3c4426db54
Calling Rx/Tx functions on a stopped queue is not supported.
Do not run packet forwarding for streams that use stopped queues.
Each stream has a read-only "disabled" field,
so that lcore function can skip such streams.
Forwarding engines can set this field
using a new "stream_init" callback function
by checking relevant queue states,
which are stored along with queue configurations
(not all PMDs implement rte_eth_rx/tx_queue_info_get()
to query the state from there).
Fixes: 5f4ec54f1d
("testpmd: queue start and stop")
Cc: stable@dpdk.org
Signed-off-by: Dmitry Kozlyuk <dkozlyuk@nvidia.com>
Acked-by: Matan Azrad <matan@nvidia.com>
521 lines
14 KiB
C
521 lines
14 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <sys/queue.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_flow.h>
|
|
|
|
#include "testpmd.h"
|
|
|
|
struct tx_timestamp {
|
|
rte_be32_t signature;
|
|
rte_be16_t pkt_idx;
|
|
rte_be16_t queue_idx;
|
|
rte_be64_t ts;
|
|
};
|
|
|
|
/* use RFC863 Discard Protocol */
|
|
uint16_t tx_udp_src_port = 9;
|
|
uint16_t tx_udp_dst_port = 9;
|
|
|
|
/* use RFC5735 / RFC2544 reserved network test addresses */
|
|
uint32_t tx_ip_src_addr = (198U << 24) | (18 << 16) | (0 << 8) | 1;
|
|
uint32_t tx_ip_dst_addr = (198U << 24) | (18 << 16) | (0 << 8) | 2;
|
|
|
|
#define IP_DEFTTL 64 /* from RFC 1340. */
|
|
|
|
static struct rte_ipv4_hdr pkt_ip_hdr; /**< IP header of transmitted packets. */
|
|
RTE_DEFINE_PER_LCORE(uint8_t, _ip_var); /**< IP address variation */
|
|
static struct rte_udp_hdr pkt_udp_hdr; /**< UDP header of tx packets. */
|
|
|
|
static uint64_t timestamp_mask; /**< Timestamp dynamic flag mask */
|
|
static int32_t timestamp_off; /**< Timestamp dynamic field offset */
|
|
static bool timestamp_enable; /**< Timestamp enable */
|
|
static uint64_t timestamp_initial[RTE_MAX_ETHPORTS];
|
|
|
|
static void
|
|
copy_buf_to_pkt_segs(void* buf, unsigned len, struct rte_mbuf *pkt,
|
|
unsigned offset)
|
|
{
|
|
struct rte_mbuf *seg;
|
|
void *seg_buf;
|
|
unsigned copy_len;
|
|
|
|
seg = pkt;
|
|
while (offset >= seg->data_len) {
|
|
offset -= seg->data_len;
|
|
seg = seg->next;
|
|
}
|
|
copy_len = seg->data_len - offset;
|
|
seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
|
|
while (len > copy_len) {
|
|
rte_memcpy(seg_buf, buf, (size_t) copy_len);
|
|
len -= copy_len;
|
|
buf = ((char*) buf + copy_len);
|
|
seg = seg->next;
|
|
seg_buf = rte_pktmbuf_mtod(seg, char *);
|
|
copy_len = seg->data_len;
|
|
}
|
|
rte_memcpy(seg_buf, buf, (size_t) len);
|
|
}
|
|
|
|
static inline void
|
|
copy_buf_to_pkt(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset)
|
|
{
|
|
if (offset + len <= pkt->data_len) {
|
|
rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset),
|
|
buf, (size_t) len);
|
|
return;
|
|
}
|
|
copy_buf_to_pkt_segs(buf, len, pkt, offset);
|
|
}
|
|
|
|
static void
|
|
setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
|
|
struct rte_udp_hdr *udp_hdr,
|
|
uint16_t pkt_data_len)
|
|
{
|
|
uint16_t *ptr16;
|
|
uint32_t ip_cksum;
|
|
uint16_t pkt_len;
|
|
|
|
/*
|
|
* Initialize UDP header.
|
|
*/
|
|
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
|
|
udp_hdr->src_port = rte_cpu_to_be_16(tx_udp_src_port);
|
|
udp_hdr->dst_port = rte_cpu_to_be_16(tx_udp_dst_port);
|
|
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
|
|
udp_hdr->dgram_cksum = 0; /* No UDP checksum. */
|
|
|
|
/*
|
|
* Initialize IP header.
|
|
*/
|
|
pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
|
|
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
|
|
ip_hdr->type_of_service = 0;
|
|
ip_hdr->fragment_offset = 0;
|
|
ip_hdr->time_to_live = IP_DEFTTL;
|
|
ip_hdr->next_proto_id = IPPROTO_UDP;
|
|
ip_hdr->packet_id = 0;
|
|
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
|
|
ip_hdr->src_addr = rte_cpu_to_be_32(tx_ip_src_addr);
|
|
ip_hdr->dst_addr = rte_cpu_to_be_32(tx_ip_dst_addr);
|
|
|
|
/*
|
|
* Compute IP header checksum.
|
|
*/
|
|
ptr16 = (unaligned_uint16_t*) ip_hdr;
|
|
ip_cksum = 0;
|
|
ip_cksum += ptr16[0]; ip_cksum += ptr16[1];
|
|
ip_cksum += ptr16[2]; ip_cksum += ptr16[3];
|
|
ip_cksum += ptr16[4];
|
|
ip_cksum += ptr16[6]; ip_cksum += ptr16[7];
|
|
ip_cksum += ptr16[8]; ip_cksum += ptr16[9];
|
|
|
|
/*
|
|
* Reduce 32 bit checksum to 16 bits and complement it.
|
|
*/
|
|
ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) +
|
|
(ip_cksum & 0x0000FFFF);
|
|
if (ip_cksum > 65535)
|
|
ip_cksum -= 65535;
|
|
ip_cksum = (~ip_cksum) & 0x0000FFFF;
|
|
if (ip_cksum == 0)
|
|
ip_cksum = 0xFFFF;
|
|
ip_hdr->hdr_checksum = (uint16_t) ip_cksum;
|
|
}
|
|
|
|
static inline void
|
|
update_pkt_header(struct rte_mbuf *pkt, uint32_t total_pkt_len)
|
|
{
|
|
struct rte_ipv4_hdr *ip_hdr;
|
|
struct rte_udp_hdr *udp_hdr;
|
|
uint16_t pkt_data_len;
|
|
uint16_t pkt_len;
|
|
|
|
pkt_data_len = (uint16_t) (total_pkt_len - (
|
|
sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr) +
|
|
sizeof(struct rte_udp_hdr)));
|
|
/* update UDP packet length */
|
|
udp_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *,
|
|
sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr));
|
|
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
|
|
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
|
|
|
|
/* update IP packet length and checksum */
|
|
ip_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
|
|
sizeof(struct rte_ether_hdr));
|
|
ip_hdr->hdr_checksum = 0;
|
|
pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
|
|
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
|
|
ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr);
|
|
}
|
|
|
|
static inline bool
|
|
pkt_burst_prepare(struct rte_mbuf *pkt, struct rte_mempool *mbp,
|
|
struct rte_ether_hdr *eth_hdr, const uint16_t vlan_tci,
|
|
const uint16_t vlan_tci_outer, const uint64_t ol_flags,
|
|
const uint16_t idx, struct fwd_stream *fs)
|
|
{
|
|
struct rte_mbuf *pkt_segs[RTE_MAX_SEGS_PER_PKT];
|
|
struct rte_mbuf *pkt_seg;
|
|
uint32_t nb_segs, pkt_len;
|
|
uint8_t i;
|
|
|
|
if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND))
|
|
nb_segs = rte_rand() % tx_pkt_nb_segs + 1;
|
|
else
|
|
nb_segs = tx_pkt_nb_segs;
|
|
|
|
if (nb_segs > 1) {
|
|
if (rte_mempool_get_bulk(mbp, (void **)pkt_segs, nb_segs - 1))
|
|
return false;
|
|
}
|
|
|
|
rte_pktmbuf_reset_headroom(pkt);
|
|
pkt->data_len = tx_pkt_seg_lengths[0];
|
|
pkt->ol_flags &= RTE_MBUF_F_EXTERNAL;
|
|
pkt->ol_flags |= ol_flags;
|
|
pkt->vlan_tci = vlan_tci;
|
|
pkt->vlan_tci_outer = vlan_tci_outer;
|
|
pkt->l2_len = sizeof(struct rte_ether_hdr);
|
|
pkt->l3_len = sizeof(struct rte_ipv4_hdr);
|
|
|
|
pkt_len = pkt->data_len;
|
|
pkt_seg = pkt;
|
|
for (i = 1; i < nb_segs; i++) {
|
|
pkt_seg->next = pkt_segs[i - 1];
|
|
pkt_seg = pkt_seg->next;
|
|
pkt_seg->data_len = tx_pkt_seg_lengths[i];
|
|
pkt_len += pkt_seg->data_len;
|
|
}
|
|
pkt_seg->next = NULL; /* Last segment of packet. */
|
|
/*
|
|
* Copy headers in first packet segment(s).
|
|
*/
|
|
copy_buf_to_pkt(eth_hdr, sizeof(*eth_hdr), pkt, 0);
|
|
copy_buf_to_pkt(&pkt_ip_hdr, sizeof(pkt_ip_hdr), pkt,
|
|
sizeof(struct rte_ether_hdr));
|
|
if (txonly_multi_flow) {
|
|
uint8_t ip_var = RTE_PER_LCORE(_ip_var);
|
|
struct rte_ipv4_hdr *ip_hdr;
|
|
uint32_t addr;
|
|
|
|
ip_hdr = rte_pktmbuf_mtod_offset(pkt,
|
|
struct rte_ipv4_hdr *,
|
|
sizeof(struct rte_ether_hdr));
|
|
/*
|
|
* Generate multiple flows by varying IP src addr. This
|
|
* enables packets are well distributed by RSS in
|
|
* receiver side if any and txonly mode can be a decent
|
|
* packet generator for developer's quick performance
|
|
* regression test.
|
|
*/
|
|
addr = (tx_ip_dst_addr | (ip_var++ << 8)) + rte_lcore_id();
|
|
ip_hdr->src_addr = rte_cpu_to_be_32(addr);
|
|
RTE_PER_LCORE(_ip_var) = ip_var;
|
|
}
|
|
copy_buf_to_pkt(&pkt_udp_hdr, sizeof(pkt_udp_hdr), pkt,
|
|
sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr));
|
|
|
|
if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND) || txonly_multi_flow)
|
|
update_pkt_header(pkt, pkt_len);
|
|
|
|
if (unlikely(timestamp_enable)) {
|
|
uint64_t skew = fs->ts_skew;
|
|
struct tx_timestamp timestamp_mark;
|
|
|
|
if (unlikely(!skew)) {
|
|
struct rte_eth_dev_info dev_info;
|
|
unsigned int txqs_n;
|
|
uint64_t phase;
|
|
int ret;
|
|
|
|
ret = eth_dev_info_get_print_err(fs->tx_port, &dev_info);
|
|
if (ret != 0) {
|
|
TESTPMD_LOG(ERR,
|
|
"Failed to get device info for port %d,"
|
|
"could not finish timestamp init",
|
|
fs->tx_port);
|
|
return false;
|
|
}
|
|
txqs_n = dev_info.nb_tx_queues;
|
|
phase = tx_pkt_times_inter * fs->tx_queue /
|
|
(txqs_n ? txqs_n : 1);
|
|
/*
|
|
* Initialize the scheduling time phase shift
|
|
* depending on queue index.
|
|
*/
|
|
skew = timestamp_initial[fs->tx_port] +
|
|
tx_pkt_times_inter + phase;
|
|
fs->ts_skew = skew;
|
|
}
|
|
timestamp_mark.pkt_idx = rte_cpu_to_be_16(idx);
|
|
timestamp_mark.queue_idx = rte_cpu_to_be_16(fs->tx_queue);
|
|
timestamp_mark.signature = rte_cpu_to_be_32(0xBEEFC0DE);
|
|
if (unlikely(!idx)) {
|
|
skew += tx_pkt_times_inter;
|
|
pkt->ol_flags |= timestamp_mask;
|
|
*RTE_MBUF_DYNFIELD
|
|
(pkt, timestamp_off, uint64_t *) = skew;
|
|
fs->ts_skew = skew;
|
|
timestamp_mark.ts = rte_cpu_to_be_64(skew);
|
|
} else if (tx_pkt_times_intra) {
|
|
skew += tx_pkt_times_intra;
|
|
pkt->ol_flags |= timestamp_mask;
|
|
*RTE_MBUF_DYNFIELD
|
|
(pkt, timestamp_off, uint64_t *) = skew;
|
|
fs->ts_skew = skew;
|
|
timestamp_mark.ts = rte_cpu_to_be_64(skew);
|
|
} else {
|
|
timestamp_mark.ts = RTE_BE64(0);
|
|
}
|
|
copy_buf_to_pkt(×tamp_mark, sizeof(timestamp_mark), pkt,
|
|
sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr) +
|
|
sizeof(pkt_udp_hdr));
|
|
}
|
|
/*
|
|
* Complete first mbuf of packet and append it to the
|
|
* burst of packets to be transmitted.
|
|
*/
|
|
pkt->nb_segs = nb_segs;
|
|
pkt->pkt_len = pkt_len;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Transmit a burst of multi-segments packets.
|
|
*/
|
|
static void
|
|
pkt_burst_transmit(struct fwd_stream *fs)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
struct rte_port *txp;
|
|
struct rte_mbuf *pkt;
|
|
struct rte_mempool *mbp;
|
|
struct rte_ether_hdr eth_hdr;
|
|
uint16_t nb_tx;
|
|
uint16_t nb_pkt;
|
|
uint16_t vlan_tci, vlan_tci_outer;
|
|
uint32_t retry;
|
|
uint64_t ol_flags = 0;
|
|
uint64_t tx_offloads;
|
|
uint64_t start_tsc = 0;
|
|
|
|
get_start_cycles(&start_tsc);
|
|
|
|
mbp = current_fwd_lcore()->mbp;
|
|
txp = &ports[fs->tx_port];
|
|
tx_offloads = txp->dev_conf.txmode.offloads;
|
|
vlan_tci = txp->tx_vlan_id;
|
|
vlan_tci_outer = txp->tx_vlan_id_outer;
|
|
if (tx_offloads & RTE_ETH_TX_OFFLOAD_VLAN_INSERT)
|
|
ol_flags = RTE_MBUF_F_TX_VLAN;
|
|
if (tx_offloads & RTE_ETH_TX_OFFLOAD_QINQ_INSERT)
|
|
ol_flags |= RTE_MBUF_F_TX_QINQ;
|
|
if (tx_offloads & RTE_ETH_TX_OFFLOAD_MACSEC_INSERT)
|
|
ol_flags |= RTE_MBUF_F_TX_MACSEC;
|
|
|
|
/*
|
|
* Initialize Ethernet header.
|
|
*/
|
|
rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], ð_hdr.dst_addr);
|
|
rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, ð_hdr.src_addr);
|
|
eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
|
|
|
|
if (rte_mempool_get_bulk(mbp, (void **)pkts_burst,
|
|
nb_pkt_per_burst) == 0) {
|
|
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
|
|
if (unlikely(!pkt_burst_prepare(pkts_burst[nb_pkt], mbp,
|
|
ð_hdr, vlan_tci,
|
|
vlan_tci_outer,
|
|
ol_flags,
|
|
nb_pkt, fs))) {
|
|
rte_mempool_put_bulk(mbp,
|
|
(void **)&pkts_burst[nb_pkt],
|
|
nb_pkt_per_burst - nb_pkt);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
|
|
pkt = rte_mbuf_raw_alloc(mbp);
|
|
if (pkt == NULL)
|
|
break;
|
|
if (unlikely(!pkt_burst_prepare(pkt, mbp, ð_hdr,
|
|
vlan_tci,
|
|
vlan_tci_outer,
|
|
ol_flags,
|
|
nb_pkt, fs))) {
|
|
rte_pktmbuf_free(pkt);
|
|
break;
|
|
}
|
|
pkts_burst[nb_pkt] = pkt;
|
|
}
|
|
}
|
|
|
|
if (nb_pkt == 0)
|
|
return;
|
|
|
|
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt);
|
|
|
|
/*
|
|
* Retry if necessary
|
|
*/
|
|
if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) {
|
|
retry = 0;
|
|
while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) {
|
|
rte_delay_us(burst_tx_delay_time);
|
|
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
|
|
&pkts_burst[nb_tx], nb_pkt - nb_tx);
|
|
}
|
|
}
|
|
fs->tx_packets += nb_tx;
|
|
|
|
if (txonly_multi_flow)
|
|
RTE_PER_LCORE(_ip_var) -= nb_pkt - nb_tx;
|
|
|
|
inc_tx_burst_stats(fs, nb_tx);
|
|
if (unlikely(nb_tx < nb_pkt)) {
|
|
if (verbose_level > 0 && fs->fwd_dropped == 0)
|
|
printf("port %d tx_queue %d - drop "
|
|
"(nb_pkt:%u - nb_tx:%u)=%u packets\n",
|
|
fs->tx_port, fs->tx_queue,
|
|
(unsigned) nb_pkt, (unsigned) nb_tx,
|
|
(unsigned) (nb_pkt - nb_tx));
|
|
fs->fwd_dropped += (nb_pkt - nb_tx);
|
|
do {
|
|
rte_pktmbuf_free(pkts_burst[nb_tx]);
|
|
} while (++nb_tx < nb_pkt);
|
|
}
|
|
|
|
get_end_cycles(fs, start_tsc);
|
|
}
|
|
|
|
static int
|
|
tx_only_begin(portid_t pi)
|
|
{
|
|
uint16_t pkt_hdr_len, pkt_data_len;
|
|
int dynf;
|
|
|
|
pkt_hdr_len = (uint16_t)(sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr) +
|
|
sizeof(struct rte_udp_hdr));
|
|
pkt_data_len = tx_pkt_length - pkt_hdr_len;
|
|
|
|
if ((tx_pkt_split == TX_PKT_SPLIT_RND || txonly_multi_flow) &&
|
|
tx_pkt_seg_lengths[0] < pkt_hdr_len) {
|
|
TESTPMD_LOG(ERR,
|
|
"Random segment number or multiple flow is enabled, "
|
|
"but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
|
|
tx_pkt_seg_lengths[0], pkt_hdr_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
setup_pkt_udp_ip_headers(&pkt_ip_hdr, &pkt_udp_hdr, pkt_data_len);
|
|
|
|
timestamp_enable = false;
|
|
timestamp_mask = 0;
|
|
timestamp_off = -1;
|
|
dynf = rte_mbuf_dynflag_lookup
|
|
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
|
|
if (dynf >= 0)
|
|
timestamp_mask = 1ULL << dynf;
|
|
dynf = rte_mbuf_dynfield_lookup
|
|
(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
|
|
if (dynf >= 0)
|
|
timestamp_off = dynf;
|
|
timestamp_enable = tx_pkt_times_inter &&
|
|
timestamp_mask &&
|
|
timestamp_off >= 0 &&
|
|
!rte_eth_read_clock(pi, ×tamp_initial[pi]);
|
|
|
|
if (timestamp_enable) {
|
|
pkt_hdr_len += sizeof(struct tx_timestamp);
|
|
|
|
if (tx_pkt_split == TX_PKT_SPLIT_RND) {
|
|
if (tx_pkt_seg_lengths[0] < pkt_hdr_len) {
|
|
TESTPMD_LOG(ERR,
|
|
"Time stamp and random segment number are enabled, "
|
|
"but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
|
|
tx_pkt_seg_lengths[0], pkt_hdr_len);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
uint16_t total = 0;
|
|
uint8_t i;
|
|
|
|
for (i = 0; i < tx_pkt_nb_segs; i++) {
|
|
total += tx_pkt_seg_lengths[i];
|
|
if (total >= pkt_hdr_len)
|
|
break;
|
|
}
|
|
|
|
if (total < pkt_hdr_len) {
|
|
TESTPMD_LOG(ERR,
|
|
"Not enough Tx segment space for time stamp info, "
|
|
"total %u < %u (needed)\n",
|
|
total, pkt_hdr_len);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make sure all settings are visible on forwarding cores.*/
|
|
rte_wmb();
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
tx_only_stream_init(struct fwd_stream *fs)
|
|
{
|
|
fs->disabled = ports[fs->tx_port].txq[fs->tx_queue].state ==
|
|
RTE_ETH_QUEUE_STATE_STOPPED;
|
|
}
|
|
|
|
struct fwd_engine tx_only_engine = {
|
|
.fwd_mode_name = "txonly",
|
|
.port_fwd_begin = tx_only_begin,
|
|
.port_fwd_end = NULL,
|
|
.stream_init = tx_only_stream_init,
|
|
.packet_fwd = pkt_burst_transmit,
|
|
};
|