numam-dpdk/drivers/net/i40e/i40e_rxtx_vec_altivec.c
Ferruh Yigit ffc905f3b8 ethdev: separate driver APIs
Create a rte_ethdev_driver.h file and move PMD specific APIs here.
Drivers updated to include this new header file.

There is no update in header content and since ethdev.h included by
ethdev_driver.h, nothing changed from driver point of view, only
logically grouping of APIs. From applications point of view they can't
access to driver specific APIs anymore and they shouldn't.

More PMD specific data structures still remain in ethdev.h because of
inline functions in header use them. Those will be handled separately.

Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Shreyansh Jain <shreyansh.jain@nxp.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
2018-01-22 01:26:49 +01:00

646 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* Copyright(c) 2017 IBM Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <rte_ethdev_driver.h>
#include <rte_malloc.h>
#include "base/i40e_prototype.h"
#include "base/i40e_type.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#include "i40e_rxtx_vec_common.h"
#include <altivec.h>
#pragma GCC diagnostic ignored "-Wcast-qual"
static inline void
i40e_rxq_rearm(struct i40e_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
vector unsigned long hdr_room = (vector unsigned long){
RTE_PKTMBUF_HEADROOM,
RTE_PKTMBUF_HEADROOM};
vector unsigned long dma_addr0, dma_addr1;
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mp,
(void *)rxep,
RTE_I40E_RXQ_REARM_THRESH) < 0) {
if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
dma_addr0 = (vector unsigned long){};
for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
vec_st(dma_addr0, 0,
(vector unsigned long *)&rxdp[i].read);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
RTE_I40E_RXQ_REARM_THRESH;
return;
}
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
vector unsigned long vaddr0, vaddr1;
uintptr_t p0, p1;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
/* Flush mbuf with pkt template.
* Data to be rearmed is 6 bytes long.
* Though, RX will overwrite ol_flags that are coming next
* anyway. So overwrite whole 8 bytes with one load:
* 6 bytes of rearm_data plus first 2 bytes of ol_flags.
*/
p0 = (uintptr_t)&mb0->rearm_data;
*(uint64_t *)p0 = rxq->mbuf_initializer;
p1 = (uintptr_t)&mb1->rearm_data;
*(uint64_t *)p1 = rxq->mbuf_initializer;
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
vaddr0 = vec_ld(0, (vector unsigned long *)&mb0->buf_addr);
vaddr1 = vec_ld(0, (vector unsigned long *)&mb1->buf_addr);
/* convert pa to dma_addr hdr/data */
dma_addr0 = vec_mergel(vaddr0, vaddr0);
dma_addr1 = vec_mergel(vaddr1, vaddr1);
/* add headroom to pa values */
dma_addr0 = vec_add(dma_addr0, hdr_room);
dma_addr1 = vec_add(dma_addr1, hdr_room);
/* flush desc with pa dma_addr */
vec_st(dma_addr0, 0, (vector unsigned long *)&rxdp++->read);
vec_st(dma_addr1, 0, (vector unsigned long *)&rxdp++->read);
}
rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}
static inline void
desc_to_olflags_v(vector unsigned long descs[4], struct rte_mbuf **rx_pkts)
{
vector unsigned int vlan0, vlan1, rss, l3_l4e;
/* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication.
*/
const vector unsigned int rss_vlan_msk = (vector unsigned int){
(int32_t)0x1c03804, (int32_t)0x1c03804,
(int32_t)0x1c03804, (int32_t)0x1c03804};
/* map rss and vlan type to rss hash and vlan flag */
const vector unsigned char vlan_flags = (vector unsigned char){
0, 0, 0, 0,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};
const vector unsigned char rss_flags = (vector unsigned char){
0, PKT_RX_FDIR, 0, 0,
0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH | PKT_RX_FDIR,
0, 0, 0, 0,
0, 0, 0, 0};
const vector unsigned char l3_l4e_flags = (vector unsigned char){
0,
PKT_RX_IP_CKSUM_BAD,
PKT_RX_L4_CKSUM_BAD,
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD,
PKT_RX_EIP_CKSUM_BAD,
PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD,
PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
| PKT_RX_IP_CKSUM_BAD,
0, 0, 0, 0, 0, 0, 0, 0};
vlan0 = (vector unsigned int)vec_mergel(descs[0], descs[1]);
vlan1 = (vector unsigned int)vec_mergel(descs[2], descs[3]);
vlan0 = (vector unsigned int)vec_mergeh(vlan0, vlan1);
vlan1 = vec_and(vlan0, rss_vlan_msk);
vlan0 = (vector unsigned int)vec_perm(vlan_flags,
(vector unsigned char){},
*(vector unsigned char *)&vlan1);
rss = vec_sr(vlan1, (vector unsigned int){11, 11, 11, 11});
rss = (vector unsigned int)vec_perm(rss_flags, (vector unsigned char){},
*(vector unsigned char *)&rss);
l3_l4e = vec_sr(vlan1, (vector unsigned int){22, 22, 22, 22});
l3_l4e = (vector unsigned int)vec_perm(l3_l4e_flags,
(vector unsigned char){},
*(vector unsigned char *)&l3_l4e);
vlan0 = vec_or(vlan0, rss);
vlan0 = vec_or(vlan0, l3_l4e);
rx_pkts[0]->ol_flags = (uint64_t)vlan0[2];
rx_pkts[1]->ol_flags = (uint64_t)vlan0[3];
rx_pkts[2]->ol_flags = (uint64_t)vlan0[0];
rx_pkts[3]->ol_flags = (uint64_t)vlan0[1];
}
#define PKTLEN_SHIFT 10
static inline void
desc_to_ptype_v(vector unsigned long descs[4], struct rte_mbuf **rx_pkts,
uint32_t *ptype_tbl)
{
vector unsigned long ptype0 = vec_mergel(descs[0], descs[1]);
vector unsigned long ptype1 = vec_mergel(descs[2], descs[3]);
ptype0 = vec_sr(ptype0, (vector unsigned long){30, 30});
ptype1 = vec_sr(ptype1, (vector unsigned long){30, 30});
rx_pkts[0]->packet_type =
ptype_tbl[(*(vector unsigned char *)&ptype0)[0]];
rx_pkts[1]->packet_type =
ptype_tbl[(*(vector unsigned char *)&ptype0)[8]];
rx_pkts[2]->packet_type =
ptype_tbl[(*(vector unsigned char *)&ptype1)[0]];
rx_pkts[3]->packet_type =
ptype_tbl[(*(vector unsigned char *)&ptype1)[8]];
}
/* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
* - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
* numbers of DD bits
*/
static inline uint16_t
_recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *sw_ring;
uint16_t nb_pkts_recd;
int pos;
uint64_t var;
vector unsigned char shuf_msk;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
vector unsigned short crc_adjust = (vector unsigned short){
0, 0, /* ignore pkt_type field */
rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore high-16bits of pkt_len */
rxq->crc_len, /* sub crc on data_len */
0, 0, 0 /* ignore non-length fields */
};
vector unsigned long dd_check, eop_check;
/* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
/* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
/* Just the act of getting into the function from the application is
* going to cost about 7 cycles
*/
rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
i40e_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.qword1.status_error_len &
rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/* 4 packets DD mask */
dd_check = (vector unsigned long){0x0000000100000001ULL,
0x0000000100000001ULL};
/* 4 packets EOP mask */
eop_check = (vector unsigned long){0x0000000200000002ULL,
0x0000000200000002ULL};
/* mask to shuffle from desc. to mbuf */
shuf_msk = (vector unsigned char){
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /* pkt_type set as unknown */
14, 15, /* octet 15~14, low 16 bits pkt_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
14, 15, /* octet 15~14, 16 bits data_len */
2, 3, /* octet 2~3, low 16 bits vlan_macip */
4, 5, 6, 7 /* octet 4~7, 32bits rss */
};
/* Cache is empty -> need to scan the buffer rings, but first move
* the next 'n' mbufs into the cache
*/
sw_ring = &rxq->sw_ring[rxq->rx_tail];
/* A. load 4 packet in one loop
* [A*. mask out 4 unused dirty field in desc]
* B. copy 4 mbuf point from swring to rx_pkts
* C. calc the number of DD bits among the 4 packets
* [C*. extract the end-of-packet bit, if requested]
* D. fill info. from desc to mbuf
*/
for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
pos += RTE_I40E_DESCS_PER_LOOP,
rxdp += RTE_I40E_DESCS_PER_LOOP) {
vector unsigned long descs[RTE_I40E_DESCS_PER_LOOP];
vector unsigned char pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
vector unsigned short staterr, sterr_tmp1, sterr_tmp2;
vector unsigned long mbp1, mbp2; /* two mbuf pointer
* in one XMM reg.
*/
/* B.1 load 1 mbuf point */
mbp1 = *(vector unsigned long *)&sw_ring[pos];
/* Read desc statuses backwards to avoid race condition */
/* A.1 load 4 pkts desc */
descs[3] = *(vector unsigned long *)(rxdp + 3);
rte_compiler_barrier();
/* B.2 copy 2 mbuf point into rx_pkts */
*(vector unsigned long *)&rx_pkts[pos] = mbp1;
/* B.1 load 1 mbuf point */
mbp2 = *(vector unsigned long *)&sw_ring[pos + 2];
descs[2] = *(vector unsigned long *)(rxdp + 2);
rte_compiler_barrier();
/* B.1 load 2 mbuf point */
descs[1] = *(vector unsigned long *)(rxdp + 1);
rte_compiler_barrier();
descs[0] = *(vector unsigned long *)(rxdp);
/* B.2 copy 2 mbuf point into rx_pkts */
*(vector unsigned long *)&rx_pkts[pos + 2] = mbp2;
if (split_packet) {
rte_mbuf_prefetch_part2(rx_pkts[pos]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
}
/* avoid compiler reorder optimization */
rte_compiler_barrier();
/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
const vector unsigned int len3 = vec_sl(
vec_ld(0, (vector unsigned int *)&descs[3]),
(vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
const vector unsigned int len2 = vec_sl(
vec_ld(0, (vector unsigned int *)&descs[2]),
(vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
/* merge the now-aligned packet length fields back in */
descs[3] = (vector unsigned long)len3;
descs[2] = (vector unsigned long)len2;
/* D.1 pkt 3,4 convert format from desc to pktmbuf */
pkt_mb4 = vec_perm((vector unsigned char)descs[3],
(vector unsigned char){}, shuf_msk);
pkt_mb3 = vec_perm((vector unsigned char)descs[2],
(vector unsigned char){}, shuf_msk);
/* C.1 4=>2 filter staterr info only */
sterr_tmp2 = vec_mergel((vector unsigned short)descs[3],
(vector unsigned short)descs[2]);
/* C.1 4=>2 filter staterr info only */
sterr_tmp1 = vec_mergel((vector unsigned short)descs[1],
(vector unsigned short)descs[0]);
/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
pkt_mb4 = (vector unsigned char)vec_sub(
(vector unsigned short)pkt_mb4, crc_adjust);
pkt_mb3 = (vector unsigned char)vec_sub(
(vector unsigned short)pkt_mb3, crc_adjust);
/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
const vector unsigned int len1 = vec_sl(
vec_ld(0, (vector unsigned int *)&descs[1]),
(vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
const vector unsigned int len0 = vec_sl(
vec_ld(0, (vector unsigned int *)&descs[0]),
(vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
/* merge the now-aligned packet length fields back in */
descs[1] = (vector unsigned long)len1;
descs[0] = (vector unsigned long)len0;
/* D.1 pkt 1,2 convert format from desc to pktmbuf */
pkt_mb2 = vec_perm((vector unsigned char)descs[1],
(vector unsigned char){}, shuf_msk);
pkt_mb1 = vec_perm((vector unsigned char)descs[0],
(vector unsigned char){}, shuf_msk);
/* C.2 get 4 pkts staterr value */
staterr = (vector unsigned short)vec_mergeh(
sterr_tmp1, sterr_tmp2);
/* D.3 copy final 3,4 data to rx_pkts */
vec_st(pkt_mb4, 0,
(vector unsigned char *)&rx_pkts[pos + 3]
->rx_descriptor_fields1
);
vec_st(pkt_mb3, 0,
(vector unsigned char *)&rx_pkts[pos + 2]
->rx_descriptor_fields1
);
/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
pkt_mb2 = (vector unsigned char)vec_sub(
(vector unsigned short)pkt_mb2, crc_adjust);
pkt_mb1 = (vector unsigned char)vec_sub(
(vector unsigned short)pkt_mb1, crc_adjust);
/* C* extract and record EOP bit */
if (split_packet) {
vector unsigned char eop_shuf_mask =
(vector unsigned char){
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0x04, 0x0C, 0x00, 0x08
};
/* and with mask to extract bits, flipping 1-0 */
vector unsigned char eop_bits = vec_and(
(vector unsigned char)vec_nor(staterr, staterr),
(vector unsigned char)eop_check);
/* the staterr values are not in order, as the count
* count of dd bits doesn't care. However, for end of
* packet tracking, we do care, so shuffle. This also
* compresses the 32-bit values to 8-bit
*/
eop_bits = vec_perm(eop_bits, (vector unsigned char){},
eop_shuf_mask);
/* store the resulting 32-bit value */
*split_packet = (vec_ld(0,
(vector unsigned int *)&eop_bits))[0];
split_packet += RTE_I40E_DESCS_PER_LOOP;
/* zero-out next pointers */
rx_pkts[pos]->next = NULL;
rx_pkts[pos + 1]->next = NULL;
rx_pkts[pos + 2]->next = NULL;
rx_pkts[pos + 3]->next = NULL;
}
/* C.3 calc available number of desc */
staterr = vec_and(staterr, (vector unsigned short)dd_check);
/* D.3 copy final 1,2 data to rx_pkts */
vec_st(pkt_mb2, 0,
(vector unsigned char *)&rx_pkts[pos + 1]
->rx_descriptor_fields1
);
vec_st(pkt_mb1, 0,
(vector unsigned char *)&rx_pkts[pos]->rx_descriptor_fields1
);
desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
desc_to_olflags_v(descs, &rx_pkts[pos]);
/* C.4 calc avaialbe number of desc */
var = __builtin_popcountll((vec_ld(0,
(vector unsigned long *)&staterr)[0]));
nb_pkts_recd += var;
if (likely(var != RTE_I40E_DESCS_PER_LOOP))
break;
}
/* Update our internal tail pointer */
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
return nb_pkts_recd;
}
/* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
* - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
* numbers of DD bits
*/
uint16_t
i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}
/* vPMD receive routine that reassembles scattered packets
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
* - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
* numbers of DD bits
*/
uint16_t
i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq = rx_queue;
uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (rxq->pkt_first_seg == NULL &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
static inline void
vtx1(volatile struct i40e_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
vector unsigned long descriptor = (vector unsigned long){
pkt->buf_iova + pkt->data_off, high_qw};
*(vector unsigned long *)txdp = descriptor;
}
static inline void
vtx(volatile struct i40e_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
int i;
for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
vtx1(txdp, *pkt, flags);
}
uint16_t
i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
volatile struct i40e_tx_desc *txdp;
struct i40e_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = I40E_TD_CMD;
uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
int i;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
i40e_tx_free_bufs(txq);
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
nb_commit = nb_pkts;
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry(txep, tx_pkts, n);
for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
vtx1(txdp, *tx_pkts, flags);
vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
}
tx_backlog_entry(txep, tx_pkts, nb_commit);
vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
I40E_TXD_QW1_CMD_SHIFT);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
void __attribute__((cold))
i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
{
_i40e_rx_queue_release_mbufs_vec(rxq);
}
int __attribute__((cold))
i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
{
return i40e_rxq_vec_setup_default(rxq);
}
int __attribute__((cold))
i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused * txq)
{
return 0;
}
int __attribute__((cold))
i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
{
return i40e_rx_vec_dev_conf_condition_check_default(dev);
}