,
rte_eth_dev_socket_id(slave_eth_dev->data->port_id),
&(bd_rx_q->rx_conf), bd_rx_q->mb_pool);
if (errval != 0) {
RTE_BOND_LOG(ERR,
"rte_eth_rx_queue_setup: port=%d queue_id %d, err (%d)",
slave_eth_dev->data->port_id, q_id, errval);
return errval;
}
}
/* Setup Tx Queues */
/* Use existing queues, if any */
for (q_id = old_nb_tx_queues;
q_id < bonded_eth_dev->data->nb_tx_queues; q_id++) {
bd_tx_q = (struct bond_tx_queue *)bonded_eth_dev->data->tx_queues[q_id];
errval = rte_eth_tx_queue_setup(slave_eth_dev->data->port_id, q_id,
bd_tx_q->nb_tx_desc,
rte_eth_dev_socket_id(slave_eth_dev->data->port_id),
&bd_tx_q->tx_conf);
if (errval != 0) {
RTE_BOND_LOG(ERR,
"rte_eth_tx_queue_setup: port=%d queue_id %d, err (%d)",
slave_eth_dev->data->port_id, q_id, errval);
return errval;
}
}
/* Start device */
errval = rte_eth_dev_start(slave_eth_dev->data->port_id);
if (errval != 0) {
RTE_BOND_LOG(ERR, "rte_eth_dev_start: port=%u, err (%d)",
slave_eth_dev->data->port_id, errval);
return -1;
}
/* If RSS is enabled for bonding, synchronize RETA */
if (bonded_eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) {
int i;
struct bond_dev_private *internals;
internals = bonded_eth_dev->data->dev_private;
for (i = 0; i < internals->slave_count; i++) {
if (internals->slaves[i].port_id == slave_eth_dev->data->port_id) {
errval = rte_eth_dev_rss_reta_update(
slave_eth_dev->data->port_id,
&internals->reta_conf[0],
internals->slaves[i].reta_size);
if (errval != 0) {
RTE_LOG(WARNING, PMD,
"rte_eth_dev_rss_reta_update on slave port %d fails (err %d)."
" RSS Configuration for bonding may be inconsistent.\n",
slave_eth_dev->data->port_id, errval);
}
break;
}
}
}
/* If lsc interrupt is set, check initial slave's link status */
if (slave_eth_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)
bond_ethdev_lsc_event_callback(slave_eth_dev->data->port_id,
RTE_ETH_EVENT_INTR_LSC, &bonded_eth_dev->data->port_id);
return 0;
}
void
slave_remove(struct bond_dev_private *internals,
struct rte_eth_dev *slave_eth_dev)
{
uint8_t i;
for (i = 0; i < internals->slave_count; i++)
if (internals->slaves[i].port_id ==
slave_eth_dev->data->port_id)
break;
if (i < (internals->slave_count - 1))
memmove(&internals->slaves[i], &internals->slaves[i + 1],
sizeof(internals->slaves[0]) *
(internals->slave_count - i - 1));
internals->slave_count--;
}
static void
bond_ethdev_slave_link_status_change_monitor(void *cb_arg);
void
slave_add(struct bond_dev_private *internals,
struct rte_eth_dev *slave_eth_dev)
{
struct bond_slave_details *slave_details =
&internals->slaves[internals->slave_count];
slave_details->port_id = slave_eth_dev->data->port_id;
slave_details->last_link_status = 0;
/* Mark slave devices that don't support interrupts so we can
* compensate when we start the bond
*/
if (!(slave_eth_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)) {
slave_details->link_status_poll_enabled = 1;
}
slave_details->link_status_wait_to_complete = 0;
/* clean tlb_last_obytes when adding port for bonding device */
memcpy(&(slave_details->persisted_mac_addr), slave_eth_dev->data->mac_addrs,
sizeof(struct ether_addr));
}
void
bond_ethdev_primary_set(struct bond_dev_private *internals,
uint8_t slave_port_id)
{
int i;
if (internals->active_slave_count < 1)
internals->current_primary_port = slave_port_id;
else
/* Search bonded device slave ports for new proposed primary port */
for (i = 0; i < internals->active_slave_count; i++) {
if (internals->active_slaves[i] == slave_port_id)
internals->current_primary_port = slave_port_id;
}
}
static void
bond_ethdev_promiscuous_enable(struct rte_eth_dev *eth_dev);
static int
bond_ethdev_start(struct rte_eth_dev *eth_dev)
{
struct bond_dev_private *internals;
int i;
/* slave eth dev will be started by bonded device */
if (check_for_bonded_ethdev(eth_dev)) {
RTE_BOND_LOG(ERR, "User tried to explicitly start a slave eth_dev (%d)",
eth_dev->data->port_id);
return -1;
}
eth_dev->data->dev_link.link_status = ETH_LINK_DOWN;
eth_dev->data->dev_started = 1;
internals = eth_dev->data->dev_private;
if (internals->slave_count == 0) {
RTE_BOND_LOG(ERR, "Cannot start port since there are no slave devices");
return -1;
}
if (internals->user_defined_mac == 0) {
struct ether_addr *new_mac_addr = NULL;
for (i = 0; i < internals->slave_count; i++)
if (internals->slaves[i].port_id == internals->primary_port)
new_mac_addr = &internals->slaves[i].persisted_mac_addr;
if (new_mac_addr == NULL)
return -1;
if (mac_address_set(eth_dev, new_mac_addr) != 0) {
RTE_BOND_LOG(ERR, "bonded port (%d) failed to update MAC address",
eth_dev->data->port_id);
return -1;
}
}
/* Update all slave devices MACs*/
if (mac_address_slaves_update(eth_dev) != 0)
return -1;
/* If bonded device is configure in promiscuous mode then re-apply config */
if (internals->promiscuous_en)
bond_ethdev_promiscuous_enable(eth_dev);
/* Reconfigure each slave device if starting bonded device */
for (i = 0; i < internals->slave_count; i++) {
if (slave_configure(eth_dev,
&(rte_eth_devices[internals->slaves[i].port_id])) != 0) {
RTE_BOND_LOG(ERR,
"bonded port (%d) failed to reconfigure slave device (%d)",
eth_dev->data->port_id, internals->slaves[i].port_id);
return -1;
}
/* We will need to poll for link status if any slave doesn't
* support interrupts
*/
if (internals->slaves[i].link_status_poll_enabled)
internals->link_status_polling_enabled = 1;
}
/* start polling if needed */
if (internals->link_status_polling_enabled) {
rte_eal_alarm_set(
internals->link_status_polling_interval_ms * 1000,
bond_ethdev_slave_link_status_change_monitor,
(void *)&rte_eth_devices[internals->port_id]);
}
if (internals->user_defined_primary_port)
bond_ethdev_primary_set(internals, internals->primary_port);
if (internals->mode == BONDING_MODE_8023AD)
bond_mode_8023ad_start(eth_dev);
if (internals->mode == BONDING_MODE_TLB ||
internals->mode == BONDING_MODE_ALB)
bond_tlb_enable(internals);
return 0;
}
static void
bond_ethdev_free_queues(struct rte_eth_dev *dev)
{
uint8_t i;
if (dev->data->rx_queues != NULL) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rte_free(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
}
if (dev->data->tx_queues != NULL) {
for (i = 0; i < dev->data->nb_tx_queues; i++) {
rte_free(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
}
void
bond_ethdev_stop(struct rte_eth_dev *eth_dev)
{
struct bond_dev_private *internals = eth_dev->data->dev_private;
uint8_t i;
if (internals->mode == BONDING_MODE_8023AD) {
struct port *port;
void *pkt = NULL;
bond_mode_8023ad_stop(eth_dev);
/* Discard all messages to/from mode 4 state machines */
for (i = 0; i < internals->active_slave_count; i++) {
port = &mode_8023ad_ports[internals->active_slaves[i]];
RTE_ASSERT(port->rx_ring != NULL);
while (rte_ring_dequeue(port->rx_ring, &pkt) != -ENOENT)
rte_pktmbuf_free(pkt);
RTE_ASSERT(port->tx_ring != NULL);
while (rte_ring_dequeue(port->tx_ring, &pkt) != -ENOENT)
rte_pktmbuf_free(pkt);
}
}
if (internals->mode == BONDING_MODE_TLB ||
internals->mode == BONDING_MODE_ALB) {
bond_tlb_disable(internals);
for (i = 0; i < internals->active_slave_count; i++)
tlb_last_obytets[internals->active_slaves[i]] = 0;
}
internals->active_slave_count = 0;
internals->link_status_polling_enabled = 0;
for (i = 0; i < internals->slave_count; i++)
internals->slaves[i].last_link_status = 0;
eth_dev->data->dev_link.link_status = ETH_LINK_DOWN;
eth_dev->data->dev_started = 0;
}
void
bond_ethdev_close(struct rte_eth_dev *dev)
{
bond_ethdev_free_queues(dev);
}
/* forward declaration */
static int bond_ethdev_configure(struct rte_eth_dev *dev);
static void
bond_ethdev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct bond_dev_private *internals = dev->data->dev_private;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = internals->candidate_max_rx_pktlen ?
internals->candidate_max_rx_pktlen : 2048;
dev_info->max_rx_queues = (uint16_t)128;
dev_info->max_tx_queues = (uint16_t)512;
dev_info->min_rx_bufsize = 0;
dev_info->pci_dev = NULL;
dev_info->rx_offload_capa = internals->rx_offload_capa;
dev_info->tx_offload_capa = internals->tx_offload_capa;
dev_info->flow_type_rss_offloads = internals->flow_type_rss_offloads;
dev_info->reta_size = internals->reta_size;
}
static int
bond_ethdev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
uint16_t nb_rx_desc, unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool)
{
struct bond_rx_queue *bd_rx_q = (struct bond_rx_queue *)
rte_zmalloc_socket(NULL, sizeof(struct bond_rx_queue),
0, dev->data->numa_node);
if (bd_rx_q == NULL)
return -1;
bd_rx_q->queue_id = rx_queue_id;
bd_rx_q->dev_private = dev->data->dev_private;
bd_rx_q->nb_rx_desc = nb_rx_desc;
memcpy(&(bd_rx_q->rx_conf), rx_conf, sizeof(struct rte_eth_rxconf));
bd_rx_q->mb_pool = mb_pool;
dev->data->rx_queues[rx_queue_id] = bd_rx_q;
return 0;
}
static int
bond_ethdev_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
uint16_t nb_tx_desc, unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)
rte_zmalloc_socket(NULL, sizeof(struct bond_tx_queue),
0, dev->data->numa_node);
if (bd_tx_q == NULL)
return -1;
bd_tx_q->queue_id = tx_queue_id;
bd_tx_q->dev_private = dev->data->dev_private;
bd_tx_q->nb_tx_desc = nb_tx_desc;
memcpy(&(bd_tx_q->tx_conf), tx_conf, sizeof(bd_tx_q->tx_conf));
dev->data->tx_queues[tx_queue_id] = bd_tx_q;
return 0;
}
static void
bond_ethdev_rx_queue_release(void *queue)
{
if (queue == NULL)
return;
rte_free(queue);
}
static void
bond_ethdev_tx_queue_release(void *queue)
{
if (queue == NULL)
return;
rte_free(queue);
}
static void
bond_ethdev_slave_link_status_change_monitor(void *cb_arg)
{
struct rte_eth_dev *bonded_ethdev, *slave_ethdev;
struct bond_dev_private *internals;
/* Default value for polling slave found is true as we don't want to
* disable the polling thread if we cannot get the lock */
int i, polling_slave_found = 1;
if (cb_arg == NULL)
return;
bonded_ethdev = (struct rte_eth_dev *)cb_arg;
internals = (struct bond_dev_private *)bonded_ethdev->data->dev_private;
if (!bonded_ethdev->data->dev_started ||
!internals->link_status_polling_enabled)
return;
/* If device is currently being configured then don't check slaves link
* status, wait until next period */
if (rte_spinlock_trylock(&internals->lock)) {
if (internals->slave_count > 0)
polling_slave_found = 0;
for (i = 0; i < internals->slave_count; i++) {
if (!internals->slaves[i].link_status_poll_enabled)
continue;
slave_ethdev = &rte_eth_devices[internals->slaves[i].port_id];
polling_slave_found = 1;
/* Update slave link status */
(*slave_ethdev->dev_ops->link_update)(slave_ethdev,
internals->slaves[i].link_status_wait_to_complete);
/* if link status has changed since last checked then call lsc
* event callback */
if (slave_ethdev->data->dev_link.link_status !=
internals->slaves[i].last_link_status) {
internals->slaves[i].last_link_status =
slave_ethdev->data->dev_link.link_status;
bond_ethdev_lsc_event_callback(internals->slaves[i].port_id,
RTE_ETH_EVENT_INTR_LSC,
&bonded_ethdev->data->port_id);
}
}
rte_spinlock_unlock(&internals->lock);
}
if (polling_slave_found)
/* Set alarm to continue monitoring link status of slave ethdev's */
rte_eal_alarm_set(internals->link_status_polling_interval_ms * 1000,
bond_ethdev_slave_link_status_change_monitor, cb_arg);
}
static int
bond_ethdev_link_update(struct rte_eth_dev *bonded_eth_dev,
int wait_to_complete)
{
struct bond_dev_private *internals = bonded_eth_dev->data->dev_private;
if (!bonded_eth_dev->data->dev_started ||
internals->active_slave_count == 0) {
bonded_eth_dev->data->dev_link.link_status = ETH_LINK_DOWN;
return 0;
} else {
struct rte_eth_dev *slave_eth_dev;
int i, link_up = 0;
for (i = 0; i < internals->active_slave_count; i++) {
slave_eth_dev = &rte_eth_devices[internals->active_slaves[i]];
(*slave_eth_dev->dev_ops->link_update)(slave_eth_dev,
wait_to_complete);
if (slave_eth_dev->data->dev_link.link_status == ETH_LINK_UP) {
link_up = 1;
break;
}
}
bonded_eth_dev->data->dev_link.link_status = link_up;
}
return 0;
}
static void
bond_ethdev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct bond_dev_private *internals = dev->data->dev_private;
struct rte_eth_stats slave_stats;
int i, j;
for (i = 0; i < internals->slave_count; i++) {
rte_eth_stats_get(internals->slaves[i].port_id, &slave_stats);
stats->ipackets += slave_stats.ipackets;
stats->opackets += slave_stats.opackets;
stats->ibytes += slave_stats.ibytes;
stats->obytes += slave_stats.obytes;
stats->imissed += slave_stats.imissed;
stats->ierrors += slave_stats.ierrors;
stats->oerrors += slave_stats.oerrors;
stats->rx_nombuf += slave_stats.rx_nombuf;
for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) {
stats->q_ipackets[j] += slave_stats.q_ipackets[j];
stats->q_opackets[j] += slave_stats.q_opackets[j];
stats->q_ibytes[j] += slave_stats.q_ibytes[j];
stats->q_obytes[j] += slave_stats.q_obytes[j];
stats->q_errors[j] += slave_stats.q_errors[j];
}
}
}
static void
bond_ethdev_stats_reset(struct rte_eth_dev *dev)
{
struct bond_dev_private *internals = dev->data->dev_private;
int i;
for (i = 0; i < internals->slave_count; i++)
rte_eth_stats_reset(internals->slaves[i].port_id);
}
static void
bond_ethdev_promiscuous_enable(struct rte_eth_dev *eth_dev)
{
struct bond_dev_private *internals = eth_dev->data->dev_private;
int i;
internals->promiscuous_en = 1;
switch (internals->mode) {
/* Promiscuous mode is propagated to all slaves */
case BONDING_MODE_ROUND_ROBIN:
case BONDING_MODE_BALANCE:
case BONDING_MODE_BROADCAST:
for (i = 0; i < internals->slave_count; i++)
rte_eth_promiscuous_enable(internals->slaves[i].port_id);
break;
/* In mode4 promiscus mode is managed when slave is added/removed */
case BONDING_MODE_8023AD:
break;
/* Promiscuous mode is propagated only to primary slave */
case BONDING_MODE_ACTIVE_BACKUP:
case BONDING_MODE_TLB:
case BONDING_MODE_ALB:
default:
rte_eth_promiscuous_enable(internals->current_primary_port);
}
}
static void
bond_ethdev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct bond_dev_private *internals = dev->data->dev_private;
int i;
internals->promiscuous_en = 0;
switch (internals->mode) {
/* Promiscuous mode is propagated to all slaves */
case BONDING_MODE_ROUND_ROBIN:
case BONDING_MODE_BALANCE:
case BONDING_MODE_BROADCAST:
for (i = 0; i < internals->slave_count; i++)
rte_eth_promiscuous_disable(internals->slaves[i].port_id);
break;
/* In mode4 promiscus mode is set managed when slave is added/removed */
case BONDING_MODE_8023AD:
break;
/* Promiscuous mode is propagated only to primary slave */
case BONDING_MODE_ACTIVE_BACKUP:
case BONDING_MODE_TLB:
case BONDING_MODE_ALB:
default:
rte_eth_promiscuous_disable(internals->current_primary_port);
}
}
static void
bond_ethdev_delayed_lsc_propagation(void *arg)
{
if (arg == NULL)
return;
_rte_eth_dev_callback_process((struct rte_eth_dev *)arg,
RTE_ETH_EVENT_INTR_LSC);
}
void
bond_ethdev_lsc_event_callback(uint8_t port_id, enum rte_eth_event_type type,
void *param)
{
struct rte_eth_dev *bonded_eth_dev, *slave_eth_dev;
struct bond_dev_private *internals;
struct rte_eth_link link;
int i, valid_slave = 0;
uint8_t active_pos;
uint8_t lsc_flag = 0;
if (type != RTE_ETH_EVENT_INTR_LSC || param == NULL)
return;
bonded_eth_dev = &rte_eth_devices[*(uint8_t *)param];
slave_eth_dev = &rte_eth_devices[port_id];
if (check_for_bonded_ethdev(bonded_eth_dev))
return;
internals = bonded_eth_dev->data->dev_private;
/* If the device isn't started don't handle interrupts */
if (!bonded_eth_dev->data->dev_started)
return;
/* verify that port_id is a valid slave of bonded port */
for (i = 0; i < internals->slave_count; i++) {
if (internals->slaves[i].port_id == port_id) {
valid_slave = 1;
break;
}
}
if (!valid_slave)
return;
/* Search for port in active port list */
active_pos = find_slave_by_id(internals->active_slaves,
internals->active_slave_count, port_id);
rte_eth_link_get_nowait(port_id, &link);
if (link.link_status) {
if (active_pos < internals->active_slave_count)
return;
/* if no active slave ports then set this port to be primary port */
if (internals->active_slave_count < 1) {
/* If first active slave, then change link status */
bonded_eth_dev->data->dev_link.link_status = ETH_LINK_UP;
internals->current_primary_port = port_id;
lsc_flag = 1;
mac_address_slaves_update(bonded_eth_dev);
/* Inherit eth dev link properties from first active slave */
link_properties_set(bonded_eth_dev,
&(slave_eth_dev->data->dev_link));
}
activate_slave(bonded_eth_dev, port_id);
/* If user has defined the primary port then default to using it */
if (internals->user_defined_primary_port &&
internals->primary_port == port_id)
bond_ethdev_primary_set(internals, port_id);
} else {
if (active_pos == internals->active_slave_count)
return;
/* Remove from active slave list */
deactivate_slave(bonded_eth_dev, port_id);
/* No active slaves, change link status to down and reset other
* link properties */
if (internals->active_slave_count < 1) {
lsc_flag = 1;
bonded_eth_dev->data->dev_link.link_status = ETH_LINK_DOWN;
link_properties_reset(bonded_eth_dev);
}
/* Update primary id, take first active slave from list or if none
* available set to -1 */
if (port_id == internals->current_primary_port) {
if (internals->active_slave_count > 0)
bond_ethdev_primary_set(internals,
internals->active_slaves[0]);
else
internals->current_primary_port = internals->primary_port;
}
}
if (lsc_flag) {
/* Cancel any possible outstanding interrupts if delays are enabled */
if (internals->link_up_delay_ms > 0 ||
internals->link_down_delay_ms > 0)
rte_eal_alarm_cancel(bond_ethdev_delayed_lsc_propagation,
bonded_eth_dev);
if (bonded_eth_dev->data->dev_link.link_status) {
if (internals->link_up_delay_ms > 0)
rte_eal_alarm_set(internals->link_up_delay_ms * 1000,
bond_ethdev_delayed_lsc_propagation,
(void *)bonded_eth_dev);
else
_rte_eth_dev_callback_process(bonded_eth_dev,
RTE_ETH_EVENT_INTR_LSC);
} else {
if (internals->link_down_delay_ms > 0)
rte_eal_alarm_set(internals->link_down_delay_ms * 1000,
bond_ethdev_delayed_lsc_propagation,
(void *)bonded_eth_dev);
else
_rte_eth_dev_callback_process(bonded_eth_dev,
RTE_ETH_EVENT_INTR_LSC);
}
}
}
static int
bond_ethdev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size)
{
unsigned i, j;
int result = 0;
int slave_reta_size;
unsigned reta_count;
struct bond_dev_private *internals = dev->data->dev_private;
if (reta_size != internals->reta_size)
return -EINVAL;
/* Copy RETA table */
reta_count = reta_size / RTE_RETA_GROUP_SIZE;
for (i = 0; i < reta_count; i++) {
internals->reta_conf[i].mask = reta_conf[i].mask;
for (j = 0; j < RTE_RETA_GROUP_SIZE; j++)
if ((reta_conf[i].mask >> j) & 0x01)
internals->reta_conf[i].reta[j] = reta_conf[i].reta[j];
}
/* Fill rest of array */
for (; i < RTE_DIM(internals->reta_conf); i += reta_count)
memcpy(&internals->reta_conf[i], &internals->reta_conf[0],
sizeof(internals->reta_conf[0]) * reta_count);
/* Propagate RETA over slaves */
for (i = 0; i < internals->slave_count; i++) {
slave_reta_size = internals->slaves[i].reta_size;
result = rte_eth_dev_rss_reta_update(internals->slaves[i].port_id,
&internals->reta_conf[0], slave_reta_size);
if (result < 0)
return result;
}
return 0;
}
static int
bond_ethdev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size)
{
int i, j;
struct bond_dev_private *internals = dev->data->dev_private;
if (reta_size != internals->reta_size)
return -EINVAL;
/* Copy RETA table */
for (i = 0; i < reta_size / RTE_RETA_GROUP_SIZE; i++)
for (j = 0; j < RTE_RETA_GROUP_SIZE; j++)
if ((reta_conf[i].mask >> j) & 0x01)
reta_conf[i].reta[j] = internals->reta_conf[i].reta[j];
return 0;
}
static int
bond_ethdev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
int i, result = 0;
struct bond_dev_private *internals = dev->data->dev_private;
struct rte_eth_rss_conf bond_rss_conf;
memcpy(&bond_rss_conf, rss_conf, sizeof(struct rte_eth_rss_conf));
bond_rss_conf.rss_hf &= internals->flow_type_rss_offloads;
if (bond_rss_conf.rss_hf != 0)
dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf = bond_rss_conf.rss_hf;
if (bond_rss_conf.rss_key && bond_rss_conf.rss_key_len <
sizeof(internals->rss_key)) {
if (bond_rss_conf.rss_key_len == 0)
bond_rss_conf.rss_key_len = 40;
internals->rss_key_len = bond_rss_conf.rss_key_len;
memcpy(internals->rss_key, bond_rss_conf.rss_key,
internals->rss_key_len);
}
for (i = 0; i < internals->slave_count; i++) {
result = rte_eth_dev_rss_hash_update(internals->slaves[i].port_id,
&bond_rss_conf);
if (result < 0)
return result;
}
return 0;
}
static int
bond_ethdev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct bond_dev_private *internals = dev->data->dev_private;
rss_conf->rss_hf = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
rss_conf->rss_key_len = internals->rss_key_len;
if (rss_conf->rss_key)
memcpy(rss_conf->rss_key, internals->rss_key, internals->rss_key_len);
return 0;
}
const struct eth_dev_ops default_dev_ops = {
.dev_start = bond_ethdev_start,
.dev_stop = bond_ethdev_stop,
.dev_close = bond_ethdev_close,
.dev_configure = bond_ethdev_configure,
.dev_infos_get = bond_ethdev_info,
.rx_queue_setup = bond_ethdev_rx_queue_setup,
.tx_queue_setup = bond_ethdev_tx_queue_setup,
.rx_queue_release = bond_ethdev_rx_queue_release,
.tx_queue_release = bond_ethdev_tx_queue_release,
.link_update = bond_ethdev_link_update,
.stats_get = bond_ethdev_stats_get,
.stats_reset = bond_ethdev_stats_reset,
.promiscuous_enable = bond_ethdev_promiscuous_enable,
.promiscuous_disable = bond_ethdev_promiscuous_disable,
.reta_update = bond_ethdev_rss_reta_update,
.reta_query = bond_ethdev_rss_reta_query,
.rss_hash_update = bond_ethdev_rss_hash_update,
.rss_hash_conf_get = bond_ethdev_rss_hash_conf_get
};
static int
bond_probe(const char *name, const char *params)
{
struct bond_dev_private *internals;
struct rte_kvargs *kvlist;
uint8_t bonding_mode, socket_id;
int arg_count, port_id;
RTE_LOG(INFO, EAL, "Initializing pmd_bond for %s\n", name);
kvlist = rte_kvargs_parse(params, pmd_bond_init_valid_arguments);
if (kvlist == NULL)
return -1;
/* Parse link bonding mode */
if (rte_kvargs_count(kvlist, PMD_BOND_MODE_KVARG) == 1) {
if (rte_kvargs_process(kvlist, PMD_BOND_MODE_KVARG,
&bond_ethdev_parse_slave_mode_kvarg,
&bonding_mode) != 0) {
RTE_LOG(ERR, EAL, "Invalid mode for bonded device %s\n",
name);
goto parse_error;
}
} else {
RTE_LOG(ERR, EAL, "Mode must be specified only once for bonded "
"device %s\n", name);
goto parse_error;
}
/* Parse socket id to create bonding device on */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_SOCKET_ID_KVARG);
if (arg_count == 1) {
if (rte_kvargs_process(kvlist, PMD_BOND_SOCKET_ID_KVARG,
&bond_ethdev_parse_socket_id_kvarg, &socket_id)
!= 0) {
RTE_LOG(ERR, EAL, "Invalid socket Id specified for "
"bonded device %s\n", name);
goto parse_error;
}
} else if (arg_count > 1) {
RTE_LOG(ERR, EAL, "Socket Id can be specified only once for "
"bonded device %s\n", name);
goto parse_error;
} else {
socket_id = rte_socket_id();
}
/* Create link bonding eth device */
port_id = rte_eth_bond_create(name, bonding_mode, socket_id);
if (port_id < 0) {
RTE_LOG(ERR, EAL, "Failed to create socket %s in mode %u on "
"socket %u.\n", name, bonding_mode, socket_id);
goto parse_error;
}
internals = rte_eth_devices[port_id].data->dev_private;
internals->kvlist = kvlist;
RTE_LOG(INFO, EAL, "Create bonded device %s on port %d in mode %u on "
"socket %u.\n", name, port_id, bonding_mode, socket_id);
return 0;
parse_error:
rte_kvargs_free(kvlist);
return -1;
}
static int
bond_remove(const char *name)
{
int ret;
if (name == NULL)
return -EINVAL;
RTE_LOG(INFO, EAL, "Uninitializing pmd_bond for %s\n", name);
/* free link bonding eth device */
ret = rte_eth_bond_free(name);
if (ret < 0)
RTE_LOG(ERR, EAL, "Failed to free %s\n", name);
return ret;
}
/* this part will resolve the slave portids after all the other pdev and vdev
* have been allocated */
static int
bond_ethdev_configure(struct rte_eth_dev *dev)
{
char *name = dev->data->name;
struct bond_dev_private *internals = dev->data->dev_private;
struct rte_kvargs *kvlist = internals->kvlist;
int arg_count;
uint8_t port_id = dev - rte_eth_devices;
static const uint8_t default_rss_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, 0x41, 0x67, 0x25, 0x3D,
0x43, 0xA3, 0x8F, 0xB0, 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, 0x6A, 0x42, 0xB7, 0x3B,
0xBE, 0xAC, 0x01, 0xFA
};
unsigned i, j;
/* If RSS is enabled, fill table and key with default values */
if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) {
dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key = internals->rss_key;
dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key_len = 0;
memcpy(internals->rss_key, default_rss_key, 40);
for (i = 0; i < RTE_DIM(internals->reta_conf); i++) {
internals->reta_conf[i].mask = ~0LL;
for (j = 0; j < RTE_RETA_GROUP_SIZE; j++)
internals->reta_conf[i].reta[j] = j % dev->data->nb_rx_queues;
}
}
/* set the max_rx_pktlen */
internals->max_rx_pktlen = internals->candidate_max_rx_pktlen;
/*
* if no kvlist, it means that this bonded device has been created
* through the bonding api.
*/
if (!kvlist)
return 0;
/* Parse MAC address for bonded device */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_MAC_ADDR_KVARG);
if (arg_count == 1) {
struct ether_addr bond_mac;
if (rte_kvargs_process(kvlist, PMD_BOND_MAC_ADDR_KVARG,
&bond_ethdev_parse_bond_mac_addr_kvarg, &bond_mac) < 0) {
RTE_LOG(INFO, EAL, "Invalid mac address for bonded device %s\n",
name);
return -1;
}
/* Set MAC address */
if (rte_eth_bond_mac_address_set(port_id, &bond_mac) != 0) {
RTE_LOG(ERR, EAL,
"Failed to set mac address on bonded device %s\n",
name);
return -1;
}
} else if (arg_count > 1) {
RTE_LOG(ERR, EAL,
"MAC address can be specified only once for bonded device %s\n",
name);
return -1;
}
/* Parse/set balance mode transmit policy */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_XMIT_POLICY_KVARG);
if (arg_count == 1) {
uint8_t xmit_policy;
if (rte_kvargs_process(kvlist, PMD_BOND_XMIT_POLICY_KVARG,
&bond_ethdev_parse_balance_xmit_policy_kvarg, &xmit_policy) !=
0) {
RTE_LOG(INFO, EAL,
"Invalid xmit policy specified for bonded device %s\n",
name);
return -1;
}
/* Set balance mode transmit policy*/
if (rte_eth_bond_xmit_policy_set(port_id, xmit_policy) != 0) {
RTE_LOG(ERR, EAL,
"Failed to set balance xmit policy on bonded device %s\n",
name);
return -1;
}
} else if (arg_count > 1) {
RTE_LOG(ERR, EAL,
"Transmit policy can be specified only once for bonded device"
" %s\n", name);
return -1;
}
/* Parse/add slave ports to bonded device */
if (rte_kvargs_count(kvlist, PMD_BOND_SLAVE_PORT_KVARG) > 0) {
struct bond_ethdev_slave_ports slave_ports;
unsigned i;
memset(&slave_ports, 0, sizeof(slave_ports));
if (rte_kvargs_process(kvlist, PMD_BOND_SLAVE_PORT_KVARG,
&bond_ethdev_parse_slave_port_kvarg, &slave_ports) != 0) {
RTE_LOG(ERR, EAL,
"Failed to parse slave ports for bonded device %s\n",
name);
return -1;
}
for (i = 0; i < slave_ports.slave_count; i++) {
if (rte_eth_bond_slave_add(port_id, slave_ports.slaves[i]) != 0) {
RTE_LOG(ERR, EAL,
"Failed to add port %d as slave to bonded device %s\n",
slave_ports.slaves[i], name);
}
}
} else {
RTE_LOG(INFO, EAL, "No slaves specified for bonded device %s\n", name);
return -1;
}
/* Parse/set primary slave port id*/
arg_count = rte_kvargs_count(kvlist, PMD_BOND_PRIMARY_SLAVE_KVARG);
if (arg_count == 1) {
uint8_t primary_slave_port_id;
if (rte_kvargs_process(kvlist,
PMD_BOND_PRIMARY_SLAVE_KVARG,
&bond_ethdev_parse_primary_slave_port_id_kvarg,
&primary_slave_port_id) < 0) {
RTE_LOG(INFO, EAL,
"Invalid primary slave port id specified for bonded device"
" %s\n", name);
return -1;
}
/* Set balance mode transmit policy*/
if (rte_eth_bond_primary_set(port_id, (uint8_t)primary_slave_port_id)
!= 0) {
RTE_LOG(ERR, EAL,
"Failed to set primary slave port %d on bonded device %s\n",
primary_slave_port_id, name);
return -1;
}
} else if (arg_count > 1) {
RTE_LOG(INFO, EAL,
"Primary slave can be specified only once for bonded device"
" %s\n", name);
return -1;
}
/* Parse link status monitor polling interval */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_LSC_POLL_PERIOD_KVARG);
if (arg_count == 1) {
uint32_t lsc_poll_interval_ms;
if (rte_kvargs_process(kvlist,
PMD_BOND_LSC_POLL_PERIOD_KVARG,
&bond_ethdev_parse_time_ms_kvarg,
&lsc_poll_interval_ms) < 0) {
RTE_LOG(INFO, EAL,
"Invalid lsc polling interval value specified for bonded"
" device %s\n", name);
return -1;
}
if (rte_eth_bond_link_monitoring_set(port_id, lsc_poll_interval_ms)
!= 0) {
RTE_LOG(ERR, EAL,
"Failed to set lsc monitor polling interval (%u ms) on"
" bonded device %s\n", lsc_poll_interval_ms, name);
return -1;
}
} else if (arg_count > 1) {
RTE_LOG(INFO, EAL,
"LSC polling interval can be specified only once for bonded"
" device %s\n", name);
return -1;
}
/* Parse link up interrupt propagation delay */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_LINK_UP_PROP_DELAY_KVARG);
if (arg_count == 1) {
uint32_t link_up_delay_ms;
if (rte_kvargs_process(kvlist,
PMD_BOND_LINK_UP_PROP_DELAY_KVARG,
&bond_ethdev_parse_time_ms_kvarg,
&link_up_delay_ms) < 0) {
RTE_LOG(INFO, EAL,
"Invalid link up propagation delay value specified for"
" bonded device %s\n", name);
return -1;
}
/* Set balance mode transmit policy*/
if (rte_eth_bond_link_up_prop_delay_set(port_id, link_up_delay_ms)
!= 0) {
RTE_LOG(ERR, EAL,
"Failed to set link up propagation delay (%u ms) on bonded"
" device %s\n", link_up_delay_ms, name);
return -1;
}
} else if (arg_count > 1) {
RTE_LOG(INFO, EAL,
"Link up propagation delay can be specified only once for"
" bonded device %s\n", name);
return -1;
}
/* Parse link down interrupt propagation delay */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_LINK_DOWN_PROP_DELAY_KVARG);
if (arg_count == 1) {
uint32_t link_down_delay_ms;
if (rte_kvargs_process(kvlist,
PMD_BOND_LINK_DOWN_PROP_DELAY_KVARG,
&bond_ethdev_parse_time_ms_kvarg,
&link_down_delay_ms) < 0) {
RTE_LOG(INFO, EAL,
"Invalid link down propagation delay value specified for"
" bonded device %s\n", name);
return -1;
}
/* Set balance mode transmit policy*/
if (rte_eth_bond_link_down_prop_delay_set(port_id, link_down_delay_ms)
!= 0) {
RTE_LOG(ERR, EAL,
"Failed to set link down propagation delay (%u ms) on"
" bonded device %s\n", link_down_delay_ms, name);
return -1;
}
} else if (arg_count > 1) {
RTE_LOG(INFO, EAL,
"Link down propagation delay can be specified only once for"
" bonded device %s\n", name);
return -1;
}
return 0;
}
static struct rte_vdev_driver bond_drv = {
.probe = bond_probe,
.remove = bond_remove,
};
DRIVER_REGISTER_VDEV(net_bonding, bond_drv);
DRIVER_REGISTER_PARAM_STRING(net_bonding,
"slave=<ifc> "
"primary=<ifc> "
"mode=[0-6] "
"xmit_policy=[l2 | l23 | l34] "
"socket_id=<int> "
"mac=<mac addr> "
"lsc_poll_period_ms=<int> "
"up_delay=<int> "
"down_delay=<int>");