eac901ce29
This makes struct rte_eth_dev independent of struct rte_pci_device by replacing it with a pointer to the generic struct rte_device. Signed-off-by: Jan Blunck <jblunck@infradead.org> Acked-by: Shreyansh Jain <shreyansh.jain@nxp.com>
1818 lines
51 KiB
C
1818 lines
51 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/queue.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_dev.h>
|
|
|
|
#include "e1000_logs.h"
|
|
#include "base/e1000_api.h"
|
|
#include "e1000_ethdev.h"
|
|
|
|
#define EM_EIAC 0x000DC
|
|
|
|
#define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
|
|
|
|
|
|
static int eth_em_configure(struct rte_eth_dev *dev);
|
|
static int eth_em_start(struct rte_eth_dev *dev);
|
|
static void eth_em_stop(struct rte_eth_dev *dev);
|
|
static void eth_em_close(struct rte_eth_dev *dev);
|
|
static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
|
|
static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
|
|
static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
|
|
static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
|
|
static int eth_em_link_update(struct rte_eth_dev *dev,
|
|
int wait_to_complete);
|
|
static void eth_em_stats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_stats *rte_stats);
|
|
static void eth_em_stats_reset(struct rte_eth_dev *dev);
|
|
static void eth_em_infos_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_dev_info *dev_info);
|
|
static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_fc_conf *fc_conf);
|
|
static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
|
|
struct rte_eth_fc_conf *fc_conf);
|
|
static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
|
|
static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
|
|
static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
|
|
static int eth_em_interrupt_action(struct rte_eth_dev *dev,
|
|
struct rte_intr_handle *handle);
|
|
static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
|
|
void *param);
|
|
|
|
static int em_hw_init(struct e1000_hw *hw);
|
|
static int em_hardware_init(struct e1000_hw *hw);
|
|
static void em_hw_control_acquire(struct e1000_hw *hw);
|
|
static void em_hw_control_release(struct e1000_hw *hw);
|
|
static void em_init_manageability(struct e1000_hw *hw);
|
|
static void em_release_manageability(struct e1000_hw *hw);
|
|
|
|
static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
|
|
|
|
static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
|
|
uint16_t vlan_id, int on);
|
|
static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
|
|
static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
|
|
static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
|
|
static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
|
|
static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
|
|
|
|
/*
|
|
static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
|
|
uint16_t vlan_id, int on);
|
|
*/
|
|
|
|
static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
|
|
static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
|
|
static void em_lsc_intr_disable(struct e1000_hw *hw);
|
|
static void em_rxq_intr_enable(struct e1000_hw *hw);
|
|
static void em_rxq_intr_disable(struct e1000_hw *hw);
|
|
|
|
static int eth_em_led_on(struct rte_eth_dev *dev);
|
|
static int eth_em_led_off(struct rte_eth_dev *dev);
|
|
|
|
static int em_get_rx_buffer_size(struct e1000_hw *hw);
|
|
static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
|
|
uint32_t index, uint32_t pool);
|
|
static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
|
|
|
|
static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
|
|
struct ether_addr *mc_addr_set,
|
|
uint32_t nb_mc_addr);
|
|
|
|
#define EM_FC_PAUSE_TIME 0x0680
|
|
#define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
|
|
#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
|
|
|
|
static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
|
|
|
|
/*
|
|
* The set of PCI devices this driver supports
|
|
*/
|
|
static const struct rte_pci_id pci_id_em_map[] = {
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
|
|
{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
|
|
{ .vendor_id = 0, /* sentinel */ },
|
|
};
|
|
|
|
static const struct eth_dev_ops eth_em_ops = {
|
|
.dev_configure = eth_em_configure,
|
|
.dev_start = eth_em_start,
|
|
.dev_stop = eth_em_stop,
|
|
.dev_close = eth_em_close,
|
|
.promiscuous_enable = eth_em_promiscuous_enable,
|
|
.promiscuous_disable = eth_em_promiscuous_disable,
|
|
.allmulticast_enable = eth_em_allmulticast_enable,
|
|
.allmulticast_disable = eth_em_allmulticast_disable,
|
|
.link_update = eth_em_link_update,
|
|
.stats_get = eth_em_stats_get,
|
|
.stats_reset = eth_em_stats_reset,
|
|
.dev_infos_get = eth_em_infos_get,
|
|
.mtu_set = eth_em_mtu_set,
|
|
.vlan_filter_set = eth_em_vlan_filter_set,
|
|
.vlan_offload_set = eth_em_vlan_offload_set,
|
|
.rx_queue_setup = eth_em_rx_queue_setup,
|
|
.rx_queue_release = eth_em_rx_queue_release,
|
|
.rx_queue_count = eth_em_rx_queue_count,
|
|
.rx_descriptor_done = eth_em_rx_descriptor_done,
|
|
.tx_queue_setup = eth_em_tx_queue_setup,
|
|
.tx_queue_release = eth_em_tx_queue_release,
|
|
.rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
|
|
.rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
|
|
.dev_led_on = eth_em_led_on,
|
|
.dev_led_off = eth_em_led_off,
|
|
.flow_ctrl_get = eth_em_flow_ctrl_get,
|
|
.flow_ctrl_set = eth_em_flow_ctrl_set,
|
|
.mac_addr_add = eth_em_rar_set,
|
|
.mac_addr_remove = eth_em_rar_clear,
|
|
.set_mc_addr_list = eth_em_set_mc_addr_list,
|
|
.rxq_info_get = em_rxq_info_get,
|
|
.txq_info_get = em_txq_info_get,
|
|
};
|
|
|
|
/**
|
|
* Atomically reads the link status information from global
|
|
* structure rte_eth_dev.
|
|
*
|
|
* @param dev
|
|
* - Pointer to the structure rte_eth_dev to read from.
|
|
* - Pointer to the buffer to be saved with the link status.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, negative value.
|
|
*/
|
|
static inline int
|
|
rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
|
|
struct rte_eth_link *link)
|
|
{
|
|
struct rte_eth_link *dst = link;
|
|
struct rte_eth_link *src = &(dev->data->dev_link);
|
|
|
|
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
|
|
*(uint64_t *)src) == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Atomically writes the link status information into global
|
|
* structure rte_eth_dev.
|
|
*
|
|
* @param dev
|
|
* - Pointer to the structure rte_eth_dev to read from.
|
|
* - Pointer to the buffer to be saved with the link status.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, negative value.
|
|
*/
|
|
static inline int
|
|
rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
|
|
struct rte_eth_link *link)
|
|
{
|
|
struct rte_eth_link *dst = &(dev->data->dev_link);
|
|
struct rte_eth_link *src = link;
|
|
|
|
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
|
|
*(uint64_t *)src) == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eth_em_dev_is_ich8 - Check for ICH8 device
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* return TRUE for ICH8, otherwise FALSE
|
|
**/
|
|
static bool
|
|
eth_em_dev_is_ich8(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("eth_em_dev_is_ich8");
|
|
|
|
switch (hw->device_id) {
|
|
case E1000_DEV_ID_PCH_LPT_I217_LM:
|
|
case E1000_DEV_ID_PCH_LPT_I217_V:
|
|
case E1000_DEV_ID_PCH_LPTLP_I218_LM:
|
|
case E1000_DEV_ID_PCH_LPTLP_I218_V:
|
|
case E1000_DEV_ID_PCH_I218_V2:
|
|
case E1000_DEV_ID_PCH_I218_LM2:
|
|
case E1000_DEV_ID_PCH_I218_V3:
|
|
case E1000_DEV_ID_PCH_I218_LM3:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
eth_em_dev_init(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(eth_dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
|
|
|
|
eth_dev->dev_ops = ð_em_ops;
|
|
eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts;
|
|
eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts;
|
|
|
|
/* for secondary processes, we don't initialise any further as primary
|
|
* has already done this work. Only check we don't need a different
|
|
* RX function */
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
|
|
if (eth_dev->data->scattered_rx)
|
|
eth_dev->rx_pkt_burst =
|
|
(eth_rx_burst_t)ð_em_recv_scattered_pkts;
|
|
return 0;
|
|
}
|
|
|
|
rte_eth_copy_pci_info(eth_dev, pci_dev);
|
|
|
|
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
|
|
hw->device_id = pci_dev->id.device_id;
|
|
adapter->stopped = 0;
|
|
|
|
/* For ICH8 support we'll need to map the flash memory BAR */
|
|
if (eth_em_dev_is_ich8(hw))
|
|
hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
|
|
|
|
if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
|
|
em_hw_init(hw) != 0) {
|
|
PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
|
|
"failed to init HW",
|
|
eth_dev->data->port_id, pci_dev->id.vendor_id,
|
|
pci_dev->id.device_id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Allocate memory for storing MAC addresses */
|
|
eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
|
|
hw->mac.rar_entry_count, 0);
|
|
if (eth_dev->data->mac_addrs == NULL) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
|
|
"store MAC addresses",
|
|
ETHER_ADDR_LEN * hw->mac.rar_entry_count);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Copy the permanent MAC address */
|
|
ether_addr_copy((struct ether_addr *) hw->mac.addr,
|
|
eth_dev->data->mac_addrs);
|
|
|
|
/* initialize the vfta */
|
|
memset(shadow_vfta, 0, sizeof(*shadow_vfta));
|
|
|
|
PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
|
|
eth_dev->data->port_id, pci_dev->id.vendor_id,
|
|
pci_dev->id.device_id);
|
|
|
|
rte_intr_callback_register(intr_handle,
|
|
eth_em_interrupt_handler, eth_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(eth_dev);
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
|
|
return -EPERM;
|
|
|
|
if (adapter->stopped == 0)
|
|
eth_em_close(eth_dev);
|
|
|
|
eth_dev->dev_ops = NULL;
|
|
eth_dev->rx_pkt_burst = NULL;
|
|
eth_dev->tx_pkt_burst = NULL;
|
|
|
|
rte_free(eth_dev->data->mac_addrs);
|
|
eth_dev->data->mac_addrs = NULL;
|
|
|
|
/* disable uio intr before callback unregister */
|
|
rte_intr_disable(intr_handle);
|
|
rte_intr_callback_unregister(intr_handle,
|
|
eth_em_interrupt_handler, eth_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct eth_driver rte_em_pmd = {
|
|
.pci_drv = {
|
|
.id_table = pci_id_em_map,
|
|
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
|
|
RTE_PCI_DRV_DETACHABLE,
|
|
.probe = rte_eth_dev_pci_probe,
|
|
.remove = rte_eth_dev_pci_remove,
|
|
},
|
|
.eth_dev_init = eth_em_dev_init,
|
|
.eth_dev_uninit = eth_em_dev_uninit,
|
|
.dev_private_size = sizeof(struct e1000_adapter),
|
|
};
|
|
|
|
static int
|
|
em_hw_init(struct e1000_hw *hw)
|
|
{
|
|
int diag;
|
|
|
|
diag = hw->mac.ops.init_params(hw);
|
|
if (diag != 0) {
|
|
PMD_INIT_LOG(ERR, "MAC Initialization Error");
|
|
return diag;
|
|
}
|
|
diag = hw->nvm.ops.init_params(hw);
|
|
if (diag != 0) {
|
|
PMD_INIT_LOG(ERR, "NVM Initialization Error");
|
|
return diag;
|
|
}
|
|
diag = hw->phy.ops.init_params(hw);
|
|
if (diag != 0) {
|
|
PMD_INIT_LOG(ERR, "PHY Initialization Error");
|
|
return diag;
|
|
}
|
|
(void) e1000_get_bus_info(hw);
|
|
|
|
hw->mac.autoneg = 1;
|
|
hw->phy.autoneg_wait_to_complete = 0;
|
|
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
|
|
|
|
e1000_init_script_state_82541(hw, TRUE);
|
|
e1000_set_tbi_compatibility_82543(hw, TRUE);
|
|
|
|
/* Copper options */
|
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
|
hw->phy.mdix = 0; /* AUTO_ALL_MODES */
|
|
hw->phy.disable_polarity_correction = 0;
|
|
hw->phy.ms_type = e1000_ms_hw_default;
|
|
}
|
|
|
|
/*
|
|
* Start from a known state, this is important in reading the nvm
|
|
* and mac from that.
|
|
*/
|
|
e1000_reset_hw(hw);
|
|
|
|
/* Make sure we have a good EEPROM before we read from it */
|
|
if (e1000_validate_nvm_checksum(hw) < 0) {
|
|
/*
|
|
* Some PCI-E parts fail the first check due to
|
|
* the link being in sleep state, call it again,
|
|
* if it fails a second time its a real issue.
|
|
*/
|
|
diag = e1000_validate_nvm_checksum(hw);
|
|
if (diag < 0) {
|
|
PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* Read the permanent MAC address out of the EEPROM */
|
|
diag = e1000_read_mac_addr(hw);
|
|
if (diag != 0) {
|
|
PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
|
|
goto error;
|
|
}
|
|
|
|
/* Now initialize the hardware */
|
|
diag = em_hardware_init(hw);
|
|
if (diag != 0) {
|
|
PMD_INIT_LOG(ERR, "Hardware initialization failed");
|
|
goto error;
|
|
}
|
|
|
|
hw->mac.get_link_status = 1;
|
|
|
|
/* Indicate SOL/IDER usage */
|
|
diag = e1000_check_reset_block(hw);
|
|
if (diag < 0) {
|
|
PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
|
|
"SOL/IDER session");
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
em_hw_control_release(hw);
|
|
return diag;
|
|
}
|
|
|
|
static int
|
|
eth_em_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
em_set_pba(struct e1000_hw *hw)
|
|
{
|
|
uint32_t pba;
|
|
|
|
/*
|
|
* Packet Buffer Allocation (PBA)
|
|
* Writing PBA sets the receive portion of the buffer
|
|
* the remainder is used for the transmit buffer.
|
|
* Devices before the 82547 had a Packet Buffer of 64K.
|
|
* After the 82547 the buffer was reduced to 40K.
|
|
*/
|
|
switch (hw->mac.type) {
|
|
case e1000_82547:
|
|
case e1000_82547_rev_2:
|
|
/* 82547: Total Packet Buffer is 40K */
|
|
pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
|
|
break;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_80003es2lan:
|
|
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
|
|
break;
|
|
case e1000_82573: /* 82573: Total Packet Buffer is 32K */
|
|
pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
|
|
break;
|
|
case e1000_82574:
|
|
case e1000_82583:
|
|
pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
|
|
break;
|
|
case e1000_ich8lan:
|
|
pba = E1000_PBA_8K;
|
|
break;
|
|
case e1000_ich9lan:
|
|
case e1000_ich10lan:
|
|
pba = E1000_PBA_10K;
|
|
break;
|
|
case e1000_pchlan:
|
|
case e1000_pch2lan:
|
|
case e1000_pch_lpt:
|
|
pba = E1000_PBA_26K;
|
|
break;
|
|
default:
|
|
pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_PBA, pba);
|
|
}
|
|
|
|
static int
|
|
eth_em_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(dev->data->dev_private);
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev =
|
|
E1000_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
int ret, mask;
|
|
uint32_t intr_vector = 0;
|
|
uint32_t *speeds;
|
|
int num_speeds;
|
|
bool autoneg;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
eth_em_stop(dev);
|
|
|
|
e1000_power_up_phy(hw);
|
|
|
|
/* Set default PBA value */
|
|
em_set_pba(hw);
|
|
|
|
/* Put the address into the Receive Address Array */
|
|
e1000_rar_set(hw, hw->mac.addr, 0);
|
|
|
|
/*
|
|
* With the 82571 adapter, RAR[0] may be overwritten
|
|
* when the other port is reset, we make a duplicate
|
|
* in RAR[14] for that eventuality, this assures
|
|
* the interface continues to function.
|
|
*/
|
|
if (hw->mac.type == e1000_82571) {
|
|
e1000_set_laa_state_82571(hw, TRUE);
|
|
e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
|
|
}
|
|
|
|
/* Initialize the hardware */
|
|
if (em_hardware_init(hw)) {
|
|
PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
|
|
return -EIO;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
|
|
|
|
/* Configure for OS presence */
|
|
em_init_manageability(hw);
|
|
|
|
if (dev->data->dev_conf.intr_conf.rxq != 0) {
|
|
intr_vector = dev->data->nb_rx_queues;
|
|
if (rte_intr_efd_enable(intr_handle, intr_vector))
|
|
return -1;
|
|
}
|
|
|
|
if (rte_intr_dp_is_en(intr_handle)) {
|
|
intr_handle->intr_vec =
|
|
rte_zmalloc("intr_vec",
|
|
dev->data->nb_rx_queues * sizeof(int), 0);
|
|
if (intr_handle->intr_vec == NULL) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
|
|
" intr_vec\n", dev->data->nb_rx_queues);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* enable rx interrupt */
|
|
em_rxq_intr_enable(hw);
|
|
}
|
|
|
|
eth_em_tx_init(dev);
|
|
|
|
ret = eth_em_rx_init(dev);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
|
|
em_dev_clear_queues(dev);
|
|
return ret;
|
|
}
|
|
|
|
e1000_clear_hw_cntrs_base_generic(hw);
|
|
|
|
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
|
|
ETH_VLAN_EXTEND_MASK;
|
|
eth_em_vlan_offload_set(dev, mask);
|
|
|
|
/* Set Interrupt Throttling Rate to maximum allowed value. */
|
|
E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
|
|
|
|
/* Setup link speed and duplex */
|
|
speeds = &dev->data->dev_conf.link_speeds;
|
|
if (*speeds == ETH_LINK_SPEED_AUTONEG) {
|
|
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
|
|
hw->mac.autoneg = 1;
|
|
} else {
|
|
num_speeds = 0;
|
|
autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
|
|
|
|
/* Reset */
|
|
hw->phy.autoneg_advertised = 0;
|
|
|
|
if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
|
|
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
|
|
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
|
|
num_speeds = -1;
|
|
goto error_invalid_config;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_10M_HD) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
|
|
num_speeds++;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_10M) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
|
|
num_speeds++;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_100M_HD) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
|
|
num_speeds++;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_100M) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
|
|
num_speeds++;
|
|
}
|
|
if (*speeds & ETH_LINK_SPEED_1G) {
|
|
hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
|
|
num_speeds++;
|
|
}
|
|
if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
|
|
goto error_invalid_config;
|
|
|
|
/* Set/reset the mac.autoneg based on the link speed,
|
|
* fixed or not
|
|
*/
|
|
if (!autoneg) {
|
|
hw->mac.autoneg = 0;
|
|
hw->mac.forced_speed_duplex =
|
|
hw->phy.autoneg_advertised;
|
|
} else {
|
|
hw->mac.autoneg = 1;
|
|
}
|
|
}
|
|
|
|
e1000_setup_link(hw);
|
|
|
|
if (rte_intr_allow_others(intr_handle)) {
|
|
/* check if lsc interrupt is enabled */
|
|
if (dev->data->dev_conf.intr_conf.lsc != 0) {
|
|
ret = eth_em_interrupt_setup(dev);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "Unable to setup interrupts");
|
|
em_dev_clear_queues(dev);
|
|
return ret;
|
|
}
|
|
}
|
|
} else {
|
|
rte_intr_callback_unregister(intr_handle,
|
|
eth_em_interrupt_handler,
|
|
(void *)dev);
|
|
if (dev->data->dev_conf.intr_conf.lsc != 0)
|
|
PMD_INIT_LOG(INFO, "lsc won't enable because of"
|
|
" no intr multiplex\n");
|
|
}
|
|
/* check if rxq interrupt is enabled */
|
|
if (dev->data->dev_conf.intr_conf.rxq != 0)
|
|
eth_em_rxq_interrupt_setup(dev);
|
|
|
|
rte_intr_enable(intr_handle);
|
|
|
|
adapter->stopped = 0;
|
|
|
|
PMD_INIT_LOG(DEBUG, "<<");
|
|
|
|
return 0;
|
|
|
|
error_invalid_config:
|
|
PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
|
|
dev->data->dev_conf.link_speeds, dev->data->port_id);
|
|
em_dev_clear_queues(dev);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine disables all traffic on the adapter by issuing a
|
|
* global reset on the MAC.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
eth_em_stop(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_link link;
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
|
|
em_rxq_intr_disable(hw);
|
|
em_lsc_intr_disable(hw);
|
|
|
|
e1000_reset_hw(hw);
|
|
if (hw->mac.type >= e1000_82544)
|
|
E1000_WRITE_REG(hw, E1000_WUC, 0);
|
|
|
|
/* Power down the phy. Needed to make the link go down */
|
|
e1000_power_down_phy(hw);
|
|
|
|
em_dev_clear_queues(dev);
|
|
|
|
/* clear the recorded link status */
|
|
memset(&link, 0, sizeof(link));
|
|
rte_em_dev_atomic_write_link_status(dev, &link);
|
|
|
|
if (!rte_intr_allow_others(intr_handle))
|
|
/* resume to the default handler */
|
|
rte_intr_callback_register(intr_handle,
|
|
eth_em_interrupt_handler,
|
|
(void *)dev);
|
|
|
|
/* Clean datapath event and queue/vec mapping */
|
|
rte_intr_efd_disable(intr_handle);
|
|
if (intr_handle->intr_vec != NULL) {
|
|
rte_free(intr_handle->intr_vec);
|
|
intr_handle->intr_vec = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
eth_em_close(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_adapter *adapter =
|
|
E1000_DEV_PRIVATE(dev->data->dev_private);
|
|
|
|
eth_em_stop(dev);
|
|
adapter->stopped = 1;
|
|
em_dev_free_queues(dev);
|
|
e1000_phy_hw_reset(hw);
|
|
em_release_manageability(hw);
|
|
em_hw_control_release(hw);
|
|
}
|
|
|
|
static int
|
|
em_get_rx_buffer_size(struct e1000_hw *hw)
|
|
{
|
|
uint32_t rx_buf_size;
|
|
|
|
rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
|
|
return rx_buf_size;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize the hardware
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_hardware_init(struct e1000_hw *hw)
|
|
{
|
|
uint32_t rx_buf_size;
|
|
int diag;
|
|
|
|
/* Issue a global reset */
|
|
e1000_reset_hw(hw);
|
|
|
|
/* Let the firmware know the OS is in control */
|
|
em_hw_control_acquire(hw);
|
|
|
|
/*
|
|
* These parameters control the automatic generation (Tx) and
|
|
* response (Rx) to Ethernet PAUSE frames.
|
|
* - High water mark should allow for at least two standard size (1518)
|
|
* frames to be received after sending an XOFF.
|
|
* - Low water mark works best when it is very near the high water mark.
|
|
* This allows the receiver to restart by sending XON when it has
|
|
* drained a bit. Here we use an arbitrary value of 1500 which will
|
|
* restart after one full frame is pulled from the buffer. There
|
|
* could be several smaller frames in the buffer and if so they will
|
|
* not trigger the XON until their total number reduces the buffer
|
|
* by 1500.
|
|
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
|
|
*/
|
|
rx_buf_size = em_get_rx_buffer_size(hw);
|
|
|
|
hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
|
|
hw->fc.low_water = hw->fc.high_water - 1500;
|
|
|
|
if (hw->mac.type == e1000_80003es2lan)
|
|
hw->fc.pause_time = UINT16_MAX;
|
|
else
|
|
hw->fc.pause_time = EM_FC_PAUSE_TIME;
|
|
|
|
hw->fc.send_xon = 1;
|
|
|
|
/* Set Flow control, use the tunable location if sane */
|
|
if (em_fc_setting <= e1000_fc_full)
|
|
hw->fc.requested_mode = em_fc_setting;
|
|
else
|
|
hw->fc.requested_mode = e1000_fc_none;
|
|
|
|
/* Workaround: no TX flow ctrl for PCH */
|
|
if (hw->mac.type == e1000_pchlan)
|
|
hw->fc.requested_mode = e1000_fc_rx_pause;
|
|
|
|
/* Override - settings for PCH2LAN, ya its magic :) */
|
|
if (hw->mac.type == e1000_pch2lan) {
|
|
hw->fc.high_water = 0x5C20;
|
|
hw->fc.low_water = 0x5048;
|
|
hw->fc.pause_time = 0x0650;
|
|
hw->fc.refresh_time = 0x0400;
|
|
} else if (hw->mac.type == e1000_pch_lpt) {
|
|
hw->fc.requested_mode = e1000_fc_full;
|
|
}
|
|
|
|
diag = e1000_init_hw(hw);
|
|
if (diag < 0)
|
|
return diag;
|
|
e1000_check_for_link(hw);
|
|
return 0;
|
|
}
|
|
|
|
/* This function is based on em_update_stats_counters() in e1000/if_em.c */
|
|
static void
|
|
eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_hw_stats *stats =
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
int pause_frames;
|
|
|
|
if(hw->phy.media_type == e1000_media_type_copper ||
|
|
(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
|
|
stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
|
|
stats->sec += E1000_READ_REG(hw, E1000_SEC);
|
|
}
|
|
|
|
stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
|
|
stats->mpc += E1000_READ_REG(hw, E1000_MPC);
|
|
stats->scc += E1000_READ_REG(hw, E1000_SCC);
|
|
stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
|
|
|
|
stats->mcc += E1000_READ_REG(hw, E1000_MCC);
|
|
stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
|
|
stats->colc += E1000_READ_REG(hw, E1000_COLC);
|
|
stats->dc += E1000_READ_REG(hw, E1000_DC);
|
|
stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
|
|
stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
|
|
stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
|
|
|
|
/*
|
|
* For watchdog management we need to know if we have been
|
|
* paused during the last interval, so capture that here.
|
|
*/
|
|
pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
|
|
stats->xoffrxc += pause_frames;
|
|
stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
|
|
stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
|
|
stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
|
|
stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
|
|
stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
|
|
stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
|
|
stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
|
|
stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
|
|
stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
|
|
stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
|
|
stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
|
|
stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
|
|
|
|
/*
|
|
* For the 64-bit byte counters the low dword must be read first.
|
|
* Both registers clear on the read of the high dword.
|
|
*/
|
|
|
|
stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
|
|
stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
|
|
stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
|
|
stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
|
|
|
|
stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
|
|
stats->ruc += E1000_READ_REG(hw, E1000_RUC);
|
|
stats->rfc += E1000_READ_REG(hw, E1000_RFC);
|
|
stats->roc += E1000_READ_REG(hw, E1000_ROC);
|
|
stats->rjc += E1000_READ_REG(hw, E1000_RJC);
|
|
|
|
stats->tor += E1000_READ_REG(hw, E1000_TORH);
|
|
stats->tot += E1000_READ_REG(hw, E1000_TOTH);
|
|
|
|
stats->tpr += E1000_READ_REG(hw, E1000_TPR);
|
|
stats->tpt += E1000_READ_REG(hw, E1000_TPT);
|
|
stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
|
|
stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
|
|
stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
|
|
stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
|
|
stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
|
|
stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
|
|
stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
|
|
stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
|
|
|
|
/* Interrupt Counts */
|
|
|
|
if (hw->mac.type >= e1000_82571) {
|
|
stats->iac += E1000_READ_REG(hw, E1000_IAC);
|
|
stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
|
|
stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
|
|
stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
|
|
stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
|
|
stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
|
|
stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
|
|
stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
|
|
stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
|
|
}
|
|
|
|
if (hw->mac.type >= e1000_82543) {
|
|
stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
|
|
stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
|
|
stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
|
|
stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
|
|
stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
|
|
stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
|
|
}
|
|
|
|
if (rte_stats == NULL)
|
|
return;
|
|
|
|
/* Rx Errors */
|
|
rte_stats->imissed = stats->mpc;
|
|
rte_stats->ierrors = stats->crcerrs +
|
|
stats->rlec + stats->ruc + stats->roc +
|
|
stats->rxerrc + stats->algnerrc + stats->cexterr;
|
|
|
|
/* Tx Errors */
|
|
rte_stats->oerrors = stats->ecol + stats->latecol;
|
|
|
|
rte_stats->ipackets = stats->gprc;
|
|
rte_stats->opackets = stats->gptc;
|
|
rte_stats->ibytes = stats->gorc;
|
|
rte_stats->obytes = stats->gotc;
|
|
}
|
|
|
|
static void
|
|
eth_em_stats_reset(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw_stats *hw_stats =
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
|
|
/* HW registers are cleared on read */
|
|
eth_em_stats_get(dev, NULL);
|
|
|
|
/* Reset software totals */
|
|
memset(hw_stats, 0, sizeof(*hw_stats));
|
|
}
|
|
|
|
static int
|
|
eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
|
|
em_rxq_intr_enable(hw);
|
|
rte_intr_enable(intr_handle);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
em_rxq_intr_disable(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
em_get_max_pktlen(const struct e1000_hw *hw)
|
|
{
|
|
switch (hw->mac.type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_ich9lan:
|
|
case e1000_ich10lan:
|
|
case e1000_pch2lan:
|
|
case e1000_pch_lpt:
|
|
case e1000_82574:
|
|
case e1000_80003es2lan: /* 9K Jumbo Frame size */
|
|
case e1000_82583:
|
|
return 0x2412;
|
|
case e1000_pchlan:
|
|
return 0x1000;
|
|
/* Adapters that do not support jumbo frames */
|
|
case e1000_ich8lan:
|
|
return ETHER_MAX_LEN;
|
|
default:
|
|
return MAX_JUMBO_FRAME_SIZE;
|
|
}
|
|
}
|
|
|
|
static void
|
|
eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
dev_info->pci_dev = RTE_DEV_TO_PCI(dev->device);
|
|
dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
|
|
dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
|
|
dev_info->max_mac_addrs = hw->mac.rar_entry_count;
|
|
|
|
/*
|
|
* Starting with 631xESB hw supports 2 TX/RX queues per port.
|
|
* Unfortunatelly, all these nics have just one TX context.
|
|
* So we have few choises for TX:
|
|
* - Use just one TX queue.
|
|
* - Allow cksum offload only for one TX queue.
|
|
* - Don't allow TX cksum offload at all.
|
|
* For now, option #1 was chosen.
|
|
* To use second RX queue we have to use extended RX descriptor
|
|
* (Multiple Receive Queues are mutually exclusive with UDP
|
|
* fragmentation and are not supported when a legacy receive
|
|
* descriptor format is used).
|
|
* Which means separate RX routinies - as legacy nics (82540, 82545)
|
|
* don't support extended RXD.
|
|
* To avoid it we support just one RX queue for now (no RSS).
|
|
*/
|
|
|
|
dev_info->max_rx_queues = 1;
|
|
dev_info->max_tx_queues = 1;
|
|
|
|
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
|
|
.nb_max = E1000_MAX_RING_DESC,
|
|
.nb_min = E1000_MIN_RING_DESC,
|
|
.nb_align = EM_RXD_ALIGN,
|
|
};
|
|
|
|
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
|
|
.nb_max = E1000_MAX_RING_DESC,
|
|
.nb_min = E1000_MIN_RING_DESC,
|
|
.nb_align = EM_TXD_ALIGN,
|
|
};
|
|
|
|
dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
|
|
ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
|
|
ETH_LINK_SPEED_1G;
|
|
}
|
|
|
|
/* return 0 means link status changed, -1 means not changed */
|
|
static int
|
|
eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_eth_link link, old;
|
|
int link_check, count;
|
|
|
|
link_check = 0;
|
|
hw->mac.get_link_status = 1;
|
|
|
|
/* possible wait-to-complete in up to 9 seconds */
|
|
for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
|
|
/* Read the real link status */
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
/* Do the work to read phy */
|
|
e1000_check_for_link(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
break;
|
|
|
|
case e1000_media_type_fiber:
|
|
e1000_check_for_link(hw);
|
|
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
|
|
E1000_STATUS_LU);
|
|
break;
|
|
|
|
case e1000_media_type_internal_serdes:
|
|
e1000_check_for_link(hw);
|
|
link_check = hw->mac.serdes_has_link;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
if (link_check || wait_to_complete == 0)
|
|
break;
|
|
rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
|
|
}
|
|
memset(&link, 0, sizeof(link));
|
|
rte_em_dev_atomic_read_link_status(dev, &link);
|
|
old = link;
|
|
|
|
/* Now we check if a transition has happened */
|
|
if (link_check && (link.link_status == ETH_LINK_DOWN)) {
|
|
uint16_t duplex, speed;
|
|
hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
|
|
link.link_duplex = (duplex == FULL_DUPLEX) ?
|
|
ETH_LINK_FULL_DUPLEX :
|
|
ETH_LINK_HALF_DUPLEX;
|
|
link.link_speed = speed;
|
|
link.link_status = ETH_LINK_UP;
|
|
link.link_autoneg = !(dev->data->dev_conf.link_speeds &
|
|
ETH_LINK_SPEED_FIXED);
|
|
} else if (!link_check && (link.link_status == ETH_LINK_UP)) {
|
|
link.link_speed = 0;
|
|
link.link_duplex = ETH_LINK_HALF_DUPLEX;
|
|
link.link_status = ETH_LINK_DOWN;
|
|
link.link_autoneg = ETH_LINK_SPEED_FIXED;
|
|
}
|
|
rte_em_dev_atomic_write_link_status(dev, &link);
|
|
|
|
/* not changed */
|
|
if (old.link_status == link.link_status)
|
|
return -1;
|
|
|
|
/* changed */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means
|
|
* that the driver is loaded. For AMT version type f/w
|
|
* this means that the network i/f is open.
|
|
*/
|
|
static void
|
|
em_hw_control_acquire(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl_ext, swsm;
|
|
|
|
/* Let firmware know the driver has taken over */
|
|
if (hw->mac.type == e1000_82573) {
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
|
|
|
|
} else {
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
|
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that the
|
|
* driver is no longer loaded. For AMT versions of the
|
|
* f/w this means that the network i/f is closed.
|
|
*/
|
|
static void
|
|
em_hw_control_release(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl_ext, swsm;
|
|
|
|
/* Let firmware taken over control of h/w */
|
|
if (hw->mac.type == e1000_82573) {
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
|
|
} else {
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Bit of a misnomer, what this really means is
|
|
* to enable OS management of the system... aka
|
|
* to disable special hardware management features.
|
|
*/
|
|
static void
|
|
em_init_manageability(struct e1000_hw *hw)
|
|
{
|
|
if (e1000_enable_mng_pass_thru(hw)) {
|
|
uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
|
|
uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
|
|
|
|
/* disable hardware interception of ARP */
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
|
|
/* enable receiving management packets to the host */
|
|
manc |= E1000_MANC_EN_MNG2HOST;
|
|
manc2h |= 1 << 5; /* Mng Port 623 */
|
|
manc2h |= 1 << 6; /* Mng Port 664 */
|
|
E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
|
|
E1000_WRITE_REG(hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Give control back to hardware management
|
|
* controller if there is one.
|
|
*/
|
|
static void
|
|
em_release_manageability(struct e1000_hw *hw)
|
|
{
|
|
uint32_t manc;
|
|
|
|
if (e1000_enable_mng_pass_thru(hw)) {
|
|
manc = E1000_READ_REG(hw, E1000_MANC);
|
|
|
|
/* re-enable hardware interception of ARP */
|
|
manc |= E1000_MANC_ARP_EN;
|
|
manc &= ~E1000_MANC_EN_MNG2HOST;
|
|
|
|
E1000_WRITE_REG(hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
eth_em_promiscuous_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static void
|
|
eth_em_promiscuous_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
|
|
if (dev->data->all_multicast == 1)
|
|
rctl |= E1000_RCTL_MPE;
|
|
else
|
|
rctl &= (~E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static void
|
|
eth_em_allmulticast_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static void
|
|
eth_em_allmulticast_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
if (dev->data->promiscuous == 1)
|
|
return; /* must remain in all_multicast mode */
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl &= (~E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static int
|
|
eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
uint32_t vfta;
|
|
uint32_t vid_idx;
|
|
uint32_t vid_bit;
|
|
|
|
vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
|
|
E1000_VFTA_ENTRY_MASK);
|
|
vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
|
|
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
|
|
if (on)
|
|
vfta |= vid_bit;
|
|
else
|
|
vfta &= ~vid_bit;
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
|
|
|
|
/* update local VFTA copy */
|
|
shadow_vfta->vfta[vid_idx] = vfta;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* Filter Table Disable */
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg &= ~E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
}
|
|
|
|
static void
|
|
em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
/* Filter Table Enable, CFI not used for packet acceptance */
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg |= E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
|
|
/* restore vfta from local copy */
|
|
for (i = 0; i < IGB_VFTA_SIZE; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
|
|
}
|
|
|
|
static void
|
|
em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* VLAN Mode Disable */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg &= ~E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
|
|
}
|
|
|
|
static void
|
|
em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* VLAN Mode Enable */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
}
|
|
|
|
static void
|
|
eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
|
|
{
|
|
if(mask & ETH_VLAN_STRIP_MASK){
|
|
if (dev->data->dev_conf.rxmode.hw_vlan_strip)
|
|
em_vlan_hw_strip_enable(dev);
|
|
else
|
|
em_vlan_hw_strip_disable(dev);
|
|
}
|
|
|
|
if(mask & ETH_VLAN_FILTER_MASK){
|
|
if (dev->data->dev_conf.rxmode.hw_vlan_filter)
|
|
em_vlan_hw_filter_enable(dev);
|
|
else
|
|
em_vlan_hw_filter_disable(dev);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It enables the interrupt mask and then enable the interrupt.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_em_interrupt_setup(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t regval;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* clear interrupt */
|
|
E1000_READ_REG(hw, E1000_ICR);
|
|
regval = E1000_READ_REG(hw, E1000_IMS);
|
|
E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It clears the interrupt causes and enables the interrupt.
|
|
* It will be called once only during nic initialized.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
E1000_READ_REG(hw, E1000_ICR);
|
|
em_rxq_intr_enable(hw);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It enable receive packet interrupt.
|
|
* @param hw
|
|
* Pointer to struct e1000_hw
|
|
*
|
|
* @return
|
|
*/
|
|
static void
|
|
em_rxq_intr_enable(struct e1000_hw *hw)
|
|
{
|
|
E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/*
|
|
* It disabled lsc interrupt.
|
|
* @param hw
|
|
* Pointer to struct e1000_hw
|
|
*
|
|
* @return
|
|
*/
|
|
static void
|
|
em_lsc_intr_disable(struct e1000_hw *hw)
|
|
{
|
|
E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/*
|
|
* It disabled receive packet interrupt.
|
|
* @param hw
|
|
* Pointer to struct e1000_hw
|
|
*
|
|
* @return
|
|
*/
|
|
static void
|
|
em_rxq_intr_disable(struct e1000_hw *hw)
|
|
{
|
|
E1000_READ_REG(hw, E1000_ICR);
|
|
E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/*
|
|
* It reads ICR and gets interrupt causes, check it and set a bit flag
|
|
* to update link status.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_em_interrupt_get_status(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t icr;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
|
|
/* read-on-clear nic registers here */
|
|
icr = E1000_READ_REG(hw, E1000_ICR);
|
|
if (icr & E1000_ICR_LSC) {
|
|
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It executes link_update after knowing an interrupt is prsent.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_em_interrupt_action(struct rte_eth_dev *dev,
|
|
struct rte_intr_handle *intr_handle)
|
|
{
|
|
struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
uint32_t tctl, rctl;
|
|
struct rte_eth_link link;
|
|
int ret;
|
|
|
|
if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
|
|
return -1;
|
|
|
|
intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
|
|
rte_intr_enable(intr_handle);
|
|
|
|
/* set get_link_status to check register later */
|
|
hw->mac.get_link_status = 1;
|
|
ret = eth_em_link_update(dev, 0);
|
|
|
|
/* check if link has changed */
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
memset(&link, 0, sizeof(link));
|
|
rte_em_dev_atomic_read_link_status(dev, &link);
|
|
if (link.link_status) {
|
|
PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
|
|
dev->data->port_id, (unsigned)link.link_speed,
|
|
link.link_duplex == ETH_LINK_FULL_DUPLEX ?
|
|
"full-duplex" : "half-duplex");
|
|
} else {
|
|
PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
|
|
}
|
|
PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
|
|
pci_dev->addr.domain, pci_dev->addr.bus,
|
|
pci_dev->addr.devid, pci_dev->addr.function);
|
|
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
if (link.link_status) {
|
|
/* enable Tx/Rx */
|
|
tctl |= E1000_TCTL_EN;
|
|
rctl |= E1000_RCTL_EN;
|
|
} else {
|
|
/* disable Tx/Rx */
|
|
tctl &= ~E1000_TCTL_EN;
|
|
rctl &= ~E1000_RCTL_EN;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Interrupt handler which shall be registered at first.
|
|
*
|
|
* @param handle
|
|
* Pointer to interrupt handle.
|
|
* @param param
|
|
* The address of parameter (struct rte_eth_dev *) regsitered before.
|
|
*
|
|
* @return
|
|
* void
|
|
*/
|
|
static void
|
|
eth_em_interrupt_handler(struct rte_intr_handle *handle,
|
|
void *param)
|
|
{
|
|
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
|
|
|
|
eth_em_interrupt_get_status(dev);
|
|
eth_em_interrupt_action(dev, handle);
|
|
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
|
|
}
|
|
|
|
static int
|
|
eth_em_led_on(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
|
|
}
|
|
|
|
static int
|
|
eth_em_led_off(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
|
|
}
|
|
|
|
static int
|
|
eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
|
|
{
|
|
struct e1000_hw *hw;
|
|
uint32_t ctrl;
|
|
int tx_pause;
|
|
int rx_pause;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
fc_conf->pause_time = hw->fc.pause_time;
|
|
fc_conf->high_water = hw->fc.high_water;
|
|
fc_conf->low_water = hw->fc.low_water;
|
|
fc_conf->send_xon = hw->fc.send_xon;
|
|
fc_conf->autoneg = hw->mac.autoneg;
|
|
|
|
/*
|
|
* Return rx_pause and tx_pause status according to actual setting of
|
|
* the TFCE and RFCE bits in the CTRL register.
|
|
*/
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
if (ctrl & E1000_CTRL_TFCE)
|
|
tx_pause = 1;
|
|
else
|
|
tx_pause = 0;
|
|
|
|
if (ctrl & E1000_CTRL_RFCE)
|
|
rx_pause = 1;
|
|
else
|
|
rx_pause = 0;
|
|
|
|
if (rx_pause && tx_pause)
|
|
fc_conf->mode = RTE_FC_FULL;
|
|
else if (rx_pause)
|
|
fc_conf->mode = RTE_FC_RX_PAUSE;
|
|
else if (tx_pause)
|
|
fc_conf->mode = RTE_FC_TX_PAUSE;
|
|
else
|
|
fc_conf->mode = RTE_FC_NONE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
|
|
{
|
|
struct e1000_hw *hw;
|
|
int err;
|
|
enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
|
|
e1000_fc_none,
|
|
e1000_fc_rx_pause,
|
|
e1000_fc_tx_pause,
|
|
e1000_fc_full
|
|
};
|
|
uint32_t rx_buf_size;
|
|
uint32_t max_high_water;
|
|
uint32_t rctl;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
if (fc_conf->autoneg != hw->mac.autoneg)
|
|
return -ENOTSUP;
|
|
rx_buf_size = em_get_rx_buffer_size(hw);
|
|
PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
|
|
|
|
/* At least reserve one Ethernet frame for watermark */
|
|
max_high_water = rx_buf_size - ETHER_MAX_LEN;
|
|
if ((fc_conf->high_water > max_high_water) ||
|
|
(fc_conf->high_water < fc_conf->low_water)) {
|
|
PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
|
|
PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
|
|
return -EINVAL;
|
|
}
|
|
|
|
hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
|
|
hw->fc.pause_time = fc_conf->pause_time;
|
|
hw->fc.high_water = fc_conf->high_water;
|
|
hw->fc.low_water = fc_conf->low_water;
|
|
hw->fc.send_xon = fc_conf->send_xon;
|
|
|
|
err = e1000_setup_link_generic(hw);
|
|
if (err == E1000_SUCCESS) {
|
|
|
|
/* check if we want to forward MAC frames - driver doesn't have native
|
|
* capability to do that, so we'll write the registers ourselves */
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
|
|
/* set or clear MFLCN.PMCF bit depending on configuration */
|
|
if (fc_conf->mac_ctrl_frame_fwd != 0)
|
|
rctl |= E1000_RCTL_PMCF;
|
|
else
|
|
rctl &= ~E1000_RCTL_PMCF;
|
|
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
|
|
return -EIO;
|
|
}
|
|
|
|
static void
|
|
eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
|
|
uint32_t index, __rte_unused uint32_t pool)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
e1000_rar_set(hw, mac_addr->addr_bytes, index);
|
|
}
|
|
|
|
static void
|
|
eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
|
|
{
|
|
uint8_t addr[ETHER_ADDR_LEN];
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
memset(addr, 0, sizeof(addr));
|
|
|
|
e1000_rar_set(hw, addr, index);
|
|
}
|
|
|
|
static int
|
|
eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
|
|
{
|
|
struct rte_eth_dev_info dev_info;
|
|
struct e1000_hw *hw;
|
|
uint32_t frame_size;
|
|
uint32_t rctl;
|
|
|
|
eth_em_infos_get(dev, &dev_info);
|
|
frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
|
|
|
|
/* check that mtu is within the allowed range */
|
|
if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
|
|
return -EINVAL;
|
|
|
|
/* refuse mtu that requires the support of scattered packets when this
|
|
* feature has not been enabled before. */
|
|
if (!dev->data->scattered_rx &&
|
|
frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
|
|
return -EINVAL;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
|
|
/* switch to jumbo mode if needed */
|
|
if (frame_size > ETHER_MAX_LEN) {
|
|
dev->data->dev_conf.rxmode.jumbo_frame = 1;
|
|
rctl |= E1000_RCTL_LPE;
|
|
} else {
|
|
dev->data->dev_conf.rxmode.jumbo_frame = 0;
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
|
|
/* update max frame size */
|
|
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
|
|
struct ether_addr *mc_addr_set,
|
|
uint32_t nb_mc_addr)
|
|
{
|
|
struct e1000_hw *hw;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
|
|
return 0;
|
|
}
|
|
|
|
RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd.pci_drv);
|
|
RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
|
|
RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio");
|