numam-dpdk/drivers/net/enetc/enetc_ethdev.c
Olivier Matz 35b2d13fd6 net: add rte prefix to ether defines
Add 'RTE_' prefix to defines:
- rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN.
- rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN.
- rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN.
- rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN.
- rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN.
- rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN.
- rename ETHER_MTU as RTE_ETHER_MTU.
- rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN.
- rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID.
- rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN.
- rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU.
- rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR.
- rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR.
- rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4.
- rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6.
- rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP.
- rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN.
- rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP.
- rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ.
- rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG.
- rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588.
- rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW.
- rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB.
- rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP.
- rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS.
- rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM.
- rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN.
- rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE.
- rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4.
- rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6.
- rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH.
- rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH.
- rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS.
- rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP.
- rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG.
- rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN.

Do not update the command line library to avoid adding a dependency to
librte_net.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Reviewed-by: Stephen Hemminger <stephen@networkplumber.org>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-24 13:34:45 +02:00

899 lines
23 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018-2019 NXP
*/
#include <stdbool.h>
#include <rte_ethdev_pci.h>
#include "enetc_logs.h"
#include "enetc.h"
int enetc_logtype_pmd;
static int
enetc_dev_start(struct rte_eth_dev *dev)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
uint32_t val;
PMD_INIT_FUNC_TRACE();
val = enetc_port_rd(enetc_hw, ENETC_PM0_CMD_CFG);
enetc_port_wr(enetc_hw, ENETC_PM0_CMD_CFG,
val | ENETC_PM0_TX_EN | ENETC_PM0_RX_EN);
/* Enable port */
val = enetc_port_rd(enetc_hw, ENETC_PMR);
enetc_port_wr(enetc_hw, ENETC_PMR, val | ENETC_PMR_EN);
/* set auto-speed for RGMII */
if (enetc_port_rd(enetc_hw, ENETC_PM0_IF_MODE) & ENETC_PMO_IFM_RG) {
enetc_port_wr(enetc_hw, ENETC_PM0_IF_MODE,
ENETC_PM0_IFM_RGAUTO);
enetc_port_wr(enetc_hw, ENETC_PM1_IF_MODE,
ENETC_PM0_IFM_RGAUTO);
}
if (enetc_global_rd(enetc_hw,
ENETC_G_EPFBLPR(1)) == ENETC_G_EPFBLPR1_XGMII) {
enetc_port_wr(enetc_hw, ENETC_PM0_IF_MODE,
ENETC_PM0_IFM_XGMII);
enetc_port_wr(enetc_hw, ENETC_PM1_IF_MODE,
ENETC_PM0_IFM_XGMII);
}
return 0;
}
static void
enetc_dev_stop(struct rte_eth_dev *dev)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
uint32_t val;
PMD_INIT_FUNC_TRACE();
/* Disable port */
val = enetc_port_rd(enetc_hw, ENETC_PMR);
enetc_port_wr(enetc_hw, ENETC_PMR, val & (~ENETC_PMR_EN));
val = enetc_port_rd(enetc_hw, ENETC_PM0_CMD_CFG);
enetc_port_wr(enetc_hw, ENETC_PM0_CMD_CFG,
val & (~(ENETC_PM0_TX_EN | ENETC_PM0_RX_EN)));
}
static const uint32_t *
enetc_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_UNKNOWN
};
return ptypes;
}
/* return 0 means link status changed, -1 means not changed */
static int
enetc_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
struct rte_eth_link link;
uint32_t status;
PMD_INIT_FUNC_TRACE();
memset(&link, 0, sizeof(link));
status = enetc_port_rd(enetc_hw, ENETC_PM0_STATUS);
if (status & ENETC_LINK_MODE)
link.link_duplex = ETH_LINK_FULL_DUPLEX;
else
link.link_duplex = ETH_LINK_HALF_DUPLEX;
if (status & ENETC_LINK_STATUS)
link.link_status = ETH_LINK_UP;
else
link.link_status = ETH_LINK_DOWN;
switch (status & ENETC_LINK_SPEED_MASK) {
case ENETC_LINK_SPEED_1G:
link.link_speed = ETH_SPEED_NUM_1G;
break;
case ENETC_LINK_SPEED_100M:
link.link_speed = ETH_SPEED_NUM_100M;
break;
default:
case ENETC_LINK_SPEED_10M:
link.link_speed = ETH_SPEED_NUM_10M;
}
return rte_eth_linkstatus_set(dev, &link);
}
static int
enetc_hardware_init(struct enetc_eth_hw *hw)
{
struct enetc_hw *enetc_hw = &hw->hw;
uint32_t *mac = (uint32_t *)hw->mac.addr;
PMD_INIT_FUNC_TRACE();
/* Calculating and storing the base HW addresses */
hw->hw.port = (void *)((size_t)hw->hw.reg + ENETC_PORT_BASE);
hw->hw.global = (void *)((size_t)hw->hw.reg + ENETC_GLOBAL_BASE);
/* Enabling Station Interface */
enetc_wr(enetc_hw, ENETC_SIMR, ENETC_SIMR_EN);
*mac = (uint32_t)enetc_port_rd(enetc_hw, ENETC_PSIPMAR0(0));
mac++;
*mac = (uint16_t)enetc_port_rd(enetc_hw, ENETC_PSIPMAR1(0));
return 0;
}
static void
enetc_dev_infos_get(struct rte_eth_dev *dev __rte_unused,
struct rte_eth_dev_info *dev_info)
{
PMD_INIT_FUNC_TRACE();
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = MAX_BD_COUNT,
.nb_min = MIN_BD_COUNT,
.nb_align = BD_ALIGN,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = MAX_BD_COUNT,
.nb_min = MIN_BD_COUNT,
.nb_align = BD_ALIGN,
};
dev_info->max_rx_queues = MAX_RX_RINGS;
dev_info->max_tx_queues = MAX_TX_RINGS;
dev_info->max_rx_pktlen = ENETC_MAC_MAXFRM_SIZE;
dev_info->rx_offload_capa =
(DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_KEEP_CRC |
DEV_RX_OFFLOAD_JUMBO_FRAME);
}
static int
enetc_alloc_txbdr(struct enetc_bdr *txr, uint16_t nb_desc)
{
int size;
size = nb_desc * sizeof(struct enetc_swbd);
txr->q_swbd = rte_malloc(NULL, size, RTE_CACHE_LINE_SIZE);
if (txr->q_swbd == NULL)
return -ENOMEM;
size = nb_desc * sizeof(struct enetc_tx_bd);
txr->bd_base = rte_malloc(NULL, size, RTE_CACHE_LINE_SIZE);
if (txr->bd_base == NULL) {
rte_free(txr->q_swbd);
txr->q_swbd = NULL;
return -ENOMEM;
}
txr->bd_count = nb_desc;
txr->next_to_clean = 0;
txr->next_to_use = 0;
return 0;
}
static void
enetc_free_bdr(struct enetc_bdr *rxr)
{
rte_free(rxr->q_swbd);
rte_free(rxr->bd_base);
rxr->q_swbd = NULL;
rxr->bd_base = NULL;
}
static void
enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
{
int idx = tx_ring->index;
phys_addr_t bd_address;
bd_address = (phys_addr_t)
rte_mem_virt2iova((const void *)tx_ring->bd_base);
enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
lower_32_bits((uint64_t)bd_address));
enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
upper_32_bits((uint64_t)bd_address));
enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
ENETC_RTBLENR_LEN(tx_ring->bd_count));
enetc_txbdr_wr(hw, idx, ENETC_TBCIR, 0);
enetc_txbdr_wr(hw, idx, ENETC_TBCISR, 0);
tx_ring->tcir = (void *)((size_t)hw->reg +
ENETC_BDR(TX, idx, ENETC_TBCIR));
tx_ring->tcisr = (void *)((size_t)hw->reg +
ENETC_BDR(TX, idx, ENETC_TBCISR));
}
static int
enetc_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf)
{
int err = 0;
struct enetc_bdr *tx_ring;
struct rte_eth_dev_data *data = dev->data;
struct enetc_eth_adapter *priv =
ENETC_DEV_PRIVATE(data->dev_private);
PMD_INIT_FUNC_TRACE();
if (nb_desc > MAX_BD_COUNT)
return -1;
tx_ring = rte_zmalloc(NULL, sizeof(struct enetc_bdr), 0);
if (tx_ring == NULL) {
ENETC_PMD_ERR("Failed to allocate TX ring memory");
err = -ENOMEM;
return -1;
}
err = enetc_alloc_txbdr(tx_ring, nb_desc);
if (err)
goto fail;
tx_ring->index = queue_idx;
tx_ring->ndev = dev;
enetc_setup_txbdr(&priv->hw.hw, tx_ring);
data->tx_queues[queue_idx] = tx_ring;
if (!tx_conf->tx_deferred_start) {
/* enable ring */
enetc_txbdr_wr(&priv->hw.hw, tx_ring->index,
ENETC_TBMR, ENETC_TBMR_EN);
dev->data->tx_queue_state[tx_ring->index] =
RTE_ETH_QUEUE_STATE_STARTED;
} else {
dev->data->tx_queue_state[tx_ring->index] =
RTE_ETH_QUEUE_STATE_STOPPED;
}
return 0;
fail:
rte_free(tx_ring);
return err;
}
static void
enetc_tx_queue_release(void *txq)
{
if (txq == NULL)
return;
struct enetc_bdr *tx_ring = (struct enetc_bdr *)txq;
struct enetc_eth_hw *eth_hw =
ENETC_DEV_PRIVATE_TO_HW(tx_ring->ndev->data->dev_private);
struct enetc_hw *hw;
struct enetc_swbd *tx_swbd;
int i;
uint32_t val;
/* Disable the ring */
hw = &eth_hw->hw;
val = enetc_txbdr_rd(hw, tx_ring->index, ENETC_TBMR);
val &= (~ENETC_TBMR_EN);
enetc_txbdr_wr(hw, tx_ring->index, ENETC_TBMR, val);
/* clean the ring*/
i = tx_ring->next_to_clean;
tx_swbd = &tx_ring->q_swbd[i];
while (tx_swbd->buffer_addr != NULL) {
rte_pktmbuf_free(tx_swbd->buffer_addr);
tx_swbd->buffer_addr = NULL;
tx_swbd++;
i++;
if (unlikely(i == tx_ring->bd_count)) {
i = 0;
tx_swbd = &tx_ring->q_swbd[i];
}
}
enetc_free_bdr(tx_ring);
rte_free(tx_ring);
}
static int
enetc_alloc_rxbdr(struct enetc_bdr *rxr,
uint16_t nb_rx_desc)
{
int size;
size = nb_rx_desc * sizeof(struct enetc_swbd);
rxr->q_swbd = rte_malloc(NULL, size, RTE_CACHE_LINE_SIZE);
if (rxr->q_swbd == NULL)
return -ENOMEM;
size = nb_rx_desc * sizeof(union enetc_rx_bd);
rxr->bd_base = rte_malloc(NULL, size, RTE_CACHE_LINE_SIZE);
if (rxr->bd_base == NULL) {
rte_free(rxr->q_swbd);
rxr->q_swbd = NULL;
return -ENOMEM;
}
rxr->bd_count = nb_rx_desc;
rxr->next_to_clean = 0;
rxr->next_to_use = 0;
rxr->next_to_alloc = 0;
return 0;
}
static void
enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring,
struct rte_mempool *mb_pool)
{
int idx = rx_ring->index;
uint16_t buf_size;
phys_addr_t bd_address;
bd_address = (phys_addr_t)
rte_mem_virt2iova((const void *)rx_ring->bd_base);
enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
lower_32_bits((uint64_t)bd_address));
enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
upper_32_bits((uint64_t)bd_address));
enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
ENETC_RTBLENR_LEN(rx_ring->bd_count));
rx_ring->mb_pool = mb_pool;
rx_ring->rcir = (void *)((size_t)hw->reg +
ENETC_BDR(RX, idx, ENETC_RBCIR));
enetc_refill_rx_ring(rx_ring, (enetc_bd_unused(rx_ring)));
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rx_ring->mb_pool) -
RTE_PKTMBUF_HEADROOM);
enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, buf_size);
enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
}
static int
enetc_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
int err = 0;
struct enetc_bdr *rx_ring;
struct rte_eth_dev_data *data = dev->data;
struct enetc_eth_adapter *adapter =
ENETC_DEV_PRIVATE(data->dev_private);
uint64_t rx_offloads = data->dev_conf.rxmode.offloads;
PMD_INIT_FUNC_TRACE();
if (nb_rx_desc > MAX_BD_COUNT)
return -1;
rx_ring = rte_zmalloc(NULL, sizeof(struct enetc_bdr), 0);
if (rx_ring == NULL) {
ENETC_PMD_ERR("Failed to allocate RX ring memory");
err = -ENOMEM;
return err;
}
err = enetc_alloc_rxbdr(rx_ring, nb_rx_desc);
if (err)
goto fail;
rx_ring->index = rx_queue_id;
rx_ring->ndev = dev;
enetc_setup_rxbdr(&adapter->hw.hw, rx_ring, mb_pool);
data->rx_queues[rx_queue_id] = rx_ring;
if (!rx_conf->rx_deferred_start) {
/* enable ring */
enetc_rxbdr_wr(&adapter->hw.hw, rx_ring->index, ENETC_RBMR,
ENETC_RBMR_EN);
dev->data->rx_queue_state[rx_ring->index] =
RTE_ETH_QUEUE_STATE_STARTED;
} else {
dev->data->rx_queue_state[rx_ring->index] =
RTE_ETH_QUEUE_STATE_STOPPED;
}
rx_ring->crc_len = (uint8_t)((rx_offloads & DEV_RX_OFFLOAD_KEEP_CRC) ?
RTE_ETHER_CRC_LEN : 0);
return 0;
fail:
rte_free(rx_ring);
return err;
}
static void
enetc_rx_queue_release(void *rxq)
{
if (rxq == NULL)
return;
struct enetc_bdr *rx_ring = (struct enetc_bdr *)rxq;
struct enetc_eth_hw *eth_hw =
ENETC_DEV_PRIVATE_TO_HW(rx_ring->ndev->data->dev_private);
struct enetc_swbd *q_swbd;
struct enetc_hw *hw;
uint32_t val;
int i;
/* Disable the ring */
hw = &eth_hw->hw;
val = enetc_rxbdr_rd(hw, rx_ring->index, ENETC_RBMR);
val &= (~ENETC_RBMR_EN);
enetc_rxbdr_wr(hw, rx_ring->index, ENETC_RBMR, val);
/* Clean the ring */
i = rx_ring->next_to_clean;
q_swbd = &rx_ring->q_swbd[i];
while (i != rx_ring->next_to_use) {
rte_pktmbuf_free(q_swbd->buffer_addr);
q_swbd->buffer_addr = NULL;
q_swbd++;
i++;
if (unlikely(i == rx_ring->bd_count)) {
i = 0;
q_swbd = &rx_ring->q_swbd[i];
}
}
enetc_free_bdr(rx_ring);
rte_free(rx_ring);
}
static
int enetc_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
/* Total received packets, bad + good, if we want to get counters of
* only good received packets then use ENETC_PM0_RFRM,
* ENETC_PM0_TFRM registers.
*/
stats->ipackets = enetc_port_rd(enetc_hw, ENETC_PM0_RPKT);
stats->opackets = enetc_port_rd(enetc_hw, ENETC_PM0_TPKT);
stats->ibytes = enetc_port_rd(enetc_hw, ENETC_PM0_REOCT);
stats->obytes = enetc_port_rd(enetc_hw, ENETC_PM0_TEOCT);
/* Dropped + Truncated packets, use ENETC_PM0_RDRNTP for without
* truncated packets
*/
stats->imissed = enetc_port_rd(enetc_hw, ENETC_PM0_RDRP);
stats->ierrors = enetc_port_rd(enetc_hw, ENETC_PM0_RERR);
stats->oerrors = enetc_port_rd(enetc_hw, ENETC_PM0_TERR);
return 0;
}
static void
enetc_stats_reset(struct rte_eth_dev *dev)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
enetc_port_wr(enetc_hw, ENETC_PM0_STAT_CONFIG, ENETC_CLEAR_STATS);
}
static void
enetc_dev_close(struct rte_eth_dev *dev)
{
uint16_t i;
PMD_INIT_FUNC_TRACE();
enetc_dev_stop(dev);
for (i = 0; i < dev->data->nb_rx_queues; i++) {
enetc_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
enetc_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
static void
enetc_promiscuous_enable(struct rte_eth_dev *dev)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
uint32_t psipmr = 0;
psipmr = enetc_port_rd(enetc_hw, ENETC_PSIPMR);
/* Setting to enable promiscuous mode*/
psipmr |= ENETC_PSIPMR_SET_UP(0) | ENETC_PSIPMR_SET_MP(0);
enetc_port_wr(enetc_hw, ENETC_PSIPMR, psipmr);
}
static void
enetc_promiscuous_disable(struct rte_eth_dev *dev)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
uint32_t psipmr = 0;
/* Setting to disable promiscuous mode for SI0*/
psipmr = enetc_port_rd(enetc_hw, ENETC_PSIPMR);
psipmr &= (~ENETC_PSIPMR_SET_UP(0));
if (dev->data->all_multicast == 0)
psipmr &= (~ENETC_PSIPMR_SET_MP(0));
enetc_port_wr(enetc_hw, ENETC_PSIPMR, psipmr);
}
static void
enetc_allmulticast_enable(struct rte_eth_dev *dev)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
uint32_t psipmr = 0;
psipmr = enetc_port_rd(enetc_hw, ENETC_PSIPMR);
/* Setting to enable allmulticast mode for SI0*/
psipmr |= ENETC_PSIPMR_SET_MP(0);
enetc_port_wr(enetc_hw, ENETC_PSIPMR, psipmr);
}
static void
enetc_allmulticast_disable(struct rte_eth_dev *dev)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
uint32_t psipmr = 0;
if (dev->data->promiscuous == 1)
return; /* must remain in all_multicast mode */
/* Setting to disable all multicast mode for SI0*/
psipmr = enetc_port_rd(enetc_hw, ENETC_PSIPMR) &
~(ENETC_PSIPMR_SET_MP(0));
enetc_port_wr(enetc_hw, ENETC_PSIPMR, psipmr);
}
static int
enetc_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
uint32_t frame_size = mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN;
/* check that mtu is within the allowed range */
if (mtu < ENETC_MAC_MINFRM_SIZE || frame_size > ENETC_MAC_MAXFRM_SIZE)
return -EINVAL;
/*
* Refuse mtu that requires the support of scattered packets
* when this feature has not been enabled before.
*/
if (dev->data->min_rx_buf_size &&
!dev->data->scattered_rx && frame_size >
dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
ENETC_PMD_ERR("SG not enabled, will not fit in one buffer");
return -EINVAL;
}
if (frame_size > RTE_ETHER_MAX_LEN)
dev->data->dev_conf.rxmode.offloads &=
DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev->data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
enetc_port_wr(enetc_hw, ENETC_PTCMSDUR(0), ENETC_MAC_MAXFRM_SIZE);
enetc_port_wr(enetc_hw, ENETC_PTXMBAR, 2 * ENETC_MAC_MAXFRM_SIZE);
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
/*setting the MTU*/
enetc_port_wr(enetc_hw, ENETC_PM0_MAXFRM, ENETC_SET_MAXFRM(frame_size) |
ENETC_SET_TX_MTU(ENETC_MAC_MAXFRM_SIZE));
return 0;
}
static int
enetc_dev_configure(struct rte_eth_dev *dev)
{
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct enetc_hw *enetc_hw = &hw->hw;
struct rte_eth_conf *eth_conf = &dev->data->dev_conf;
uint64_t rx_offloads = eth_conf->rxmode.offloads;
uint32_t checksum = L3_CKSUM | L4_CKSUM;
PMD_INIT_FUNC_TRACE();
if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
uint32_t max_len;
max_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
enetc_port_wr(enetc_hw, ENETC_PM0_MAXFRM,
ENETC_SET_MAXFRM(max_len));
enetc_port_wr(enetc_hw, ENETC_PTCMSDUR(0),
ENETC_MAC_MAXFRM_SIZE);
enetc_port_wr(enetc_hw, ENETC_PTXMBAR,
2 * ENETC_MAC_MAXFRM_SIZE);
dev->data->mtu = RTE_ETHER_MAX_LEN - RTE_ETHER_HDR_LEN -
RTE_ETHER_CRC_LEN;
}
if (rx_offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
int config;
config = enetc_port_rd(enetc_hw, ENETC_PM0_CMD_CFG);
config |= ENETC_PM0_CRC;
enetc_port_wr(enetc_hw, ENETC_PM0_CMD_CFG, config);
}
if (rx_offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
checksum &= ~L3_CKSUM;
if (rx_offloads & (DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM))
checksum &= ~L4_CKSUM;
enetc_port_wr(enetc_hw, ENETC_PAR_PORT_CFG, checksum);
return 0;
}
static int
enetc_rx_queue_start(struct rte_eth_dev *dev, uint16_t qidx)
{
struct enetc_eth_adapter *priv =
ENETC_DEV_PRIVATE(dev->data->dev_private);
struct enetc_bdr *rx_ring;
uint32_t rx_data;
rx_ring = dev->data->rx_queues[qidx];
if (dev->data->rx_queue_state[qidx] == RTE_ETH_QUEUE_STATE_STOPPED) {
rx_data = enetc_rxbdr_rd(&priv->hw.hw, rx_ring->index,
ENETC_RBMR);
rx_data = rx_data | ENETC_RBMR_EN;
enetc_rxbdr_wr(&priv->hw.hw, rx_ring->index, ENETC_RBMR,
rx_data);
dev->data->rx_queue_state[qidx] = RTE_ETH_QUEUE_STATE_STARTED;
}
return 0;
}
static int
enetc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t qidx)
{
struct enetc_eth_adapter *priv =
ENETC_DEV_PRIVATE(dev->data->dev_private);
struct enetc_bdr *rx_ring;
uint32_t rx_data;
rx_ring = dev->data->rx_queues[qidx];
if (dev->data->rx_queue_state[qidx] == RTE_ETH_QUEUE_STATE_STARTED) {
rx_data = enetc_rxbdr_rd(&priv->hw.hw, rx_ring->index,
ENETC_RBMR);
rx_data = rx_data & (~ENETC_RBMR_EN);
enetc_rxbdr_wr(&priv->hw.hw, rx_ring->index, ENETC_RBMR,
rx_data);
dev->data->rx_queue_state[qidx] = RTE_ETH_QUEUE_STATE_STOPPED;
}
return 0;
}
static int
enetc_tx_queue_start(struct rte_eth_dev *dev, uint16_t qidx)
{
struct enetc_eth_adapter *priv =
ENETC_DEV_PRIVATE(dev->data->dev_private);
struct enetc_bdr *tx_ring;
uint32_t tx_data;
tx_ring = dev->data->tx_queues[qidx];
if (dev->data->tx_queue_state[qidx] == RTE_ETH_QUEUE_STATE_STOPPED) {
tx_data = enetc_txbdr_rd(&priv->hw.hw, tx_ring->index,
ENETC_TBMR);
tx_data = tx_data | ENETC_TBMR_EN;
enetc_txbdr_wr(&priv->hw.hw, tx_ring->index, ENETC_TBMR,
tx_data);
dev->data->tx_queue_state[qidx] = RTE_ETH_QUEUE_STATE_STARTED;
}
return 0;
}
static int
enetc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t qidx)
{
struct enetc_eth_adapter *priv =
ENETC_DEV_PRIVATE(dev->data->dev_private);
struct enetc_bdr *tx_ring;
uint32_t tx_data;
tx_ring = dev->data->tx_queues[qidx];
if (dev->data->tx_queue_state[qidx] == RTE_ETH_QUEUE_STATE_STARTED) {
tx_data = enetc_txbdr_rd(&priv->hw.hw, tx_ring->index,
ENETC_TBMR);
tx_data = tx_data & (~ENETC_TBMR_EN);
enetc_txbdr_wr(&priv->hw.hw, tx_ring->index, ENETC_TBMR,
tx_data);
dev->data->tx_queue_state[qidx] = RTE_ETH_QUEUE_STATE_STOPPED;
}
return 0;
}
/*
* The set of PCI devices this driver supports
*/
static const struct rte_pci_id pci_id_enetc_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, ENETC_DEV_ID) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, ENETC_DEV_ID_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
/* Features supported by this driver */
static const struct eth_dev_ops enetc_ops = {
.dev_configure = enetc_dev_configure,
.dev_start = enetc_dev_start,
.dev_stop = enetc_dev_stop,
.dev_close = enetc_dev_close,
.link_update = enetc_link_update,
.stats_get = enetc_stats_get,
.stats_reset = enetc_stats_reset,
.promiscuous_enable = enetc_promiscuous_enable,
.promiscuous_disable = enetc_promiscuous_disable,
.allmulticast_enable = enetc_allmulticast_enable,
.allmulticast_disable = enetc_allmulticast_disable,
.dev_infos_get = enetc_dev_infos_get,
.mtu_set = enetc_mtu_set,
.rx_queue_setup = enetc_rx_queue_setup,
.rx_queue_start = enetc_rx_queue_start,
.rx_queue_stop = enetc_rx_queue_stop,
.rx_queue_release = enetc_rx_queue_release,
.tx_queue_setup = enetc_tx_queue_setup,
.tx_queue_start = enetc_tx_queue_start,
.tx_queue_stop = enetc_tx_queue_stop,
.tx_queue_release = enetc_tx_queue_release,
.dev_supported_ptypes_get = enetc_supported_ptypes_get,
};
/**
* Initialisation of the enetc device
*
* @param eth_dev
* - Pointer to the structure rte_eth_dev
*
* @return
* - On success, zero.
* - On failure, negative value.
*/
static int
enetc_dev_init(struct rte_eth_dev *eth_dev)
{
int error = 0;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct enetc_eth_hw *hw =
ENETC_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
eth_dev->dev_ops = &enetc_ops;
eth_dev->rx_pkt_burst = &enetc_recv_pkts;
eth_dev->tx_pkt_burst = &enetc_xmit_pkts;
/* Retrieving and storing the HW base address of device */
hw->hw.reg = (void *)pci_dev->mem_resource[0].addr;
hw->device_id = pci_dev->id.device_id;
error = enetc_hardware_init(hw);
if (error != 0) {
ENETC_PMD_ERR("Hardware initialization failed");
return -1;
}
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("enetc_eth",
RTE_ETHER_ADDR_LEN, 0);
if (!eth_dev->data->mac_addrs) {
ENETC_PMD_ERR("Failed to allocate %d bytes needed to "
"store MAC addresses",
RTE_ETHER_ADDR_LEN * 1);
error = -ENOMEM;
return -1;
}
/* Copy the permanent MAC address */
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
&eth_dev->data->mac_addrs[0]);
/* Set MTU */
enetc_port_wr(&hw->hw, ENETC_PM0_MAXFRM,
ENETC_SET_MAXFRM(RTE_ETHER_MAX_LEN));
eth_dev->data->mtu = RTE_ETHER_MAX_LEN - RTE_ETHER_HDR_LEN -
RTE_ETHER_CRC_LEN;
ENETC_PMD_DEBUG("port_id %d vendorID=0x%x deviceID=0x%x",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
return 0;
}
static int
enetc_dev_uninit(struct rte_eth_dev *eth_dev __rte_unused)
{
PMD_INIT_FUNC_TRACE();
return 0;
}
static int
enetc_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct enetc_eth_adapter),
enetc_dev_init);
}
static int
enetc_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, enetc_dev_uninit);
}
static struct rte_pci_driver rte_enetc_pmd = {
.id_table = pci_id_enetc_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = enetc_pci_probe,
.remove = enetc_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_enetc, rte_enetc_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_enetc, pci_id_enetc_map);
RTE_PMD_REGISTER_KMOD_DEP(net_enetc, "* vfio-pci");
RTE_INIT(enetc_pmd_init_log)
{
enetc_logtype_pmd = rte_log_register("pmd.net.enetc");
if (enetc_logtype_pmd >= 0)
rte_log_set_level(enetc_logtype_pmd, RTE_LOG_NOTICE);
}