dbeba4cf18
The private structure stored in rte_eth_dev->data->dev_private was named "struct priv". In order to ease code browsing, the structure is renamed "struct mlx[45]_priv". Cc: stable@dpdk.org Signed-off-by: Thomas Monjalon <thomas@monjalon.net> Acked-by: Yongseok Koh <yskoh@mellanox.com>
6383 lines
182 KiB
C
6383 lines
182 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2018 6WIND S.A.
|
|
* Copyright 2018 Mellanox Technologies, Ltd
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <libmnl/libmnl.h>
|
|
#include <linux/gen_stats.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/pkt_cls.h>
|
|
#include <linux/pkt_sched.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/tc_act/tc_gact.h>
|
|
#include <linux/tc_act/tc_mirred.h>
|
|
#include <netinet/in.h>
|
|
#include <stdalign.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <rte_byteorder.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_flow.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_common.h>
|
|
#include <rte_cycles.h>
|
|
|
|
#include "mlx5.h"
|
|
#include "mlx5_flow.h"
|
|
#include "mlx5_autoconf.h"
|
|
|
|
#ifdef HAVE_TC_ACT_VLAN
|
|
|
|
#include <linux/tc_act/tc_vlan.h>
|
|
|
|
#else /* HAVE_TC_ACT_VLAN */
|
|
|
|
#define TCA_VLAN_ACT_POP 1
|
|
#define TCA_VLAN_ACT_PUSH 2
|
|
#define TCA_VLAN_ACT_MODIFY 3
|
|
#define TCA_VLAN_PARMS 2
|
|
#define TCA_VLAN_PUSH_VLAN_ID 3
|
|
#define TCA_VLAN_PUSH_VLAN_PROTOCOL 4
|
|
#define TCA_VLAN_PAD 5
|
|
#define TCA_VLAN_PUSH_VLAN_PRIORITY 6
|
|
|
|
struct tc_vlan {
|
|
tc_gen;
|
|
int v_action;
|
|
};
|
|
|
|
#endif /* HAVE_TC_ACT_VLAN */
|
|
|
|
#ifdef HAVE_TC_ACT_PEDIT
|
|
|
|
#include <linux/tc_act/tc_pedit.h>
|
|
|
|
#else /* HAVE_TC_ACT_VLAN */
|
|
|
|
enum {
|
|
TCA_PEDIT_UNSPEC,
|
|
TCA_PEDIT_TM,
|
|
TCA_PEDIT_PARMS,
|
|
TCA_PEDIT_PAD,
|
|
TCA_PEDIT_PARMS_EX,
|
|
TCA_PEDIT_KEYS_EX,
|
|
TCA_PEDIT_KEY_EX,
|
|
__TCA_PEDIT_MAX
|
|
};
|
|
|
|
enum {
|
|
TCA_PEDIT_KEY_EX_HTYPE = 1,
|
|
TCA_PEDIT_KEY_EX_CMD = 2,
|
|
__TCA_PEDIT_KEY_EX_MAX
|
|
};
|
|
|
|
enum pedit_header_type {
|
|
TCA_PEDIT_KEY_EX_HDR_TYPE_NETWORK = 0,
|
|
TCA_PEDIT_KEY_EX_HDR_TYPE_ETH = 1,
|
|
TCA_PEDIT_KEY_EX_HDR_TYPE_IP4 = 2,
|
|
TCA_PEDIT_KEY_EX_HDR_TYPE_IP6 = 3,
|
|
TCA_PEDIT_KEY_EX_HDR_TYPE_TCP = 4,
|
|
TCA_PEDIT_KEY_EX_HDR_TYPE_UDP = 5,
|
|
__PEDIT_HDR_TYPE_MAX,
|
|
};
|
|
|
|
enum pedit_cmd {
|
|
TCA_PEDIT_KEY_EX_CMD_SET = 0,
|
|
TCA_PEDIT_KEY_EX_CMD_ADD = 1,
|
|
__PEDIT_CMD_MAX,
|
|
};
|
|
|
|
struct tc_pedit_key {
|
|
__u32 mask; /* AND */
|
|
__u32 val; /*XOR */
|
|
__u32 off; /*offset */
|
|
__u32 at;
|
|
__u32 offmask;
|
|
__u32 shift;
|
|
};
|
|
|
|
__extension__
|
|
struct tc_pedit_sel {
|
|
tc_gen;
|
|
unsigned char nkeys;
|
|
unsigned char flags;
|
|
struct tc_pedit_key keys[0];
|
|
};
|
|
|
|
#endif /* HAVE_TC_ACT_VLAN */
|
|
|
|
#ifdef HAVE_TC_ACT_TUNNEL_KEY
|
|
|
|
#include <linux/tc_act/tc_tunnel_key.h>
|
|
|
|
#ifndef HAVE_TCA_TUNNEL_KEY_ENC_DST_PORT
|
|
#define TCA_TUNNEL_KEY_ENC_DST_PORT 9
|
|
#endif
|
|
|
|
#ifndef HAVE_TCA_TUNNEL_KEY_NO_CSUM
|
|
#define TCA_TUNNEL_KEY_NO_CSUM 10
|
|
#endif
|
|
|
|
#ifndef HAVE_TCA_TUNNEL_KEY_ENC_TOS
|
|
#define TCA_TUNNEL_KEY_ENC_TOS 12
|
|
#endif
|
|
|
|
#ifndef HAVE_TCA_TUNNEL_KEY_ENC_TTL
|
|
#define TCA_TUNNEL_KEY_ENC_TTL 13
|
|
#endif
|
|
|
|
#else /* HAVE_TC_ACT_TUNNEL_KEY */
|
|
|
|
#define TCA_ACT_TUNNEL_KEY 17
|
|
#define TCA_TUNNEL_KEY_ACT_SET 1
|
|
#define TCA_TUNNEL_KEY_ACT_RELEASE 2
|
|
#define TCA_TUNNEL_KEY_PARMS 2
|
|
#define TCA_TUNNEL_KEY_ENC_IPV4_SRC 3
|
|
#define TCA_TUNNEL_KEY_ENC_IPV4_DST 4
|
|
#define TCA_TUNNEL_KEY_ENC_IPV6_SRC 5
|
|
#define TCA_TUNNEL_KEY_ENC_IPV6_DST 6
|
|
#define TCA_TUNNEL_KEY_ENC_KEY_ID 7
|
|
#define TCA_TUNNEL_KEY_ENC_DST_PORT 9
|
|
#define TCA_TUNNEL_KEY_NO_CSUM 10
|
|
#define TCA_TUNNEL_KEY_ENC_TOS 12
|
|
#define TCA_TUNNEL_KEY_ENC_TTL 13
|
|
|
|
struct tc_tunnel_key {
|
|
tc_gen;
|
|
int t_action;
|
|
};
|
|
|
|
#endif /* HAVE_TC_ACT_TUNNEL_KEY */
|
|
|
|
/* Normally found in linux/netlink.h. */
|
|
#ifndef NETLINK_CAP_ACK
|
|
#define NETLINK_CAP_ACK 10
|
|
#endif
|
|
|
|
/* Normally found in linux/pkt_sched.h. */
|
|
#ifndef TC_H_MIN_INGRESS
|
|
#define TC_H_MIN_INGRESS 0xfff2u
|
|
#endif
|
|
|
|
/* Normally found in linux/pkt_cls.h. */
|
|
#ifndef TCA_CLS_FLAGS_SKIP_SW
|
|
#define TCA_CLS_FLAGS_SKIP_SW (1 << 1)
|
|
#endif
|
|
#ifndef TCA_CLS_FLAGS_IN_HW
|
|
#define TCA_CLS_FLAGS_IN_HW (1 << 2)
|
|
#endif
|
|
#ifndef HAVE_TCA_CHAIN
|
|
#define TCA_CHAIN 11
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_ACT
|
|
#define TCA_FLOWER_ACT 3
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_FLAGS
|
|
#define TCA_FLOWER_FLAGS 22
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ETH_TYPE
|
|
#define TCA_FLOWER_KEY_ETH_TYPE 8
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ETH_DST
|
|
#define TCA_FLOWER_KEY_ETH_DST 4
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ETH_DST_MASK
|
|
#define TCA_FLOWER_KEY_ETH_DST_MASK 5
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ETH_SRC
|
|
#define TCA_FLOWER_KEY_ETH_SRC 6
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ETH_SRC_MASK
|
|
#define TCA_FLOWER_KEY_ETH_SRC_MASK 7
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IP_PROTO
|
|
#define TCA_FLOWER_KEY_IP_PROTO 9
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_SRC
|
|
#define TCA_FLOWER_KEY_IPV4_SRC 10
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_SRC_MASK
|
|
#define TCA_FLOWER_KEY_IPV4_SRC_MASK 11
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_DST
|
|
#define TCA_FLOWER_KEY_IPV4_DST 12
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_DST_MASK
|
|
#define TCA_FLOWER_KEY_IPV4_DST_MASK 13
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_SRC
|
|
#define TCA_FLOWER_KEY_IPV6_SRC 14
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_SRC_MASK
|
|
#define TCA_FLOWER_KEY_IPV6_SRC_MASK 15
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_DST
|
|
#define TCA_FLOWER_KEY_IPV6_DST 16
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_DST_MASK
|
|
#define TCA_FLOWER_KEY_IPV6_DST_MASK 17
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_TCP_SRC
|
|
#define TCA_FLOWER_KEY_TCP_SRC 18
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_TCP_SRC_MASK
|
|
#define TCA_FLOWER_KEY_TCP_SRC_MASK 35
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_TCP_DST
|
|
#define TCA_FLOWER_KEY_TCP_DST 19
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_TCP_DST_MASK
|
|
#define TCA_FLOWER_KEY_TCP_DST_MASK 36
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_UDP_SRC
|
|
#define TCA_FLOWER_KEY_UDP_SRC 20
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_UDP_SRC_MASK
|
|
#define TCA_FLOWER_KEY_UDP_SRC_MASK 37
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_UDP_DST
|
|
#define TCA_FLOWER_KEY_UDP_DST 21
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_UDP_DST_MASK
|
|
#define TCA_FLOWER_KEY_UDP_DST_MASK 38
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_VLAN_ID
|
|
#define TCA_FLOWER_KEY_VLAN_ID 23
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_VLAN_PRIO
|
|
#define TCA_FLOWER_KEY_VLAN_PRIO 24
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_VLAN_ETH_TYPE
|
|
#define TCA_FLOWER_KEY_VLAN_ETH_TYPE 25
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_KEY_ID
|
|
#define TCA_FLOWER_KEY_ENC_KEY_ID 26
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV4_SRC
|
|
#define TCA_FLOWER_KEY_ENC_IPV4_SRC 27
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK
|
|
#define TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK 28
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV4_DST
|
|
#define TCA_FLOWER_KEY_ENC_IPV4_DST 29
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV4_DST_MASK
|
|
#define TCA_FLOWER_KEY_ENC_IPV4_DST_MASK 30
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV6_SRC
|
|
#define TCA_FLOWER_KEY_ENC_IPV6_SRC 31
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK
|
|
#define TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK 32
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV6_DST
|
|
#define TCA_FLOWER_KEY_ENC_IPV6_DST 33
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV6_DST_MASK
|
|
#define TCA_FLOWER_KEY_ENC_IPV6_DST_MASK 34
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_UDP_SRC_PORT
|
|
#define TCA_FLOWER_KEY_ENC_UDP_SRC_PORT 43
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK
|
|
#define TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK 44
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_UDP_DST_PORT
|
|
#define TCA_FLOWER_KEY_ENC_UDP_DST_PORT 45
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK
|
|
#define TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK 46
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_TCP_FLAGS
|
|
#define TCA_FLOWER_KEY_TCP_FLAGS 71
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_TCP_FLAGS_MASK
|
|
#define TCA_FLOWER_KEY_TCP_FLAGS_MASK 72
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IP_TOS
|
|
#define TCA_FLOWER_KEY_IP_TOS 73
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IP_TOS_MASK
|
|
#define TCA_FLOWER_KEY_IP_TOS_MASK 74
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IP_TTL
|
|
#define TCA_FLOWER_KEY_IP_TTL 75
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_IP_TTL_MASK
|
|
#define TCA_FLOWER_KEY_IP_TTL_MASK 76
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IP_TOS
|
|
#define TCA_FLOWER_KEY_ENC_IP_TOS 80
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IP_TOS_MASK
|
|
#define TCA_FLOWER_KEY_ENC_IP_TOS_MASK 81
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IP_TTL
|
|
#define TCA_FLOWER_KEY_ENC_IP_TTL 82
|
|
#endif
|
|
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IP_TTL_MASK
|
|
#define TCA_FLOWER_KEY_ENC_IP_TTL_MASK 83
|
|
#endif
|
|
|
|
#ifndef HAVE_TC_ACT_GOTO_CHAIN
|
|
#define TC_ACT_GOTO_CHAIN 0x20000000
|
|
#endif
|
|
|
|
#ifndef IPV6_ADDR_LEN
|
|
#define IPV6_ADDR_LEN 16
|
|
#endif
|
|
|
|
#ifndef IPV4_ADDR_LEN
|
|
#define IPV4_ADDR_LEN 4
|
|
#endif
|
|
|
|
#ifndef TP_PORT_LEN
|
|
#define TP_PORT_LEN 2 /* Transport Port (UDP/TCP) Length */
|
|
#endif
|
|
|
|
#ifndef TTL_LEN
|
|
#define TTL_LEN 1
|
|
#endif
|
|
|
|
#ifndef TCA_ACT_MAX_PRIO
|
|
#define TCA_ACT_MAX_PRIO 32
|
|
#endif
|
|
|
|
/** Parameters of VXLAN devices created by driver. */
|
|
#define MLX5_VXLAN_DEFAULT_VNI 1
|
|
#define MLX5_VXLAN_DEVICE_PFX "vmlx_"
|
|
/**
|
|
* Timeout in milliseconds to wait VXLAN UDP offloaded port
|
|
* registration completed within the mlx5 driver.
|
|
*/
|
|
#define MLX5_VXLAN_WAIT_PORT_REG_MS 250
|
|
|
|
/** Tunnel action type, used for @p type in header structure. */
|
|
enum flow_tcf_tunact_type {
|
|
FLOW_TCF_TUNACT_VXLAN_DECAP,
|
|
FLOW_TCF_TUNACT_VXLAN_ENCAP,
|
|
};
|
|
|
|
/** Flags used for @p mask in tunnel action encap descriptors. */
|
|
#define FLOW_TCF_ENCAP_ETH_SRC (1u << 0)
|
|
#define FLOW_TCF_ENCAP_ETH_DST (1u << 1)
|
|
#define FLOW_TCF_ENCAP_IPV4_SRC (1u << 2)
|
|
#define FLOW_TCF_ENCAP_IPV4_DST (1u << 3)
|
|
#define FLOW_TCF_ENCAP_IPV6_SRC (1u << 4)
|
|
#define FLOW_TCF_ENCAP_IPV6_DST (1u << 5)
|
|
#define FLOW_TCF_ENCAP_UDP_SRC (1u << 6)
|
|
#define FLOW_TCF_ENCAP_UDP_DST (1u << 7)
|
|
#define FLOW_TCF_ENCAP_VXLAN_VNI (1u << 8)
|
|
#define FLOW_TCF_ENCAP_IP_TTL (1u << 9)
|
|
#define FLOW_TCF_ENCAP_IP_TOS (1u << 10)
|
|
|
|
/**
|
|
* Structure for holding netlink context.
|
|
* Note the size of the message buffer which is MNL_SOCKET_BUFFER_SIZE.
|
|
* Using this (8KB) buffer size ensures that netlink messages will never be
|
|
* truncated.
|
|
*/
|
|
struct mlx5_flow_tcf_context {
|
|
struct mnl_socket *nl; /* NETLINK_ROUTE libmnl socket. */
|
|
uint32_t seq; /* Message sequence number. */
|
|
uint32_t buf_size; /* Message buffer size. */
|
|
uint8_t *buf; /* Message buffer. */
|
|
};
|
|
|
|
/**
|
|
* Neigh rule structure. The neigh rule is applied via Netlink to
|
|
* outer tunnel iface in order to provide destination MAC address
|
|
* for the VXLAN encapsultion. The neigh rule is implicitly related
|
|
* to the Flow itself and can be shared by multiple Flows.
|
|
*/
|
|
struct tcf_neigh_rule {
|
|
LIST_ENTRY(tcf_neigh_rule) next;
|
|
uint32_t refcnt;
|
|
struct ether_addr eth;
|
|
uint16_t mask;
|
|
union {
|
|
struct {
|
|
rte_be32_t dst;
|
|
} ipv4;
|
|
struct {
|
|
uint8_t dst[IPV6_ADDR_LEN];
|
|
} ipv6;
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Local rule structure. The local rule is applied via Netlink to
|
|
* outer tunnel iface in order to provide local and peer IP addresses
|
|
* of the VXLAN tunnel for encapsulation. The local rule is implicitly
|
|
* related to the Flow itself and can be shared by multiple Flows.
|
|
*/
|
|
struct tcf_local_rule {
|
|
LIST_ENTRY(tcf_local_rule) next;
|
|
uint32_t refcnt;
|
|
uint16_t mask;
|
|
union {
|
|
struct {
|
|
rte_be32_t dst;
|
|
rte_be32_t src;
|
|
} ipv4;
|
|
struct {
|
|
uint8_t dst[IPV6_ADDR_LEN];
|
|
uint8_t src[IPV6_ADDR_LEN];
|
|
} ipv6;
|
|
};
|
|
};
|
|
|
|
/** Outer interface VXLAN encapsulation rules container. */
|
|
struct tcf_irule {
|
|
LIST_ENTRY(tcf_irule) next;
|
|
LIST_HEAD(, tcf_neigh_rule) neigh;
|
|
LIST_HEAD(, tcf_local_rule) local;
|
|
uint32_t refcnt;
|
|
unsigned int ifouter; /**< Own interface index. */
|
|
};
|
|
|
|
/** VXLAN virtual netdev. */
|
|
struct tcf_vtep {
|
|
LIST_ENTRY(tcf_vtep) next;
|
|
uint32_t refcnt;
|
|
unsigned int ifindex; /**< Own interface index. */
|
|
uint16_t port;
|
|
uint32_t created:1; /**< Actually created by PMD. */
|
|
uint32_t waitreg:1; /**< Wait for VXLAN UDP port registration. */
|
|
};
|
|
|
|
/** Tunnel descriptor header, common for all tunnel types. */
|
|
struct flow_tcf_tunnel_hdr {
|
|
uint32_t type; /**< Tunnel action type. */
|
|
struct tcf_vtep *vtep; /**< Virtual tunnel endpoint device. */
|
|
unsigned int ifindex_org; /**< Original dst/src interface */
|
|
unsigned int *ifindex_ptr; /**< Interface ptr in message. */
|
|
};
|
|
|
|
struct flow_tcf_vxlan_decap {
|
|
struct flow_tcf_tunnel_hdr hdr;
|
|
uint16_t udp_port;
|
|
};
|
|
|
|
struct flow_tcf_vxlan_encap {
|
|
struct flow_tcf_tunnel_hdr hdr;
|
|
struct tcf_irule *iface;
|
|
uint32_t mask;
|
|
uint8_t ip_tos;
|
|
uint8_t ip_ttl_hop;
|
|
struct {
|
|
struct ether_addr dst;
|
|
struct ether_addr src;
|
|
} eth;
|
|
union {
|
|
struct {
|
|
rte_be32_t dst;
|
|
rte_be32_t src;
|
|
} ipv4;
|
|
struct {
|
|
uint8_t dst[IPV6_ADDR_LEN];
|
|
uint8_t src[IPV6_ADDR_LEN];
|
|
} ipv6;
|
|
};
|
|
struct {
|
|
rte_be16_t src;
|
|
rte_be16_t dst;
|
|
} udp;
|
|
struct {
|
|
uint8_t vni[3];
|
|
} vxlan;
|
|
};
|
|
|
|
/** Structure used when extracting the values of a flow counters
|
|
* from a netlink message.
|
|
*/
|
|
struct flow_tcf_stats_basic {
|
|
bool valid;
|
|
struct gnet_stats_basic counters;
|
|
};
|
|
|
|
/** Empty masks for known item types. */
|
|
static const union {
|
|
struct rte_flow_item_port_id port_id;
|
|
struct rte_flow_item_eth eth;
|
|
struct rte_flow_item_vlan vlan;
|
|
struct rte_flow_item_ipv4 ipv4;
|
|
struct rte_flow_item_ipv6 ipv6;
|
|
struct rte_flow_item_tcp tcp;
|
|
struct rte_flow_item_udp udp;
|
|
struct rte_flow_item_vxlan vxlan;
|
|
} flow_tcf_mask_empty = {
|
|
{0},
|
|
};
|
|
|
|
/** Supported masks for known item types. */
|
|
static const struct {
|
|
struct rte_flow_item_port_id port_id;
|
|
struct rte_flow_item_eth eth;
|
|
struct rte_flow_item_vlan vlan;
|
|
struct rte_flow_item_ipv4 ipv4;
|
|
struct rte_flow_item_ipv6 ipv6;
|
|
struct rte_flow_item_tcp tcp;
|
|
struct rte_flow_item_udp udp;
|
|
struct rte_flow_item_vxlan vxlan;
|
|
} flow_tcf_mask_supported = {
|
|
.port_id = {
|
|
.id = 0xffffffff,
|
|
},
|
|
.eth = {
|
|
.type = RTE_BE16(0xffff),
|
|
.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
|
|
.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
|
|
},
|
|
.vlan = {
|
|
/* PCP and VID only, no DEI. */
|
|
.tci = RTE_BE16(0xefff),
|
|
.inner_type = RTE_BE16(0xffff),
|
|
},
|
|
.ipv4.hdr = {
|
|
.next_proto_id = 0xff,
|
|
.time_to_live = 0xff,
|
|
.type_of_service = 0xff,
|
|
.src_addr = RTE_BE32(0xffffffff),
|
|
.dst_addr = RTE_BE32(0xffffffff),
|
|
},
|
|
.ipv6.hdr = {
|
|
.proto = 0xff,
|
|
.vtc_flow = RTE_BE32(0xfful << IPV6_HDR_FL_SHIFT),
|
|
.hop_limits = 0xff,
|
|
.src_addr =
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff",
|
|
.dst_addr =
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff",
|
|
},
|
|
.tcp.hdr = {
|
|
.src_port = RTE_BE16(0xffff),
|
|
.dst_port = RTE_BE16(0xffff),
|
|
.tcp_flags = 0xff,
|
|
},
|
|
.udp.hdr = {
|
|
.src_port = RTE_BE16(0xffff),
|
|
.dst_port = RTE_BE16(0xffff),
|
|
},
|
|
.vxlan = {
|
|
.vni = "\xff\xff\xff",
|
|
},
|
|
};
|
|
|
|
#define SZ_NLATTR_HDR MNL_ALIGN(sizeof(struct nlattr))
|
|
#define SZ_NLATTR_NEST SZ_NLATTR_HDR
|
|
#define SZ_NLATTR_DATA_OF(len) MNL_ALIGN(SZ_NLATTR_HDR + (len))
|
|
#define SZ_NLATTR_TYPE_OF(typ) SZ_NLATTR_DATA_OF(sizeof(typ))
|
|
#define SZ_NLATTR_STRZ_OF(str) SZ_NLATTR_DATA_OF(strlen(str) + 1)
|
|
|
|
#define PTOI_TABLE_SZ_MAX(dev) (mlx5_dev_to_port_id((dev)->device, NULL, 0) + 2)
|
|
|
|
/** DPDK port to network interface index (ifindex) conversion. */
|
|
struct flow_tcf_ptoi {
|
|
uint16_t port_id; /**< DPDK port ID. */
|
|
unsigned int ifindex; /**< Network interface index. */
|
|
};
|
|
|
|
/* Due to a limitation on driver/FW. */
|
|
#define MLX5_TCF_GROUP_ID_MAX 3
|
|
|
|
/*
|
|
* Due to a limitation on driver/FW, priority ranges from 1 to 16 in kernel.
|
|
* Priority in rte_flow attribute starts from 0 and is added by 1 in
|
|
* translation. This is subject to be changed to determine the max priority
|
|
* based on trial-and-error like Verbs driver once the restriction is lifted or
|
|
* the range is extended.
|
|
*/
|
|
#define MLX5_TCF_GROUP_PRIORITY_MAX 15
|
|
|
|
#define MLX5_TCF_FATE_ACTIONS \
|
|
(MLX5_FLOW_ACTION_DROP | MLX5_FLOW_ACTION_PORT_ID | \
|
|
MLX5_FLOW_ACTION_JUMP)
|
|
|
|
#define MLX5_TCF_VLAN_ACTIONS \
|
|
(MLX5_FLOW_ACTION_OF_POP_VLAN | MLX5_FLOW_ACTION_OF_PUSH_VLAN | \
|
|
MLX5_FLOW_ACTION_OF_SET_VLAN_VID | MLX5_FLOW_ACTION_OF_SET_VLAN_PCP)
|
|
|
|
#define MLX5_TCF_VXLAN_ACTIONS \
|
|
(MLX5_FLOW_ACTION_VXLAN_ENCAP | MLX5_FLOW_ACTION_VXLAN_DECAP)
|
|
|
|
#define MLX5_TCF_PEDIT_ACTIONS \
|
|
(MLX5_FLOW_ACTION_SET_IPV4_SRC | MLX5_FLOW_ACTION_SET_IPV4_DST | \
|
|
MLX5_FLOW_ACTION_SET_IPV6_SRC | MLX5_FLOW_ACTION_SET_IPV6_DST | \
|
|
MLX5_FLOW_ACTION_SET_TP_SRC | MLX5_FLOW_ACTION_SET_TP_DST | \
|
|
MLX5_FLOW_ACTION_SET_TTL | MLX5_FLOW_ACTION_DEC_TTL | \
|
|
MLX5_FLOW_ACTION_SET_MAC_SRC | MLX5_FLOW_ACTION_SET_MAC_DST)
|
|
|
|
#define MLX5_TCF_CONFIG_ACTIONS \
|
|
(MLX5_FLOW_ACTION_PORT_ID | MLX5_FLOW_ACTION_JUMP | \
|
|
MLX5_FLOW_ACTION_OF_PUSH_VLAN | MLX5_FLOW_ACTION_OF_SET_VLAN_VID | \
|
|
MLX5_FLOW_ACTION_OF_SET_VLAN_PCP | \
|
|
(MLX5_TCF_PEDIT_ACTIONS & ~MLX5_FLOW_ACTION_DEC_TTL))
|
|
|
|
#define MAX_PEDIT_KEYS 128
|
|
#define SZ_PEDIT_KEY_VAL 4
|
|
|
|
#define NUM_OF_PEDIT_KEYS(sz) \
|
|
(((sz) / SZ_PEDIT_KEY_VAL) + (((sz) % SZ_PEDIT_KEY_VAL) ? 1 : 0))
|
|
|
|
struct pedit_key_ex {
|
|
enum pedit_header_type htype;
|
|
enum pedit_cmd cmd;
|
|
};
|
|
|
|
struct pedit_parser {
|
|
struct tc_pedit_sel sel;
|
|
struct tc_pedit_key keys[MAX_PEDIT_KEYS];
|
|
struct pedit_key_ex keys_ex[MAX_PEDIT_KEYS];
|
|
};
|
|
|
|
/**
|
|
* Create space for using the implicitly created TC flow counter.
|
|
*
|
|
* @param[in] dev
|
|
* Pointer to the Ethernet device structure.
|
|
*
|
|
* @return
|
|
* A pointer to the counter data structure, NULL otherwise and
|
|
* rte_errno is set.
|
|
*/
|
|
static struct mlx5_flow_counter *
|
|
flow_tcf_counter_new(void)
|
|
{
|
|
struct mlx5_flow_counter *cnt;
|
|
|
|
/*
|
|
* eswitch counter cannot be shared and its id is unknown.
|
|
* currently returning all with id 0.
|
|
* in the future maybe better to switch to unique numbers.
|
|
*/
|
|
struct mlx5_flow_counter tmpl = {
|
|
.ref_cnt = 1,
|
|
};
|
|
cnt = rte_calloc(__func__, 1, sizeof(*cnt), 0);
|
|
if (!cnt) {
|
|
rte_errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
*cnt = tmpl;
|
|
/* Implicit counter, do not add to list. */
|
|
return cnt;
|
|
}
|
|
|
|
/**
|
|
* Set pedit key of MAC address
|
|
*
|
|
* @param[in] actions
|
|
* pointer to action specification
|
|
* @param[in,out] p_parser
|
|
* pointer to pedit_parser
|
|
*/
|
|
static void
|
|
flow_tcf_pedit_key_set_mac(const struct rte_flow_action *actions,
|
|
struct pedit_parser *p_parser)
|
|
{
|
|
int idx = p_parser->sel.nkeys;
|
|
uint32_t off = actions->type == RTE_FLOW_ACTION_TYPE_SET_MAC_SRC ?
|
|
offsetof(struct ether_hdr, s_addr) :
|
|
offsetof(struct ether_hdr, d_addr);
|
|
const struct rte_flow_action_set_mac *conf =
|
|
(const struct rte_flow_action_set_mac *)actions->conf;
|
|
|
|
p_parser->keys[idx].off = off;
|
|
p_parser->keys[idx].mask = ~UINT32_MAX;
|
|
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_ETH;
|
|
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
|
|
memcpy(&p_parser->keys[idx].val,
|
|
conf->mac_addr, SZ_PEDIT_KEY_VAL);
|
|
idx++;
|
|
p_parser->keys[idx].off = off + SZ_PEDIT_KEY_VAL;
|
|
p_parser->keys[idx].mask = 0xFFFF0000;
|
|
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_ETH;
|
|
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
|
|
memcpy(&p_parser->keys[idx].val,
|
|
conf->mac_addr + SZ_PEDIT_KEY_VAL,
|
|
ETHER_ADDR_LEN - SZ_PEDIT_KEY_VAL);
|
|
p_parser->sel.nkeys = (++idx);
|
|
}
|
|
|
|
/**
|
|
* Set pedit key of decrease/set ttl
|
|
*
|
|
* @param[in] actions
|
|
* pointer to action specification
|
|
* @param[in,out] p_parser
|
|
* pointer to pedit_parser
|
|
* @param[in] item_flags
|
|
* flags of all items presented
|
|
*/
|
|
static void
|
|
flow_tcf_pedit_key_set_dec_ttl(const struct rte_flow_action *actions,
|
|
struct pedit_parser *p_parser,
|
|
uint64_t item_flags)
|
|
{
|
|
int idx = p_parser->sel.nkeys;
|
|
|
|
p_parser->keys[idx].mask = 0xFFFFFF00;
|
|
if (item_flags & MLX5_FLOW_LAYER_OUTER_L3_IPV4) {
|
|
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_IP4;
|
|
p_parser->keys[idx].off =
|
|
offsetof(struct ipv4_hdr, time_to_live);
|
|
}
|
|
if (item_flags & MLX5_FLOW_LAYER_OUTER_L3_IPV6) {
|
|
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_IP6;
|
|
p_parser->keys[idx].off =
|
|
offsetof(struct ipv6_hdr, hop_limits);
|
|
}
|
|
if (actions->type == RTE_FLOW_ACTION_TYPE_DEC_TTL) {
|
|
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_ADD;
|
|
p_parser->keys[idx].val = 0x000000FF;
|
|
} else {
|
|
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
|
|
p_parser->keys[idx].val =
|
|
(__u32)((const struct rte_flow_action_set_ttl *)
|
|
actions->conf)->ttl_value;
|
|
}
|
|
p_parser->sel.nkeys = (++idx);
|
|
}
|
|
|
|
/**
|
|
* Set pedit key of transport (TCP/UDP) port value
|
|
*
|
|
* @param[in] actions
|
|
* pointer to action specification
|
|
* @param[in,out] p_parser
|
|
* pointer to pedit_parser
|
|
* @param[in] item_flags
|
|
* flags of all items presented
|
|
*/
|
|
static void
|
|
flow_tcf_pedit_key_set_tp_port(const struct rte_flow_action *actions,
|
|
struct pedit_parser *p_parser,
|
|
uint64_t item_flags)
|
|
{
|
|
int idx = p_parser->sel.nkeys;
|
|
|
|
if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
|
|
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_UDP;
|
|
if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
|
|
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_TCP;
|
|
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
|
|
/* offset of src/dst port is same for TCP and UDP */
|
|
p_parser->keys[idx].off =
|
|
actions->type == RTE_FLOW_ACTION_TYPE_SET_TP_SRC ?
|
|
offsetof(struct tcp_hdr, src_port) :
|
|
offsetof(struct tcp_hdr, dst_port);
|
|
p_parser->keys[idx].mask = 0xFFFF0000;
|
|
p_parser->keys[idx].val =
|
|
(__u32)((const struct rte_flow_action_set_tp *)
|
|
actions->conf)->port;
|
|
p_parser->sel.nkeys = (++idx);
|
|
}
|
|
|
|
/**
|
|
* Set pedit key of ipv6 address
|
|
*
|
|
* @param[in] actions
|
|
* pointer to action specification
|
|
* @param[in,out] p_parser
|
|
* pointer to pedit_parser
|
|
*/
|
|
static void
|
|
flow_tcf_pedit_key_set_ipv6_addr(const struct rte_flow_action *actions,
|
|
struct pedit_parser *p_parser)
|
|
{
|
|
int idx = p_parser->sel.nkeys;
|
|
int keys = NUM_OF_PEDIT_KEYS(IPV6_ADDR_LEN);
|
|
int off_base =
|
|
actions->type == RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC ?
|
|
offsetof(struct ipv6_hdr, src_addr) :
|
|
offsetof(struct ipv6_hdr, dst_addr);
|
|
const struct rte_flow_action_set_ipv6 *conf =
|
|
(const struct rte_flow_action_set_ipv6 *)actions->conf;
|
|
|
|
for (int i = 0; i < keys; i++, idx++) {
|
|
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_IP6;
|
|
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
|
|
p_parser->keys[idx].off = off_base + i * SZ_PEDIT_KEY_VAL;
|
|
p_parser->keys[idx].mask = ~UINT32_MAX;
|
|
memcpy(&p_parser->keys[idx].val,
|
|
conf->ipv6_addr + i * SZ_PEDIT_KEY_VAL,
|
|
SZ_PEDIT_KEY_VAL);
|
|
}
|
|
p_parser->sel.nkeys += keys;
|
|
}
|
|
|
|
/**
|
|
* Set pedit key of ipv4 address
|
|
*
|
|
* @param[in] actions
|
|
* pointer to action specification
|
|
* @param[in,out] p_parser
|
|
* pointer to pedit_parser
|
|
*/
|
|
static void
|
|
flow_tcf_pedit_key_set_ipv4_addr(const struct rte_flow_action *actions,
|
|
struct pedit_parser *p_parser)
|
|
{
|
|
int idx = p_parser->sel.nkeys;
|
|
|
|
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_IP4;
|
|
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
|
|
p_parser->keys[idx].off =
|
|
actions->type == RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC ?
|
|
offsetof(struct ipv4_hdr, src_addr) :
|
|
offsetof(struct ipv4_hdr, dst_addr);
|
|
p_parser->keys[idx].mask = ~UINT32_MAX;
|
|
p_parser->keys[idx].val =
|
|
((const struct rte_flow_action_set_ipv4 *)
|
|
actions->conf)->ipv4_addr;
|
|
p_parser->sel.nkeys = (++idx);
|
|
}
|
|
|
|
/**
|
|
* Create the pedit's na attribute in netlink message
|
|
* on pre-allocate message buffer
|
|
*
|
|
* @param[in,out] nl
|
|
* pointer to pre-allocated netlink message buffer
|
|
* @param[in,out] actions
|
|
* pointer to pointer of actions specification.
|
|
* @param[in,out] action_flags
|
|
* pointer to actions flags
|
|
* @param[in] item_flags
|
|
* flags of all item presented
|
|
*/
|
|
static void
|
|
flow_tcf_create_pedit_mnl_msg(struct nlmsghdr *nl,
|
|
const struct rte_flow_action **actions,
|
|
uint64_t item_flags)
|
|
{
|
|
struct pedit_parser p_parser;
|
|
struct nlattr *na_act_options;
|
|
struct nlattr *na_pedit_keys;
|
|
|
|
memset(&p_parser, 0, sizeof(p_parser));
|
|
mnl_attr_put_strz(nl, TCA_ACT_KIND, "pedit");
|
|
na_act_options = mnl_attr_nest_start(nl, TCA_ACT_OPTIONS);
|
|
/* all modify header actions should be in one tc-pedit action */
|
|
for (; (*actions)->type != RTE_FLOW_ACTION_TYPE_END; (*actions)++) {
|
|
switch ((*actions)->type) {
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
|
|
flow_tcf_pedit_key_set_ipv4_addr(*actions, &p_parser);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
|
|
flow_tcf_pedit_key_set_ipv6_addr(*actions, &p_parser);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
|
|
flow_tcf_pedit_key_set_tp_port(*actions,
|
|
&p_parser, item_flags);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_TTL:
|
|
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
|
|
flow_tcf_pedit_key_set_dec_ttl(*actions,
|
|
&p_parser, item_flags);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
|
|
flow_tcf_pedit_key_set_mac(*actions, &p_parser);
|
|
break;
|
|
default:
|
|
goto pedit_mnl_msg_done;
|
|
}
|
|
}
|
|
pedit_mnl_msg_done:
|
|
p_parser.sel.action = TC_ACT_PIPE;
|
|
mnl_attr_put(nl, TCA_PEDIT_PARMS_EX,
|
|
sizeof(p_parser.sel) +
|
|
p_parser.sel.nkeys * sizeof(struct tc_pedit_key),
|
|
&p_parser);
|
|
na_pedit_keys =
|
|
mnl_attr_nest_start(nl, TCA_PEDIT_KEYS_EX | NLA_F_NESTED);
|
|
for (int i = 0; i < p_parser.sel.nkeys; i++) {
|
|
struct nlattr *na_pedit_key =
|
|
mnl_attr_nest_start(nl,
|
|
TCA_PEDIT_KEY_EX | NLA_F_NESTED);
|
|
mnl_attr_put_u16(nl, TCA_PEDIT_KEY_EX_HTYPE,
|
|
p_parser.keys_ex[i].htype);
|
|
mnl_attr_put_u16(nl, TCA_PEDIT_KEY_EX_CMD,
|
|
p_parser.keys_ex[i].cmd);
|
|
mnl_attr_nest_end(nl, na_pedit_key);
|
|
}
|
|
mnl_attr_nest_end(nl, na_pedit_keys);
|
|
mnl_attr_nest_end(nl, na_act_options);
|
|
(*actions)--;
|
|
}
|
|
|
|
/**
|
|
* Calculate max memory size of one TC-pedit actions.
|
|
* One TC-pedit action can contain set of keys each defining
|
|
* a rewrite element (rte_flow action)
|
|
*
|
|
* @param[in,out] actions
|
|
* actions specification.
|
|
* @param[in,out] action_flags
|
|
* actions flags
|
|
* @param[in,out] size
|
|
* accumulated size
|
|
* @return
|
|
* Max memory size of one TC-pedit action
|
|
*/
|
|
static int
|
|
flow_tcf_get_pedit_actions_size(const struct rte_flow_action **actions,
|
|
uint64_t *action_flags)
|
|
{
|
|
int pedit_size = 0;
|
|
int keys = 0;
|
|
uint64_t flags = 0;
|
|
|
|
pedit_size += SZ_NLATTR_NEST + /* na_act_index. */
|
|
SZ_NLATTR_STRZ_OF("pedit") +
|
|
SZ_NLATTR_NEST; /* TCA_ACT_OPTIONS. */
|
|
for (; (*actions)->type != RTE_FLOW_ACTION_TYPE_END; (*actions)++) {
|
|
switch ((*actions)->type) {
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
|
|
keys += NUM_OF_PEDIT_KEYS(IPV4_ADDR_LEN);
|
|
flags |= MLX5_FLOW_ACTION_SET_IPV4_SRC;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
|
|
keys += NUM_OF_PEDIT_KEYS(IPV4_ADDR_LEN);
|
|
flags |= MLX5_FLOW_ACTION_SET_IPV4_DST;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
|
|
keys += NUM_OF_PEDIT_KEYS(IPV6_ADDR_LEN);
|
|
flags |= MLX5_FLOW_ACTION_SET_IPV6_SRC;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
|
|
keys += NUM_OF_PEDIT_KEYS(IPV6_ADDR_LEN);
|
|
flags |= MLX5_FLOW_ACTION_SET_IPV6_DST;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
|
|
/* TCP is as same as UDP */
|
|
keys += NUM_OF_PEDIT_KEYS(TP_PORT_LEN);
|
|
flags |= MLX5_FLOW_ACTION_SET_TP_SRC;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
|
|
/* TCP is as same as UDP */
|
|
keys += NUM_OF_PEDIT_KEYS(TP_PORT_LEN);
|
|
flags |= MLX5_FLOW_ACTION_SET_TP_DST;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_TTL:
|
|
keys += NUM_OF_PEDIT_KEYS(TTL_LEN);
|
|
flags |= MLX5_FLOW_ACTION_SET_TTL;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
|
|
keys += NUM_OF_PEDIT_KEYS(TTL_LEN);
|
|
flags |= MLX5_FLOW_ACTION_DEC_TTL;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
|
|
keys += NUM_OF_PEDIT_KEYS(ETHER_ADDR_LEN);
|
|
flags |= MLX5_FLOW_ACTION_SET_MAC_SRC;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
|
|
keys += NUM_OF_PEDIT_KEYS(ETHER_ADDR_LEN);
|
|
flags |= MLX5_FLOW_ACTION_SET_MAC_DST;
|
|
break;
|
|
default:
|
|
goto get_pedit_action_size_done;
|
|
}
|
|
}
|
|
get_pedit_action_size_done:
|
|
/* TCA_PEDIT_PARAMS_EX */
|
|
pedit_size +=
|
|
SZ_NLATTR_DATA_OF(sizeof(struct tc_pedit_sel) +
|
|
keys * sizeof(struct tc_pedit_key));
|
|
pedit_size += SZ_NLATTR_NEST; /* TCA_PEDIT_KEYS */
|
|
pedit_size += keys *
|
|
/* TCA_PEDIT_KEY_EX + HTYPE + CMD */
|
|
(SZ_NLATTR_NEST + SZ_NLATTR_DATA_OF(2) +
|
|
SZ_NLATTR_DATA_OF(2));
|
|
(*action_flags) |= flags;
|
|
(*actions)--;
|
|
return pedit_size;
|
|
}
|
|
|
|
/**
|
|
* Retrieve mask for pattern item.
|
|
*
|
|
* This function does basic sanity checks on a pattern item in order to
|
|
* return the most appropriate mask for it.
|
|
*
|
|
* @param[in] item
|
|
* Item specification.
|
|
* @param[in] mask_default
|
|
* Default mask for pattern item as specified by the flow API.
|
|
* @param[in] mask_supported
|
|
* Mask fields supported by the implementation.
|
|
* @param[in] mask_empty
|
|
* Empty mask to return when there is no specification.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* Either @p item->mask or one of the mask parameters on success, NULL
|
|
* otherwise and rte_errno is set.
|
|
*/
|
|
static const void *
|
|
flow_tcf_item_mask(const struct rte_flow_item *item, const void *mask_default,
|
|
const void *mask_supported, const void *mask_empty,
|
|
size_t mask_size, struct rte_flow_error *error)
|
|
{
|
|
const uint8_t *mask;
|
|
size_t i;
|
|
|
|
/* item->last and item->mask cannot exist without item->spec. */
|
|
if (!item->spec && (item->mask || item->last)) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"\"mask\" or \"last\" field provided without"
|
|
" a corresponding \"spec\"");
|
|
return NULL;
|
|
}
|
|
/* No spec, no mask, no problem. */
|
|
if (!item->spec)
|
|
return mask_empty;
|
|
mask = item->mask ? item->mask : mask_default;
|
|
assert(mask);
|
|
/*
|
|
* Single-pass check to make sure that:
|
|
* - Mask is supported, no bits are set outside mask_supported.
|
|
* - Both item->spec and item->last are included in mask.
|
|
*/
|
|
for (i = 0; i != mask_size; ++i) {
|
|
if (!mask[i])
|
|
continue;
|
|
if ((mask[i] | ((const uint8_t *)mask_supported)[i]) !=
|
|
((const uint8_t *)mask_supported)[i]) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"unsupported field found"
|
|
" in \"mask\"");
|
|
return NULL;
|
|
}
|
|
if (item->last &&
|
|
(((const uint8_t *)item->spec)[i] & mask[i]) !=
|
|
(((const uint8_t *)item->last)[i] & mask[i])) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_LAST,
|
|
item->last,
|
|
"range between \"spec\" and \"last\""
|
|
" not comprised in \"mask\"");
|
|
return NULL;
|
|
}
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* Build a conversion table between port ID and ifindex.
|
|
*
|
|
* @param[in] dev
|
|
* Pointer to Ethernet device.
|
|
* @param[out] ptoi
|
|
* Pointer to ptoi table.
|
|
* @param[in] len
|
|
* Size of ptoi table provided.
|
|
*
|
|
* @return
|
|
* Size of ptoi table filled.
|
|
*/
|
|
static unsigned int
|
|
flow_tcf_build_ptoi_table(struct rte_eth_dev *dev, struct flow_tcf_ptoi *ptoi,
|
|
unsigned int len)
|
|
{
|
|
unsigned int n = mlx5_dev_to_port_id(dev->device, NULL, 0);
|
|
uint16_t port_id[n + 1];
|
|
unsigned int i;
|
|
unsigned int own = 0;
|
|
|
|
/* At least one port is needed when no switch domain is present. */
|
|
if (!n) {
|
|
n = 1;
|
|
port_id[0] = dev->data->port_id;
|
|
} else {
|
|
n = RTE_MIN(mlx5_dev_to_port_id(dev->device, port_id, n), n);
|
|
}
|
|
if (n > len)
|
|
return 0;
|
|
for (i = 0; i != n; ++i) {
|
|
struct rte_eth_dev_info dev_info;
|
|
|
|
rte_eth_dev_info_get(port_id[i], &dev_info);
|
|
if (port_id[i] == dev->data->port_id)
|
|
own = i;
|
|
ptoi[i].port_id = port_id[i];
|
|
ptoi[i].ifindex = dev_info.if_index;
|
|
}
|
|
/* Ensure first entry of ptoi[] is the current device. */
|
|
if (own) {
|
|
ptoi[n] = ptoi[0];
|
|
ptoi[0] = ptoi[own];
|
|
ptoi[own] = ptoi[n];
|
|
}
|
|
/* An entry with zero ifindex terminates ptoi[]. */
|
|
ptoi[n].port_id = 0;
|
|
ptoi[n].ifindex = 0;
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Verify the @p attr will be correctly understood by the E-switch.
|
|
*
|
|
* @param[in] attr
|
|
* Pointer to flow attributes
|
|
* @param[out] error
|
|
* Pointer to error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_validate_attributes(const struct rte_flow_attr *attr,
|
|
struct rte_flow_error *error)
|
|
{
|
|
/*
|
|
* Supported attributes: groups, some priorities and ingress only.
|
|
* group is supported only if kernel supports chain. Don't care about
|
|
* transfer as it is the caller's problem.
|
|
*/
|
|
if (attr->group > MLX5_TCF_GROUP_ID_MAX)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
|
|
"group ID larger than "
|
|
RTE_STR(MLX5_TCF_GROUP_ID_MAX)
|
|
" isn't supported");
|
|
else if (attr->priority > MLX5_TCF_GROUP_PRIORITY_MAX)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
|
|
attr,
|
|
"priority more than "
|
|
RTE_STR(MLX5_TCF_GROUP_PRIORITY_MAX)
|
|
" is not supported");
|
|
if (!attr->ingress)
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
|
|
attr, "only ingress is supported");
|
|
if (attr->egress)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
|
|
attr, "egress is not supported");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_ETH item for E-Switch.
|
|
* The routine checks the L2 fields to be used in encapsulation header.
|
|
*
|
|
* @param[in] item
|
|
* Pointer to the item structure.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
**/
|
|
static int
|
|
flow_tcf_validate_vxlan_encap_eth(const struct rte_flow_item *item,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct rte_flow_item_eth *spec = item->spec;
|
|
const struct rte_flow_item_eth *mask = item->mask;
|
|
|
|
if (!spec) {
|
|
/*
|
|
* Specification for L2 addresses can be empty
|
|
* because these ones are optional and not
|
|
* required directly by tc rule. Kernel tries
|
|
* to resolve these ones on its own
|
|
*/
|
|
return 0;
|
|
}
|
|
if (!mask) {
|
|
/* If mask is not specified use the default one. */
|
|
mask = &rte_flow_item_eth_mask;
|
|
}
|
|
if (memcmp(&mask->dst,
|
|
&flow_tcf_mask_empty.eth.dst,
|
|
sizeof(flow_tcf_mask_empty.eth.dst))) {
|
|
if (memcmp(&mask->dst,
|
|
&rte_flow_item_eth_mask.dst,
|
|
sizeof(rte_flow_item_eth_mask.dst)))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"eth.dst\" field");
|
|
}
|
|
if (memcmp(&mask->src,
|
|
&flow_tcf_mask_empty.eth.src,
|
|
sizeof(flow_tcf_mask_empty.eth.src))) {
|
|
if (memcmp(&mask->src,
|
|
&rte_flow_item_eth_mask.src,
|
|
sizeof(rte_flow_item_eth_mask.src)))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"eth.src\" field");
|
|
}
|
|
if (mask->type != RTE_BE16(0x0000)) {
|
|
if (mask->type != RTE_BE16(0xffff))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"eth.type\" field");
|
|
DRV_LOG(WARNING,
|
|
"outer ethernet type field"
|
|
" cannot be forced for vxlan"
|
|
" encapsulation, parameter ignored");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_IPV4 item for E-Switch.
|
|
* The routine checks the IPv4 fields to be used in encapsulation header.
|
|
*
|
|
* @param[in] item
|
|
* Pointer to the item structure.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
**/
|
|
static int
|
|
flow_tcf_validate_vxlan_encap_ipv4(const struct rte_flow_item *item,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct rte_flow_item_ipv4 *spec = item->spec;
|
|
const struct rte_flow_item_ipv4 *mask = item->mask;
|
|
|
|
if (!spec) {
|
|
/*
|
|
* Specification for IP addresses cannot be empty
|
|
* because it is required by tunnel_key parameter.
|
|
*/
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"NULL outer ipv4 address"
|
|
" specification for vxlan"
|
|
" encapsulation");
|
|
}
|
|
if (!mask)
|
|
mask = &rte_flow_item_ipv4_mask;
|
|
if (mask->hdr.dst_addr != RTE_BE32(0x00000000)) {
|
|
if (mask->hdr.dst_addr != RTE_BE32(0xffffffff))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"ipv4.hdr.dst_addr\" field"
|
|
" for vxlan encapsulation");
|
|
/* More IPv4 address validations can be put here. */
|
|
} else {
|
|
/*
|
|
* Kernel uses the destination IP address to determine
|
|
* the routing path and obtain the MAC destination
|
|
* address, so IP destination address must be
|
|
* specified in the tc rule.
|
|
*/
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"outer ipv4 destination address"
|
|
" must be specified for"
|
|
" vxlan encapsulation");
|
|
}
|
|
if (mask->hdr.src_addr != RTE_BE32(0x00000000)) {
|
|
if (mask->hdr.src_addr != RTE_BE32(0xffffffff))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"ipv4.hdr.src_addr\" field"
|
|
" for vxlan encapsulation");
|
|
/* More IPv4 address validations can be put here. */
|
|
} else {
|
|
/*
|
|
* Kernel uses the source IP address to select the
|
|
* interface for egress encapsulated traffic, so
|
|
* it must be specified in the tc rule.
|
|
*/
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"outer ipv4 source address"
|
|
" must be specified for"
|
|
" vxlan encapsulation");
|
|
}
|
|
if (mask->hdr.type_of_service &&
|
|
mask->hdr.type_of_service != 0xff)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"ipv4.hdr.type_of_service\" field"
|
|
" for vxlan encapsulation");
|
|
if (mask->hdr.time_to_live &&
|
|
mask->hdr.time_to_live != 0xff)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"ipv4.hdr.time_to_live\" field"
|
|
" for vxlan encapsulation");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_IPV6 item for E-Switch.
|
|
* The routine checks the IPv6 fields to be used in encapsulation header.
|
|
*
|
|
* @param[in] item
|
|
* Pointer to the item structure.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
**/
|
|
static int
|
|
flow_tcf_validate_vxlan_encap_ipv6(const struct rte_flow_item *item,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct rte_flow_item_ipv6 *spec = item->spec;
|
|
const struct rte_flow_item_ipv6 *mask = item->mask;
|
|
uint8_t msk6;
|
|
|
|
if (!spec) {
|
|
/*
|
|
* Specification for IP addresses cannot be empty
|
|
* because it is required by tunnel_key parameter.
|
|
*/
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"NULL outer ipv6 address"
|
|
" specification for"
|
|
" vxlan encapsulation");
|
|
}
|
|
if (!mask)
|
|
mask = &rte_flow_item_ipv6_mask;
|
|
if (memcmp(&mask->hdr.dst_addr,
|
|
&flow_tcf_mask_empty.ipv6.hdr.dst_addr,
|
|
IPV6_ADDR_LEN)) {
|
|
if (memcmp(&mask->hdr.dst_addr,
|
|
&rte_flow_item_ipv6_mask.hdr.dst_addr,
|
|
IPV6_ADDR_LEN))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"ipv6.hdr.dst_addr\" field"
|
|
" for vxlan encapsulation");
|
|
/* More IPv6 address validations can be put here. */
|
|
} else {
|
|
/*
|
|
* Kernel uses the destination IP address to determine
|
|
* the routing path and obtain the MAC destination
|
|
* address (heigh or gate), so IP destination address
|
|
* must be specified within the tc rule.
|
|
*/
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"outer ipv6 destination address"
|
|
" must be specified for"
|
|
" vxlan encapsulation");
|
|
}
|
|
if (memcmp(&mask->hdr.src_addr,
|
|
&flow_tcf_mask_empty.ipv6.hdr.src_addr,
|
|
IPV6_ADDR_LEN)) {
|
|
if (memcmp(&mask->hdr.src_addr,
|
|
&rte_flow_item_ipv6_mask.hdr.src_addr,
|
|
IPV6_ADDR_LEN))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"ipv6.hdr.src_addr\" field"
|
|
" for vxlan encapsulation");
|
|
/* More L3 address validation can be put here. */
|
|
} else {
|
|
/*
|
|
* Kernel uses the source IP address to select the
|
|
* interface for egress encapsulated traffic, so
|
|
* it must be specified in the tc rule.
|
|
*/
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"outer L3 source address"
|
|
" must be specified for"
|
|
" vxlan encapsulation");
|
|
}
|
|
msk6 = (rte_be_to_cpu_32(mask->hdr.vtc_flow) >>
|
|
IPV6_HDR_TC_SHIFT) & 0xff;
|
|
if (msk6 && msk6 != 0xff)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"ipv6.hdr.vtc_flow.tos\" field"
|
|
" for vxlan encapsulation");
|
|
if (mask->hdr.hop_limits && mask->hdr.hop_limits != 0xff)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"ipv6.hdr.hop_limits\" field"
|
|
" for vxlan encapsulation");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_UDP item for E-Switch.
|
|
* The routine checks the UDP fields to be used in encapsulation header.
|
|
*
|
|
* @param[in] item
|
|
* Pointer to the item structure.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
**/
|
|
static int
|
|
flow_tcf_validate_vxlan_encap_udp(const struct rte_flow_item *item,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct rte_flow_item_udp *spec = item->spec;
|
|
const struct rte_flow_item_udp *mask = item->mask;
|
|
|
|
if (!spec) {
|
|
/*
|
|
* Specification for UDP ports cannot be empty
|
|
* because it is required by tunnel_key parameter.
|
|
*/
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"NULL UDP port specification "
|
|
" for vxlan encapsulation");
|
|
}
|
|
if (!mask)
|
|
mask = &rte_flow_item_udp_mask;
|
|
if (mask->hdr.dst_port != RTE_BE16(0x0000)) {
|
|
if (mask->hdr.dst_port != RTE_BE16(0xffff))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"udp.hdr.dst_port\" field"
|
|
" for vxlan encapsulation");
|
|
if (!spec->hdr.dst_port)
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"outer UDP remote port cannot be"
|
|
" 0 for vxlan encapsulation");
|
|
} else {
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"outer UDP remote port"
|
|
" must be specified for"
|
|
" vxlan encapsulation");
|
|
}
|
|
if (mask->hdr.src_port != RTE_BE16(0x0000)) {
|
|
if (mask->hdr.src_port != RTE_BE16(0xffff))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"udp.hdr.src_port\" field"
|
|
" for vxlan encapsulation");
|
|
DRV_LOG(WARNING,
|
|
"outer UDP source port cannot be"
|
|
" forced for vxlan encapsulation,"
|
|
" parameter ignored");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_VXLAN item for E-Switch.
|
|
* The routine checks the VNIP fields to be used in encapsulation header.
|
|
*
|
|
* @param[in] item
|
|
* Pointer to the item structure.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
**/
|
|
static int
|
|
flow_tcf_validate_vxlan_encap_vni(const struct rte_flow_item *item,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct rte_flow_item_vxlan *spec = item->spec;
|
|
const struct rte_flow_item_vxlan *mask = item->mask;
|
|
|
|
if (!spec) {
|
|
/* Outer VNI is required by tunnel_key parameter. */
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"NULL VNI specification"
|
|
" for vxlan encapsulation");
|
|
}
|
|
if (!mask)
|
|
mask = &rte_flow_item_vxlan_mask;
|
|
if (!mask->vni[0] && !mask->vni[1] && !mask->vni[2])
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"outer VNI must be specified "
|
|
"for vxlan encapsulation");
|
|
if (mask->vni[0] != 0xff ||
|
|
mask->vni[1] != 0xff ||
|
|
mask->vni[2] != 0xff)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"vxlan.vni\" field");
|
|
|
|
if (!spec->vni[0] && !spec->vni[1] && !spec->vni[2])
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"vxlan vni cannot be 0");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Validate VXLAN_ENCAP action item list for E-Switch.
|
|
* The routine checks items to be used in encapsulation header.
|
|
*
|
|
* @param[in] action
|
|
* Pointer to the VXLAN_ENCAP action structure.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
**/
|
|
static int
|
|
flow_tcf_validate_vxlan_encap(const struct rte_flow_action *action,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct rte_flow_item *items;
|
|
int ret;
|
|
uint32_t item_flags = 0;
|
|
|
|
if (!action->conf)
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, action,
|
|
"Missing vxlan tunnel"
|
|
" action configuration");
|
|
items = ((const struct rte_flow_action_vxlan_encap *)
|
|
action->conf)->definition;
|
|
if (!items)
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, action,
|
|
"Missing vxlan tunnel"
|
|
" encapsulation parameters");
|
|
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
|
|
switch (items->type) {
|
|
case RTE_FLOW_ITEM_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_ETH:
|
|
ret = mlx5_flow_validate_item_eth(items, item_flags,
|
|
error);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = flow_tcf_validate_vxlan_encap_eth(items, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= MLX5_FLOW_LAYER_OUTER_L2;
|
|
break;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV4:
|
|
ret = mlx5_flow_validate_item_ipv4
|
|
(items, item_flags,
|
|
&flow_tcf_mask_supported.ipv4, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = flow_tcf_validate_vxlan_encap_ipv4(items, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV6:
|
|
ret = mlx5_flow_validate_item_ipv6
|
|
(items, item_flags,
|
|
&flow_tcf_mask_supported.ipv6, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = flow_tcf_validate_vxlan_encap_ipv6(items, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_UDP:
|
|
ret = mlx5_flow_validate_item_udp(items, item_flags,
|
|
0xFF, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = flow_tcf_validate_vxlan_encap_udp(items, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_VXLAN:
|
|
ret = mlx5_flow_validate_item_vxlan(items,
|
|
item_flags, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = flow_tcf_validate_vxlan_encap_vni(items, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= MLX5_FLOW_LAYER_VXLAN;
|
|
break;
|
|
default:
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, items,
|
|
"vxlan encap item not supported");
|
|
}
|
|
}
|
|
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, action,
|
|
"no outer IP layer found"
|
|
" for vxlan encapsulation");
|
|
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, action,
|
|
"no outer UDP layer found"
|
|
" for vxlan encapsulation");
|
|
if (!(item_flags & MLX5_FLOW_LAYER_VXLAN))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, action,
|
|
"no VXLAN VNI found"
|
|
" for vxlan encapsulation");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Validate outer RTE_FLOW_ITEM_TYPE_UDP item if tunnel item
|
|
* RTE_FLOW_ITEM_TYPE_VXLAN is present in item list.
|
|
*
|
|
* @param[in] udp
|
|
* Outer UDP layer item (if any, NULL otherwise).
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
**/
|
|
static int
|
|
flow_tcf_validate_vxlan_decap_udp(const struct rte_flow_item *udp,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct rte_flow_item_udp *spec = udp->spec;
|
|
const struct rte_flow_item_udp *mask = udp->mask;
|
|
|
|
if (!spec)
|
|
/*
|
|
* Specification for UDP ports cannot be empty
|
|
* because it is required as decap parameter.
|
|
*/
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, udp,
|
|
"NULL UDP port specification"
|
|
" for VXLAN decapsulation");
|
|
if (!mask)
|
|
mask = &rte_flow_item_udp_mask;
|
|
if (mask->hdr.dst_port != RTE_BE16(0x0000)) {
|
|
if (mask->hdr.dst_port != RTE_BE16(0xffff))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"udp.hdr.dst_port\" field");
|
|
if (!spec->hdr.dst_port)
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, udp,
|
|
"zero decap local UDP port");
|
|
} else {
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, udp,
|
|
"outer UDP destination port must be "
|
|
"specified for vxlan decapsulation");
|
|
}
|
|
if (mask->hdr.src_port != RTE_BE16(0x0000)) {
|
|
if (mask->hdr.src_port != RTE_BE16(0xffff))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
|
|
"no support for partial mask on"
|
|
" \"udp.hdr.src_port\" field");
|
|
DRV_LOG(WARNING,
|
|
"outer UDP local port cannot be "
|
|
"forced for VXLAN encapsulation, "
|
|
"parameter ignored");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Validate flow for E-Switch.
|
|
*
|
|
* @param[in] priv
|
|
* Pointer to the priv structure.
|
|
* @param[in] attr
|
|
* Pointer to the flow attributes.
|
|
* @param[in] items
|
|
* Pointer to the list of items.
|
|
* @param[in] actions
|
|
* Pointer to the list of actions.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_validate(struct rte_eth_dev *dev,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item items[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow_error *error)
|
|
{
|
|
union {
|
|
const struct rte_flow_item_port_id *port_id;
|
|
const struct rte_flow_item_eth *eth;
|
|
const struct rte_flow_item_vlan *vlan;
|
|
const struct rte_flow_item_ipv4 *ipv4;
|
|
const struct rte_flow_item_ipv6 *ipv6;
|
|
const struct rte_flow_item_tcp *tcp;
|
|
const struct rte_flow_item_udp *udp;
|
|
const struct rte_flow_item_vxlan *vxlan;
|
|
} spec, mask;
|
|
union {
|
|
const struct rte_flow_action_port_id *port_id;
|
|
const struct rte_flow_action_jump *jump;
|
|
const struct rte_flow_action_of_push_vlan *of_push_vlan;
|
|
const struct rte_flow_action_of_set_vlan_vid *
|
|
of_set_vlan_vid;
|
|
const struct rte_flow_action_of_set_vlan_pcp *
|
|
of_set_vlan_pcp;
|
|
const struct rte_flow_action_vxlan_encap *vxlan_encap;
|
|
const struct rte_flow_action_set_ipv4 *set_ipv4;
|
|
const struct rte_flow_action_set_ipv6 *set_ipv6;
|
|
} conf;
|
|
const struct rte_flow_item *outer_udp = NULL;
|
|
rte_be16_t inner_etype = RTE_BE16(ETH_P_ALL);
|
|
rte_be16_t outer_etype = RTE_BE16(ETH_P_ALL);
|
|
rte_be16_t vlan_etype = RTE_BE16(ETH_P_ALL);
|
|
uint64_t item_flags = 0;
|
|
uint64_t action_flags = 0;
|
|
uint8_t next_protocol = 0xff;
|
|
unsigned int tcm_ifindex = 0;
|
|
uint8_t pedit_validated = 0;
|
|
struct flow_tcf_ptoi ptoi[PTOI_TABLE_SZ_MAX(dev)];
|
|
struct rte_eth_dev *port_id_dev = NULL;
|
|
bool in_port_id_set;
|
|
int ret;
|
|
|
|
claim_nonzero(flow_tcf_build_ptoi_table(dev, ptoi,
|
|
PTOI_TABLE_SZ_MAX(dev)));
|
|
ret = flow_tcf_validate_attributes(attr, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
|
|
unsigned int i;
|
|
uint64_t current_action_flag = 0;
|
|
|
|
switch (actions->type) {
|
|
case RTE_FLOW_ACTION_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_PORT_ID:
|
|
current_action_flag = MLX5_FLOW_ACTION_PORT_ID;
|
|
if (!actions->conf)
|
|
break;
|
|
conf.port_id = actions->conf;
|
|
if (conf.port_id->original)
|
|
i = 0;
|
|
else
|
|
for (i = 0; ptoi[i].ifindex; ++i)
|
|
if (ptoi[i].port_id == conf.port_id->id)
|
|
break;
|
|
if (!ptoi[i].ifindex)
|
|
return rte_flow_error_set
|
|
(error, ENODEV,
|
|
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
|
|
conf.port_id,
|
|
"missing data to convert port ID to"
|
|
" ifindex");
|
|
port_id_dev = &rte_eth_devices[conf.port_id->id];
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_JUMP:
|
|
current_action_flag = MLX5_FLOW_ACTION_JUMP;
|
|
if (!actions->conf)
|
|
break;
|
|
conf.jump = actions->conf;
|
|
if (attr->group >= conf.jump->group)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"can jump only to a group forward");
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_DROP:
|
|
current_action_flag = MLX5_FLOW_ACTION_DROP;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_COUNT:
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
|
|
current_action_flag = MLX5_FLOW_ACTION_OF_POP_VLAN;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: {
|
|
rte_be16_t ethertype;
|
|
|
|
current_action_flag = MLX5_FLOW_ACTION_OF_PUSH_VLAN;
|
|
if (!actions->conf)
|
|
break;
|
|
conf.of_push_vlan = actions->conf;
|
|
ethertype = conf.of_push_vlan->ethertype;
|
|
if (ethertype != RTE_BE16(ETH_P_8021Q) &&
|
|
ethertype != RTE_BE16(ETH_P_8021AD))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"vlan push TPID must be "
|
|
"802.1Q or 802.1AD");
|
|
break;
|
|
}
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
|
|
if (!(action_flags & MLX5_FLOW_ACTION_OF_PUSH_VLAN))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"vlan modify is not supported,"
|
|
" set action must follow push action");
|
|
current_action_flag = MLX5_FLOW_ACTION_OF_SET_VLAN_VID;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
|
|
if (!(action_flags & MLX5_FLOW_ACTION_OF_PUSH_VLAN))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"vlan modify is not supported,"
|
|
" set action must follow push action");
|
|
current_action_flag = MLX5_FLOW_ACTION_OF_SET_VLAN_PCP;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
|
|
current_action_flag = MLX5_FLOW_ACTION_VXLAN_DECAP;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
|
|
ret = flow_tcf_validate_vxlan_encap(actions, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
current_action_flag = MLX5_FLOW_ACTION_VXLAN_ENCAP;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
|
|
current_action_flag = MLX5_FLOW_ACTION_SET_IPV4_SRC;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
|
|
current_action_flag = MLX5_FLOW_ACTION_SET_IPV4_DST;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
|
|
current_action_flag = MLX5_FLOW_ACTION_SET_IPV6_SRC;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
|
|
current_action_flag = MLX5_FLOW_ACTION_SET_IPV6_DST;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
|
|
current_action_flag = MLX5_FLOW_ACTION_SET_TP_SRC;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
|
|
current_action_flag = MLX5_FLOW_ACTION_SET_TP_DST;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_TTL:
|
|
current_action_flag = MLX5_FLOW_ACTION_SET_TTL;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
|
|
current_action_flag = MLX5_FLOW_ACTION_DEC_TTL;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
|
|
current_action_flag = MLX5_FLOW_ACTION_SET_MAC_SRC;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
|
|
current_action_flag = MLX5_FLOW_ACTION_SET_MAC_DST;
|
|
break;
|
|
default:
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"action not supported");
|
|
}
|
|
if (current_action_flag & MLX5_TCF_CONFIG_ACTIONS) {
|
|
if (!actions->conf)
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
|
|
actions,
|
|
"action configuration not set");
|
|
}
|
|
if ((current_action_flag & MLX5_TCF_PEDIT_ACTIONS) &&
|
|
pedit_validated)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"set actions should be "
|
|
"listed successively");
|
|
if ((current_action_flag & ~MLX5_TCF_PEDIT_ACTIONS) &&
|
|
(action_flags & MLX5_TCF_PEDIT_ACTIONS))
|
|
pedit_validated = 1;
|
|
if ((current_action_flag & MLX5_TCF_FATE_ACTIONS) &&
|
|
(action_flags & MLX5_TCF_FATE_ACTIONS))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"can't have multiple fate"
|
|
" actions");
|
|
if ((current_action_flag & MLX5_TCF_VXLAN_ACTIONS) &&
|
|
(action_flags & MLX5_TCF_VXLAN_ACTIONS))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"can't have multiple vxlan"
|
|
" actions");
|
|
if ((current_action_flag & MLX5_TCF_VXLAN_ACTIONS) &&
|
|
(action_flags & MLX5_TCF_VLAN_ACTIONS))
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"can't have vxlan and vlan"
|
|
" actions in the same rule");
|
|
action_flags |= current_action_flag;
|
|
}
|
|
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
|
|
unsigned int i;
|
|
|
|
switch (items->type) {
|
|
case RTE_FLOW_ITEM_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_PORT_ID:
|
|
if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, items,
|
|
"inner tunnel port id"
|
|
" item is not supported");
|
|
mask.port_id = flow_tcf_item_mask
|
|
(items, &rte_flow_item_port_id_mask,
|
|
&flow_tcf_mask_supported.port_id,
|
|
&flow_tcf_mask_empty.port_id,
|
|
sizeof(flow_tcf_mask_supported.port_id),
|
|
error);
|
|
if (!mask.port_id)
|
|
return -rte_errno;
|
|
if (mask.port_id == &flow_tcf_mask_empty.port_id) {
|
|
in_port_id_set = 1;
|
|
break;
|
|
}
|
|
spec.port_id = items->spec;
|
|
if (mask.port_id->id && mask.port_id->id != 0xffffffff)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
|
|
mask.port_id,
|
|
"no support for partial mask on"
|
|
" \"id\" field");
|
|
if (!mask.port_id->id)
|
|
i = 0;
|
|
else
|
|
for (i = 0; ptoi[i].ifindex; ++i)
|
|
if (ptoi[i].port_id == spec.port_id->id)
|
|
break;
|
|
if (!ptoi[i].ifindex)
|
|
return rte_flow_error_set
|
|
(error, ENODEV,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
|
|
spec.port_id,
|
|
"missing data to convert port ID to"
|
|
" ifindex");
|
|
if (in_port_id_set && ptoi[i].ifindex != tcm_ifindex)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
|
|
spec.port_id,
|
|
"cannot match traffic for"
|
|
" several port IDs through"
|
|
" a single flow rule");
|
|
tcm_ifindex = ptoi[i].ifindex;
|
|
in_port_id_set = 1;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_ETH:
|
|
ret = mlx5_flow_validate_item_eth(items, item_flags,
|
|
error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L2 :
|
|
MLX5_FLOW_LAYER_OUTER_L2;
|
|
/* TODO:
|
|
* Redundant check due to different supported mask.
|
|
* Same for the rest of items.
|
|
*/
|
|
mask.eth = flow_tcf_item_mask
|
|
(items, &rte_flow_item_eth_mask,
|
|
&flow_tcf_mask_supported.eth,
|
|
&flow_tcf_mask_empty.eth,
|
|
sizeof(flow_tcf_mask_supported.eth),
|
|
error);
|
|
if (!mask.eth)
|
|
return -rte_errno;
|
|
if (mask.eth->type && mask.eth->type !=
|
|
RTE_BE16(0xffff))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
|
|
mask.eth,
|
|
"no support for partial mask on"
|
|
" \"type\" field");
|
|
assert(items->spec);
|
|
spec.eth = items->spec;
|
|
if (mask.eth->type &&
|
|
(item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
|
|
inner_etype != RTE_BE16(ETH_P_ALL) &&
|
|
inner_etype != spec.eth->type)
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"inner eth_type conflict");
|
|
if (mask.eth->type &&
|
|
!(item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
|
|
outer_etype != RTE_BE16(ETH_P_ALL) &&
|
|
outer_etype != spec.eth->type)
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"outer eth_type conflict");
|
|
if (mask.eth->type) {
|
|
if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
|
|
inner_etype = spec.eth->type;
|
|
else
|
|
outer_etype = spec.eth->type;
|
|
}
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_VLAN:
|
|
if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, items,
|
|
"inner tunnel VLAN"
|
|
" is not supported");
|
|
ret = mlx5_flow_validate_item_vlan(items, item_flags,
|
|
error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= MLX5_FLOW_LAYER_OUTER_VLAN;
|
|
mask.vlan = flow_tcf_item_mask
|
|
(items, &rte_flow_item_vlan_mask,
|
|
&flow_tcf_mask_supported.vlan,
|
|
&flow_tcf_mask_empty.vlan,
|
|
sizeof(flow_tcf_mask_supported.vlan),
|
|
error);
|
|
if (!mask.vlan)
|
|
return -rte_errno;
|
|
if ((mask.vlan->tci & RTE_BE16(0xe000) &&
|
|
(mask.vlan->tci & RTE_BE16(0xe000)) !=
|
|
RTE_BE16(0xe000)) ||
|
|
(mask.vlan->tci & RTE_BE16(0x0fff) &&
|
|
(mask.vlan->tci & RTE_BE16(0x0fff)) !=
|
|
RTE_BE16(0x0fff)) ||
|
|
(mask.vlan->inner_type &&
|
|
mask.vlan->inner_type != RTE_BE16(0xffff)))
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
|
|
mask.vlan,
|
|
"no support for partial masks on"
|
|
" \"tci\" (PCP and VID parts) and"
|
|
" \"inner_type\" fields");
|
|
if (outer_etype != RTE_BE16(ETH_P_ALL) &&
|
|
outer_etype != RTE_BE16(ETH_P_8021Q))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"outer eth_type conflict,"
|
|
" must be 802.1Q");
|
|
outer_etype = RTE_BE16(ETH_P_8021Q);
|
|
assert(items->spec);
|
|
spec.vlan = items->spec;
|
|
if (mask.vlan->inner_type &&
|
|
vlan_etype != RTE_BE16(ETH_P_ALL) &&
|
|
vlan_etype != spec.vlan->inner_type)
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"vlan eth_type conflict");
|
|
if (mask.vlan->inner_type)
|
|
vlan_etype = spec.vlan->inner_type;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV4:
|
|
ret = mlx5_flow_validate_item_ipv4
|
|
(items, item_flags,
|
|
&flow_tcf_mask_supported.ipv4, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L3_IPV4 :
|
|
MLX5_FLOW_LAYER_OUTER_L3_IPV4;
|
|
mask.ipv4 = flow_tcf_item_mask
|
|
(items, &rte_flow_item_ipv4_mask,
|
|
&flow_tcf_mask_supported.ipv4,
|
|
&flow_tcf_mask_empty.ipv4,
|
|
sizeof(flow_tcf_mask_supported.ipv4),
|
|
error);
|
|
if (!mask.ipv4)
|
|
return -rte_errno;
|
|
if (mask.ipv4->hdr.next_proto_id &&
|
|
mask.ipv4->hdr.next_proto_id != 0xff)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
|
|
mask.ipv4,
|
|
"no support for partial mask on"
|
|
" \"hdr.next_proto_id\" field");
|
|
else if (mask.ipv4->hdr.next_proto_id)
|
|
next_protocol =
|
|
((const struct rte_flow_item_ipv4 *)
|
|
(items->spec))->hdr.next_proto_id;
|
|
if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
|
|
if (inner_etype != RTE_BE16(ETH_P_ALL) &&
|
|
inner_etype != RTE_BE16(ETH_P_IP))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"inner eth_type conflict,"
|
|
" IPv4 is required");
|
|
inner_etype = RTE_BE16(ETH_P_IP);
|
|
} else if (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN) {
|
|
if (vlan_etype != RTE_BE16(ETH_P_ALL) &&
|
|
vlan_etype != RTE_BE16(ETH_P_IP))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"vlan eth_type conflict,"
|
|
" IPv4 is required");
|
|
vlan_etype = RTE_BE16(ETH_P_IP);
|
|
} else {
|
|
if (outer_etype != RTE_BE16(ETH_P_ALL) &&
|
|
outer_etype != RTE_BE16(ETH_P_IP))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"eth_type conflict,"
|
|
" IPv4 is required");
|
|
outer_etype = RTE_BE16(ETH_P_IP);
|
|
}
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV6:
|
|
ret = mlx5_flow_validate_item_ipv6
|
|
(items, item_flags,
|
|
&flow_tcf_mask_supported.ipv6, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L3_IPV6 :
|
|
MLX5_FLOW_LAYER_OUTER_L3_IPV6;
|
|
mask.ipv6 = flow_tcf_item_mask
|
|
(items, &rte_flow_item_ipv6_mask,
|
|
&flow_tcf_mask_supported.ipv6,
|
|
&flow_tcf_mask_empty.ipv6,
|
|
sizeof(flow_tcf_mask_supported.ipv6),
|
|
error);
|
|
if (!mask.ipv6)
|
|
return -rte_errno;
|
|
if (mask.ipv6->hdr.proto &&
|
|
mask.ipv6->hdr.proto != 0xff)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
|
|
mask.ipv6,
|
|
"no support for partial mask on"
|
|
" \"hdr.proto\" field");
|
|
else if (mask.ipv6->hdr.proto)
|
|
next_protocol =
|
|
((const struct rte_flow_item_ipv6 *)
|
|
(items->spec))->hdr.proto;
|
|
if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
|
|
if (inner_etype != RTE_BE16(ETH_P_ALL) &&
|
|
inner_etype != RTE_BE16(ETH_P_IPV6))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"inner eth_type conflict,"
|
|
" IPv6 is required");
|
|
inner_etype = RTE_BE16(ETH_P_IPV6);
|
|
} else if (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN) {
|
|
if (vlan_etype != RTE_BE16(ETH_P_ALL) &&
|
|
vlan_etype != RTE_BE16(ETH_P_IPV6))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"vlan eth_type conflict,"
|
|
" IPv6 is required");
|
|
vlan_etype = RTE_BE16(ETH_P_IPV6);
|
|
} else {
|
|
if (outer_etype != RTE_BE16(ETH_P_ALL) &&
|
|
outer_etype != RTE_BE16(ETH_P_IPV6))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items,
|
|
"eth_type conflict,"
|
|
" IPv6 is required");
|
|
outer_etype = RTE_BE16(ETH_P_IPV6);
|
|
}
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_UDP:
|
|
ret = mlx5_flow_validate_item_udp(items, item_flags,
|
|
next_protocol, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L4_UDP :
|
|
MLX5_FLOW_LAYER_OUTER_L4_UDP;
|
|
mask.udp = flow_tcf_item_mask
|
|
(items, &rte_flow_item_udp_mask,
|
|
&flow_tcf_mask_supported.udp,
|
|
&flow_tcf_mask_empty.udp,
|
|
sizeof(flow_tcf_mask_supported.udp),
|
|
error);
|
|
if (!mask.udp)
|
|
return -rte_errno;
|
|
/*
|
|
* Save the presumed outer UDP item for extra check
|
|
* if the tunnel item will be found later in the list.
|
|
*/
|
|
if (!(item_flags & MLX5_FLOW_LAYER_TUNNEL))
|
|
outer_udp = items;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_TCP:
|
|
ret = mlx5_flow_validate_item_tcp
|
|
(items, item_flags,
|
|
next_protocol,
|
|
&flow_tcf_mask_supported.tcp,
|
|
error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L4_TCP :
|
|
MLX5_FLOW_LAYER_OUTER_L4_TCP;
|
|
mask.tcp = flow_tcf_item_mask
|
|
(items, &rte_flow_item_tcp_mask,
|
|
&flow_tcf_mask_supported.tcp,
|
|
&flow_tcf_mask_empty.tcp,
|
|
sizeof(flow_tcf_mask_supported.tcp),
|
|
error);
|
|
if (!mask.tcp)
|
|
return -rte_errno;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_VXLAN:
|
|
if (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, items,
|
|
"vxlan tunnel over vlan"
|
|
" is not supported");
|
|
ret = mlx5_flow_validate_item_vxlan(items,
|
|
item_flags, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
item_flags |= MLX5_FLOW_LAYER_VXLAN;
|
|
mask.vxlan = flow_tcf_item_mask
|
|
(items, &rte_flow_item_vxlan_mask,
|
|
&flow_tcf_mask_supported.vxlan,
|
|
&flow_tcf_mask_empty.vxlan,
|
|
sizeof(flow_tcf_mask_supported.vxlan), error);
|
|
if (!mask.vxlan)
|
|
return -rte_errno;
|
|
if (mask.vxlan->vni[0] != 0xff ||
|
|
mask.vxlan->vni[1] != 0xff ||
|
|
mask.vxlan->vni[2] != 0xff)
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
|
|
mask.vxlan,
|
|
"no support for partial or "
|
|
"empty mask on \"vxlan.vni\" field");
|
|
/*
|
|
* The VNI item assumes the VXLAN tunnel, it requires
|
|
* at least the outer destination UDP port must be
|
|
* specified without wildcards to allow kernel select
|
|
* the virtual VXLAN device by port. Also outer IPv4
|
|
* or IPv6 item must be specified (wilcards or even
|
|
* zero mask are allowed) to let driver know the tunnel
|
|
* IP version and process UDP traffic correctly.
|
|
*/
|
|
if (!(item_flags &
|
|
(MLX5_FLOW_LAYER_OUTER_L3_IPV4 |
|
|
MLX5_FLOW_LAYER_OUTER_L3_IPV6)))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
NULL,
|
|
"no outer IP pattern found"
|
|
" for vxlan tunnel");
|
|
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
|
|
return rte_flow_error_set
|
|
(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
NULL,
|
|
"no outer UDP pattern found"
|
|
" for vxlan tunnel");
|
|
/*
|
|
* All items preceding the tunnel item become outer
|
|
* ones and we should do extra validation for them
|
|
* due to tc limitations for tunnel outer parameters.
|
|
* Currently only outer UDP item requres extra check,
|
|
* use the saved pointer instead of item list rescan.
|
|
*/
|
|
assert(outer_udp);
|
|
ret = flow_tcf_validate_vxlan_decap_udp
|
|
(outer_udp, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
/* Reset L4 protocol for inner parameters. */
|
|
next_protocol = 0xff;
|
|
break;
|
|
default:
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
items, "item not supported");
|
|
}
|
|
}
|
|
if ((action_flags & MLX5_TCF_PEDIT_ACTIONS) &&
|
|
(action_flags & MLX5_FLOW_ACTION_DROP))
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"set action is not compatible with "
|
|
"drop action");
|
|
if ((action_flags & MLX5_TCF_PEDIT_ACTIONS) &&
|
|
!(action_flags & MLX5_FLOW_ACTION_PORT_ID))
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"set action must be followed by "
|
|
"port_id action");
|
|
if (action_flags &
|
|
(MLX5_FLOW_ACTION_SET_IPV4_SRC | MLX5_FLOW_ACTION_SET_IPV4_DST)) {
|
|
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3_IPV4))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"no ipv4 item found in"
|
|
" pattern");
|
|
}
|
|
if (action_flags &
|
|
(MLX5_FLOW_ACTION_SET_IPV6_SRC | MLX5_FLOW_ACTION_SET_IPV6_DST)) {
|
|
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3_IPV6))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"no ipv6 item found in"
|
|
" pattern");
|
|
}
|
|
if (action_flags &
|
|
(MLX5_FLOW_ACTION_SET_TP_SRC | MLX5_FLOW_ACTION_SET_TP_DST)) {
|
|
if (!(item_flags &
|
|
(MLX5_FLOW_LAYER_OUTER_L4_UDP |
|
|
MLX5_FLOW_LAYER_OUTER_L4_TCP)))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"no TCP/UDP item found in"
|
|
" pattern");
|
|
}
|
|
/*
|
|
* FW syndrome (0xA9C090):
|
|
* set_flow_table_entry: push vlan action fte in fdb can ONLY be
|
|
* forward to the uplink.
|
|
*/
|
|
if ((action_flags & MLX5_FLOW_ACTION_OF_PUSH_VLAN) &&
|
|
(action_flags & MLX5_FLOW_ACTION_PORT_ID) &&
|
|
((struct mlx5_priv *)port_id_dev->data->dev_private)->representor)
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"vlan push can only be applied"
|
|
" when forwarding to uplink port");
|
|
/*
|
|
* FW syndrome (0x294609):
|
|
* set_flow_table_entry: modify/pop/push actions in fdb flow table
|
|
* are supported only while forwarding to vport.
|
|
*/
|
|
if ((action_flags & MLX5_TCF_VLAN_ACTIONS) &&
|
|
!(action_flags & MLX5_FLOW_ACTION_PORT_ID))
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"vlan actions are supported"
|
|
" only with port_id action");
|
|
if ((action_flags & MLX5_TCF_VXLAN_ACTIONS) &&
|
|
!(action_flags & MLX5_FLOW_ACTION_PORT_ID))
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
|
|
"vxlan actions are supported"
|
|
" only with port_id action");
|
|
if (!(action_flags & MLX5_TCF_FATE_ACTIONS))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"no fate action is found");
|
|
if (action_flags &
|
|
(MLX5_FLOW_ACTION_SET_TTL | MLX5_FLOW_ACTION_DEC_TTL)) {
|
|
if (!(item_flags &
|
|
(MLX5_FLOW_LAYER_OUTER_L3_IPV4 |
|
|
MLX5_FLOW_LAYER_OUTER_L3_IPV6)))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"no IP found in pattern");
|
|
}
|
|
if (action_flags &
|
|
(MLX5_FLOW_ACTION_SET_MAC_SRC | MLX5_FLOW_ACTION_SET_MAC_DST)) {
|
|
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"no ethernet found in"
|
|
" pattern");
|
|
}
|
|
if ((action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP) &&
|
|
!(item_flags & MLX5_FLOW_LAYER_VXLAN))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
NULL,
|
|
"no VNI pattern found"
|
|
" for vxlan decap action");
|
|
if ((action_flags & MLX5_FLOW_ACTION_VXLAN_ENCAP) &&
|
|
(item_flags & MLX5_FLOW_LAYER_TUNNEL))
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
NULL,
|
|
"vxlan encap not supported"
|
|
" for tunneled traffic");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculate maximum size of memory for flow items of Linux TC flower.
|
|
*
|
|
* @param[in] attr
|
|
* Pointer to the flow attributes.
|
|
* @param[in] items
|
|
* Pointer to the list of items.
|
|
* @param[out] action_flags
|
|
* Pointer to the detected actions.
|
|
*
|
|
* @return
|
|
* Maximum size of memory for items.
|
|
*/
|
|
static int
|
|
flow_tcf_get_items_size(const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item items[],
|
|
uint64_t *action_flags)
|
|
{
|
|
int size = 0;
|
|
|
|
size += SZ_NLATTR_STRZ_OF("flower") +
|
|
SZ_NLATTR_TYPE_OF(uint16_t) + /* Outer ether type. */
|
|
SZ_NLATTR_NEST + /* TCA_OPTIONS. */
|
|
SZ_NLATTR_TYPE_OF(uint32_t); /* TCA_CLS_FLAGS_SKIP_SW. */
|
|
if (attr->group > 0)
|
|
size += SZ_NLATTR_TYPE_OF(uint32_t); /* TCA_CHAIN. */
|
|
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
|
|
switch (items->type) {
|
|
case RTE_FLOW_ITEM_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_PORT_ID:
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_ETH:
|
|
size += SZ_NLATTR_DATA_OF(ETHER_ADDR_LEN) * 4;
|
|
/* dst/src MAC addr and mask. */
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_VLAN:
|
|
size += SZ_NLATTR_TYPE_OF(uint16_t) +
|
|
/* VLAN Ether type. */
|
|
SZ_NLATTR_TYPE_OF(uint8_t) + /* VLAN prio. */
|
|
SZ_NLATTR_TYPE_OF(uint16_t); /* VLAN ID. */
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV4: {
|
|
const struct rte_flow_item_ipv4 *ipv4 = items->mask;
|
|
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
|
|
SZ_NLATTR_TYPE_OF(uint32_t) * 4;
|
|
/* dst/src IP addr and mask. */
|
|
if (ipv4 && ipv4->hdr.time_to_live)
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) * 2;
|
|
if (ipv4 && ipv4->hdr.type_of_service)
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) * 2;
|
|
break;
|
|
}
|
|
case RTE_FLOW_ITEM_TYPE_IPV6: {
|
|
const struct rte_flow_item_ipv6 *ipv6 = items->mask;
|
|
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
|
|
SZ_NLATTR_DATA_OF(IPV6_ADDR_LEN) * 4;
|
|
/* dst/src IP addr and mask. */
|
|
if (ipv6 && ipv6->hdr.hop_limits)
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) * 2;
|
|
if (ipv6 && (rte_be_to_cpu_32(ipv6->hdr.vtc_flow) &
|
|
(0xfful << IPV6_HDR_TC_SHIFT)))
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) * 2;
|
|
break;
|
|
}
|
|
case RTE_FLOW_ITEM_TYPE_UDP:
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
|
|
SZ_NLATTR_TYPE_OF(uint16_t) * 4;
|
|
/* dst/src port and mask. */
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_TCP:
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
|
|
SZ_NLATTR_TYPE_OF(uint16_t) * 4;
|
|
/* dst/src port and mask. */
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_VXLAN:
|
|
size += SZ_NLATTR_TYPE_OF(uint32_t);
|
|
/*
|
|
* There might be no VXLAN decap action in the action
|
|
* list, nonetheless the VXLAN tunnel flow requires
|
|
* the decap structure to be correctly applied to
|
|
* VXLAN device, set the flag to create the structure.
|
|
* Translation routine will not put the decap action
|
|
* in tne Netlink message if there is no actual action
|
|
* in the list.
|
|
*/
|
|
*action_flags |= MLX5_FLOW_ACTION_VXLAN_DECAP;
|
|
break;
|
|
default:
|
|
DRV_LOG(WARNING,
|
|
"unsupported item %p type %d,"
|
|
" items must be validated before flow creation",
|
|
(const void *)items, items->type);
|
|
break;
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Calculate size of memory to store the VXLAN encapsultion
|
|
* related items in the Netlink message buffer. Items list
|
|
* is specified by RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP action.
|
|
* The item list should be validated.
|
|
*
|
|
* @param[in] action
|
|
* RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP action object.
|
|
* List of pattern items to scan data from.
|
|
*
|
|
* @return
|
|
* The size the part of Netlink message buffer to store the
|
|
* VXLAN encapsulation item attributes.
|
|
*/
|
|
static int
|
|
flow_tcf_vxlan_encap_size(const struct rte_flow_action *action)
|
|
{
|
|
const struct rte_flow_item *items;
|
|
int size = 0;
|
|
|
|
assert(action->type == RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP);
|
|
assert(action->conf);
|
|
|
|
items = ((const struct rte_flow_action_vxlan_encap *)
|
|
action->conf)->definition;
|
|
assert(items);
|
|
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
|
|
switch (items->type) {
|
|
case RTE_FLOW_ITEM_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_ETH:
|
|
/* This item does not require message buffer. */
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV4: {
|
|
const struct rte_flow_item_ipv4 *ipv4 = items->mask;
|
|
|
|
size += SZ_NLATTR_DATA_OF(IPV4_ADDR_LEN) * 2;
|
|
if (ipv4 && ipv4->hdr.time_to_live)
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) * 2;
|
|
if (ipv4 && ipv4->hdr.type_of_service)
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) * 2;
|
|
break;
|
|
}
|
|
case RTE_FLOW_ITEM_TYPE_IPV6: {
|
|
const struct rte_flow_item_ipv6 *ipv6 = items->mask;
|
|
|
|
size += SZ_NLATTR_DATA_OF(IPV6_ADDR_LEN) * 2;
|
|
if (ipv6 && ipv6->hdr.hop_limits)
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) * 2;
|
|
if (ipv6 && (rte_be_to_cpu_32(ipv6->hdr.vtc_flow) &
|
|
(0xfful << IPV6_HDR_TC_SHIFT)))
|
|
size += SZ_NLATTR_TYPE_OF(uint8_t) * 2;
|
|
break;
|
|
}
|
|
case RTE_FLOW_ITEM_TYPE_UDP: {
|
|
const struct rte_flow_item_udp *udp = items->mask;
|
|
|
|
size += SZ_NLATTR_TYPE_OF(uint16_t);
|
|
if (!udp || udp->hdr.src_port != RTE_BE16(0x0000))
|
|
size += SZ_NLATTR_TYPE_OF(uint16_t);
|
|
break;
|
|
}
|
|
case RTE_FLOW_ITEM_TYPE_VXLAN:
|
|
size += SZ_NLATTR_TYPE_OF(uint32_t);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
DRV_LOG(WARNING,
|
|
"unsupported item %p type %d,"
|
|
" items must be validated"
|
|
" before flow creation",
|
|
(const void *)items, items->type);
|
|
return 0;
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Calculate maximum size of memory for flow actions of Linux TC flower and
|
|
* extract specified actions.
|
|
*
|
|
* @param[in] actions
|
|
* Pointer to the list of actions.
|
|
* @param[out] action_flags
|
|
* Pointer to the detected actions.
|
|
*
|
|
* @return
|
|
* Maximum size of memory for actions.
|
|
*/
|
|
static int
|
|
flow_tcf_get_actions_and_size(const struct rte_flow_action actions[],
|
|
uint64_t *action_flags)
|
|
{
|
|
int size = 0;
|
|
uint64_t flags = *action_flags;
|
|
|
|
size += SZ_NLATTR_NEST; /* TCA_FLOWER_ACT. */
|
|
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
|
|
switch (actions->type) {
|
|
case RTE_FLOW_ACTION_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_PORT_ID:
|
|
size += SZ_NLATTR_NEST + /* na_act_index. */
|
|
SZ_NLATTR_STRZ_OF("mirred") +
|
|
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
|
|
SZ_NLATTR_TYPE_OF(struct tc_mirred);
|
|
flags |= MLX5_FLOW_ACTION_PORT_ID;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_JUMP:
|
|
size += SZ_NLATTR_NEST + /* na_act_index. */
|
|
SZ_NLATTR_STRZ_OF("gact") +
|
|
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
|
|
SZ_NLATTR_TYPE_OF(struct tc_gact);
|
|
flags |= MLX5_FLOW_ACTION_JUMP;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_DROP:
|
|
size += SZ_NLATTR_NEST + /* na_act_index. */
|
|
SZ_NLATTR_STRZ_OF("gact") +
|
|
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
|
|
SZ_NLATTR_TYPE_OF(struct tc_gact);
|
|
flags |= MLX5_FLOW_ACTION_DROP;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_COUNT:
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
|
|
flags |= MLX5_FLOW_ACTION_OF_POP_VLAN;
|
|
goto action_of_vlan;
|
|
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
|
|
flags |= MLX5_FLOW_ACTION_OF_PUSH_VLAN;
|
|
goto action_of_vlan;
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
|
|
flags |= MLX5_FLOW_ACTION_OF_SET_VLAN_VID;
|
|
goto action_of_vlan;
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
|
|
flags |= MLX5_FLOW_ACTION_OF_SET_VLAN_PCP;
|
|
goto action_of_vlan;
|
|
action_of_vlan:
|
|
size += SZ_NLATTR_NEST + /* na_act_index. */
|
|
SZ_NLATTR_STRZ_OF("vlan") +
|
|
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
|
|
SZ_NLATTR_TYPE_OF(struct tc_vlan) +
|
|
SZ_NLATTR_TYPE_OF(uint16_t) +
|
|
/* VLAN protocol. */
|
|
SZ_NLATTR_TYPE_OF(uint16_t) + /* VLAN ID. */
|
|
SZ_NLATTR_TYPE_OF(uint8_t); /* VLAN prio. */
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
|
|
size += SZ_NLATTR_NEST + /* na_act_index. */
|
|
SZ_NLATTR_STRZ_OF("tunnel_key") +
|
|
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
|
|
SZ_NLATTR_TYPE_OF(uint8_t);
|
|
size += SZ_NLATTR_TYPE_OF(struct tc_tunnel_key);
|
|
size += flow_tcf_vxlan_encap_size(actions) +
|
|
RTE_ALIGN_CEIL /* preceding encap params. */
|
|
(sizeof(struct flow_tcf_vxlan_encap),
|
|
MNL_ALIGNTO);
|
|
flags |= MLX5_FLOW_ACTION_VXLAN_ENCAP;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
|
|
size += SZ_NLATTR_NEST + /* na_act_index. */
|
|
SZ_NLATTR_STRZ_OF("tunnel_key") +
|
|
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
|
|
SZ_NLATTR_TYPE_OF(uint8_t);
|
|
size += SZ_NLATTR_TYPE_OF(struct tc_tunnel_key);
|
|
size += RTE_ALIGN_CEIL /* preceding decap params. */
|
|
(sizeof(struct flow_tcf_vxlan_decap),
|
|
MNL_ALIGNTO);
|
|
flags |= MLX5_FLOW_ACTION_VXLAN_DECAP;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
|
|
case RTE_FLOW_ACTION_TYPE_SET_TTL:
|
|
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
|
|
size += flow_tcf_get_pedit_actions_size(&actions,
|
|
&flags);
|
|
break;
|
|
default:
|
|
DRV_LOG(WARNING,
|
|
"unsupported action %p type %d,"
|
|
" items must be validated before flow creation",
|
|
(const void *)actions, actions->type);
|
|
break;
|
|
}
|
|
}
|
|
*action_flags = flags;
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Prepare a flow object for Linux TC flower. It calculates the maximum size of
|
|
* memory required, allocates the memory, initializes Netlink message headers
|
|
* and set unique TC message handle.
|
|
*
|
|
* @param[in] attr
|
|
* Pointer to the flow attributes.
|
|
* @param[in] items
|
|
* Pointer to the list of items.
|
|
* @param[in] actions
|
|
* Pointer to the list of actions.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* Pointer to mlx5_flow object on success,
|
|
* otherwise NULL and rte_errno is set.
|
|
*/
|
|
static struct mlx5_flow *
|
|
flow_tcf_prepare(const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item items[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow_error *error)
|
|
{
|
|
size_t size = RTE_ALIGN_CEIL
|
|
(sizeof(struct mlx5_flow),
|
|
alignof(struct flow_tcf_tunnel_hdr)) +
|
|
MNL_ALIGN(sizeof(struct nlmsghdr)) +
|
|
MNL_ALIGN(sizeof(struct tcmsg));
|
|
struct mlx5_flow *dev_flow;
|
|
uint64_t action_flags = 0;
|
|
struct nlmsghdr *nlh;
|
|
struct tcmsg *tcm;
|
|
uint8_t *sp, *tun = NULL;
|
|
|
|
size += flow_tcf_get_items_size(attr, items, &action_flags);
|
|
size += flow_tcf_get_actions_and_size(actions, &action_flags);
|
|
dev_flow = rte_zmalloc(__func__, size, MNL_ALIGNTO);
|
|
if (!dev_flow) {
|
|
rte_flow_error_set(error, ENOMEM,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"not enough memory to create E-Switch flow");
|
|
return NULL;
|
|
}
|
|
sp = (uint8_t *)(dev_flow + 1);
|
|
if (action_flags & MLX5_FLOW_ACTION_VXLAN_ENCAP) {
|
|
sp = RTE_PTR_ALIGN
|
|
(sp, alignof(struct flow_tcf_tunnel_hdr));
|
|
tun = sp;
|
|
sp += RTE_ALIGN_CEIL
|
|
(sizeof(struct flow_tcf_vxlan_encap),
|
|
MNL_ALIGNTO);
|
|
#ifndef NDEBUG
|
|
size -= RTE_ALIGN_CEIL
|
|
(sizeof(struct flow_tcf_vxlan_encap),
|
|
MNL_ALIGNTO);
|
|
#endif
|
|
} else if (action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP) {
|
|
sp = RTE_PTR_ALIGN
|
|
(sp, alignof(struct flow_tcf_tunnel_hdr));
|
|
tun = sp;
|
|
sp += RTE_ALIGN_CEIL
|
|
(sizeof(struct flow_tcf_vxlan_decap),
|
|
MNL_ALIGNTO);
|
|
#ifndef NDEBUG
|
|
size -= RTE_ALIGN_CEIL
|
|
(sizeof(struct flow_tcf_vxlan_decap),
|
|
MNL_ALIGNTO);
|
|
#endif
|
|
} else {
|
|
sp = RTE_PTR_ALIGN(sp, MNL_ALIGNTO);
|
|
}
|
|
nlh = mnl_nlmsg_put_header(sp);
|
|
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
|
|
*dev_flow = (struct mlx5_flow){
|
|
.tcf = (struct mlx5_flow_tcf){
|
|
#ifndef NDEBUG
|
|
.nlsize = size - RTE_ALIGN_CEIL
|
|
(sizeof(struct mlx5_flow),
|
|
alignof(struct flow_tcf_tunnel_hdr)),
|
|
#endif
|
|
.tunnel = (struct flow_tcf_tunnel_hdr *)tun,
|
|
.nlh = nlh,
|
|
.tcm = tcm,
|
|
},
|
|
};
|
|
if (action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP)
|
|
dev_flow->tcf.tunnel->type = FLOW_TCF_TUNACT_VXLAN_DECAP;
|
|
else if (action_flags & MLX5_FLOW_ACTION_VXLAN_ENCAP)
|
|
dev_flow->tcf.tunnel->type = FLOW_TCF_TUNACT_VXLAN_ENCAP;
|
|
return dev_flow;
|
|
}
|
|
|
|
/**
|
|
* Make adjustments for supporting count actions.
|
|
*
|
|
* @param[in] dev
|
|
* Pointer to the Ethernet device structure.
|
|
* @param[in] dev_flow
|
|
* Pointer to mlx5_flow.
|
|
* @param[out] error
|
|
* Pointer to error structure.
|
|
*
|
|
* @return
|
|
* 0 On success else a negative errno value is returned and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_translate_action_count(struct rte_eth_dev *dev __rte_unused,
|
|
struct mlx5_flow *dev_flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct rte_flow *flow = dev_flow->flow;
|
|
|
|
if (!flow->counter) {
|
|
flow->counter = flow_tcf_counter_new();
|
|
if (!flow->counter)
|
|
return rte_flow_error_set(error, rte_errno,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
NULL,
|
|
"cannot get counter"
|
|
" context.");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Convert VXLAN VNI to 32-bit integer.
|
|
*
|
|
* @param[in] vni
|
|
* VXLAN VNI in 24-bit wire format.
|
|
*
|
|
* @return
|
|
* VXLAN VNI as a 32-bit integer value in network endian.
|
|
*/
|
|
static inline rte_be32_t
|
|
vxlan_vni_as_be32(const uint8_t vni[3])
|
|
{
|
|
union {
|
|
uint8_t vni[4];
|
|
rte_be32_t dword;
|
|
} ret = {
|
|
.vni = { 0, vni[0], vni[1], vni[2] },
|
|
};
|
|
return ret.dword;
|
|
}
|
|
|
|
/**
|
|
* Helper function to process RTE_FLOW_ITEM_TYPE_ETH entry in configuration
|
|
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the MAC address fields
|
|
* in the encapsulation parameters structure. The item must be prevalidated,
|
|
* no any validation checks performed by function.
|
|
*
|
|
* @param[in] spec
|
|
* RTE_FLOW_ITEM_TYPE_ETH entry specification.
|
|
* @param[in] mask
|
|
* RTE_FLOW_ITEM_TYPE_ETH entry mask.
|
|
* @param[out] encap
|
|
* Structure to fill the gathered MAC address data.
|
|
*/
|
|
static void
|
|
flow_tcf_parse_vxlan_encap_eth(const struct rte_flow_item_eth *spec,
|
|
const struct rte_flow_item_eth *mask,
|
|
struct flow_tcf_vxlan_encap *encap)
|
|
{
|
|
/* Item must be validated before. No redundant checks. */
|
|
assert(spec);
|
|
if (!mask || !memcmp(&mask->dst,
|
|
&rte_flow_item_eth_mask.dst,
|
|
sizeof(rte_flow_item_eth_mask.dst))) {
|
|
/*
|
|
* Ethernet addresses are not supported by
|
|
* tc as tunnel_key parameters. Destination
|
|
* address is needed to form encap packet
|
|
* header and retrieved by kernel from
|
|
* implicit sources (ARP table, etc),
|
|
* address masks are not supported at all.
|
|
*/
|
|
encap->eth.dst = spec->dst;
|
|
encap->mask |= FLOW_TCF_ENCAP_ETH_DST;
|
|
}
|
|
if (!mask || !memcmp(&mask->src,
|
|
&rte_flow_item_eth_mask.src,
|
|
sizeof(rte_flow_item_eth_mask.src))) {
|
|
/*
|
|
* Ethernet addresses are not supported by
|
|
* tc as tunnel_key parameters. Source ethernet
|
|
* address is ignored anyway.
|
|
*/
|
|
encap->eth.src = spec->src;
|
|
encap->mask |= FLOW_TCF_ENCAP_ETH_SRC;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper function to process RTE_FLOW_ITEM_TYPE_IPV4 entry in configuration
|
|
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the IPV4 address fields
|
|
* in the encapsulation parameters structure. The item must be prevalidated,
|
|
* no any validation checks performed by function.
|
|
*
|
|
* @param[in] spec
|
|
* RTE_FLOW_ITEM_TYPE_IPV4 entry specification.
|
|
* @param[in] mask
|
|
* RTE_FLOW_ITEM_TYPE_IPV4 entry mask.
|
|
* @param[out] encap
|
|
* Structure to fill the gathered IPV4 address data.
|
|
*/
|
|
static void
|
|
flow_tcf_parse_vxlan_encap_ipv4(const struct rte_flow_item_ipv4 *spec,
|
|
const struct rte_flow_item_ipv4 *mask,
|
|
struct flow_tcf_vxlan_encap *encap)
|
|
{
|
|
/* Item must be validated before. No redundant checks. */
|
|
assert(spec);
|
|
encap->ipv4.dst = spec->hdr.dst_addr;
|
|
encap->ipv4.src = spec->hdr.src_addr;
|
|
encap->mask |= FLOW_TCF_ENCAP_IPV4_SRC |
|
|
FLOW_TCF_ENCAP_IPV4_DST;
|
|
if (mask && mask->hdr.type_of_service) {
|
|
encap->mask |= FLOW_TCF_ENCAP_IP_TOS;
|
|
encap->ip_tos = spec->hdr.type_of_service;
|
|
}
|
|
if (mask && mask->hdr.time_to_live) {
|
|
encap->mask |= FLOW_TCF_ENCAP_IP_TTL;
|
|
encap->ip_ttl_hop = spec->hdr.time_to_live;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper function to process RTE_FLOW_ITEM_TYPE_IPV6 entry in configuration
|
|
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the IPV6 address fields
|
|
* in the encapsulation parameters structure. The item must be prevalidated,
|
|
* no any validation checks performed by function.
|
|
*
|
|
* @param[in] spec
|
|
* RTE_FLOW_ITEM_TYPE_IPV6 entry specification.
|
|
* @param[in] mask
|
|
* RTE_FLOW_ITEM_TYPE_IPV6 entry mask.
|
|
* @param[out] encap
|
|
* Structure to fill the gathered IPV6 address data.
|
|
*/
|
|
static void
|
|
flow_tcf_parse_vxlan_encap_ipv6(const struct rte_flow_item_ipv6 *spec,
|
|
const struct rte_flow_item_ipv6 *mask,
|
|
struct flow_tcf_vxlan_encap *encap)
|
|
{
|
|
/* Item must be validated before. No redundant checks. */
|
|
assert(spec);
|
|
memcpy(encap->ipv6.dst, spec->hdr.dst_addr, IPV6_ADDR_LEN);
|
|
memcpy(encap->ipv6.src, spec->hdr.src_addr, IPV6_ADDR_LEN);
|
|
encap->mask |= FLOW_TCF_ENCAP_IPV6_SRC |
|
|
FLOW_TCF_ENCAP_IPV6_DST;
|
|
if (mask) {
|
|
if ((rte_be_to_cpu_32(mask->hdr.vtc_flow) >>
|
|
IPV6_HDR_TC_SHIFT) & 0xff) {
|
|
encap->mask |= FLOW_TCF_ENCAP_IP_TOS;
|
|
encap->ip_tos = (rte_be_to_cpu_32
|
|
(spec->hdr.vtc_flow) >>
|
|
IPV6_HDR_TC_SHIFT) & 0xff;
|
|
}
|
|
if (mask->hdr.hop_limits) {
|
|
encap->mask |= FLOW_TCF_ENCAP_IP_TTL;
|
|
encap->ip_ttl_hop = spec->hdr.hop_limits;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper function to process RTE_FLOW_ITEM_TYPE_UDP entry in configuration
|
|
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the UDP port fields
|
|
* in the encapsulation parameters structure. The item must be prevalidated,
|
|
* no any validation checks performed by function.
|
|
*
|
|
* @param[in] spec
|
|
* RTE_FLOW_ITEM_TYPE_UDP entry specification.
|
|
* @param[in] mask
|
|
* RTE_FLOW_ITEM_TYPE_UDP entry mask.
|
|
* @param[out] encap
|
|
* Structure to fill the gathered UDP port data.
|
|
*/
|
|
static void
|
|
flow_tcf_parse_vxlan_encap_udp(const struct rte_flow_item_udp *spec,
|
|
const struct rte_flow_item_udp *mask,
|
|
struct flow_tcf_vxlan_encap *encap)
|
|
{
|
|
assert(spec);
|
|
encap->udp.dst = spec->hdr.dst_port;
|
|
encap->mask |= FLOW_TCF_ENCAP_UDP_DST;
|
|
if (!mask || mask->hdr.src_port != RTE_BE16(0x0000)) {
|
|
encap->udp.src = spec->hdr.src_port;
|
|
encap->mask |= FLOW_TCF_ENCAP_IPV4_SRC;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper function to process RTE_FLOW_ITEM_TYPE_VXLAN entry in configuration
|
|
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the VNI fields
|
|
* in the encapsulation parameters structure. The item must be prevalidated,
|
|
* no any validation checks performed by function.
|
|
*
|
|
* @param[in] spec
|
|
* RTE_FLOW_ITEM_TYPE_VXLAN entry specification.
|
|
* @param[out] encap
|
|
* Structure to fill the gathered VNI address data.
|
|
*/
|
|
static void
|
|
flow_tcf_parse_vxlan_encap_vni(const struct rte_flow_item_vxlan *spec,
|
|
struct flow_tcf_vxlan_encap *encap)
|
|
{
|
|
/* Item must be validated before. Do not redundant checks. */
|
|
assert(spec);
|
|
memcpy(encap->vxlan.vni, spec->vni, sizeof(encap->vxlan.vni));
|
|
encap->mask |= FLOW_TCF_ENCAP_VXLAN_VNI;
|
|
}
|
|
|
|
/**
|
|
* Populate consolidated encapsulation object from list of pattern items.
|
|
*
|
|
* Helper function to process configuration of action such as
|
|
* RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. The item list should be
|
|
* validated, there is no way to return an meaningful error.
|
|
*
|
|
* @param[in] action
|
|
* RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP action object.
|
|
* List of pattern items to gather data from.
|
|
* @param[out] src
|
|
* Structure to fill gathered data.
|
|
*/
|
|
static void
|
|
flow_tcf_vxlan_encap_parse(const struct rte_flow_action *action,
|
|
struct flow_tcf_vxlan_encap *encap)
|
|
{
|
|
union {
|
|
const struct rte_flow_item_eth *eth;
|
|
const struct rte_flow_item_ipv4 *ipv4;
|
|
const struct rte_flow_item_ipv6 *ipv6;
|
|
const struct rte_flow_item_udp *udp;
|
|
const struct rte_flow_item_vxlan *vxlan;
|
|
} spec, mask;
|
|
const struct rte_flow_item *items;
|
|
|
|
assert(action->type == RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP);
|
|
assert(action->conf);
|
|
|
|
items = ((const struct rte_flow_action_vxlan_encap *)
|
|
action->conf)->definition;
|
|
assert(items);
|
|
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
|
|
switch (items->type) {
|
|
case RTE_FLOW_ITEM_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_ETH:
|
|
mask.eth = items->mask;
|
|
spec.eth = items->spec;
|
|
flow_tcf_parse_vxlan_encap_eth(spec.eth, mask.eth,
|
|
encap);
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV4:
|
|
spec.ipv4 = items->spec;
|
|
mask.ipv4 = items->mask;
|
|
flow_tcf_parse_vxlan_encap_ipv4(spec.ipv4, mask.ipv4,
|
|
encap);
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV6:
|
|
spec.ipv6 = items->spec;
|
|
mask.ipv6 = items->mask;
|
|
flow_tcf_parse_vxlan_encap_ipv6(spec.ipv6, mask.ipv6,
|
|
encap);
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_UDP:
|
|
mask.udp = items->mask;
|
|
spec.udp = items->spec;
|
|
flow_tcf_parse_vxlan_encap_udp(spec.udp, mask.udp,
|
|
encap);
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_VXLAN:
|
|
spec.vxlan = items->spec;
|
|
flow_tcf_parse_vxlan_encap_vni(spec.vxlan, encap);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
DRV_LOG(WARNING,
|
|
"unsupported item %p type %d,"
|
|
" items must be validated"
|
|
" before flow creation",
|
|
(const void *)items, items->type);
|
|
encap->mask = 0;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Translate flow for Linux TC flower and construct Netlink message.
|
|
*
|
|
* @param[in] priv
|
|
* Pointer to the priv structure.
|
|
* @param[in, out] flow
|
|
* Pointer to the sub flow.
|
|
* @param[in] attr
|
|
* Pointer to the flow attributes.
|
|
* @param[in] items
|
|
* Pointer to the list of items.
|
|
* @param[in] actions
|
|
* Pointer to the list of actions.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item items[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow_error *error)
|
|
{
|
|
union {
|
|
const struct rte_flow_item_port_id *port_id;
|
|
const struct rte_flow_item_eth *eth;
|
|
const struct rte_flow_item_vlan *vlan;
|
|
const struct rte_flow_item_ipv4 *ipv4;
|
|
const struct rte_flow_item_ipv6 *ipv6;
|
|
const struct rte_flow_item_tcp *tcp;
|
|
const struct rte_flow_item_udp *udp;
|
|
const struct rte_flow_item_vxlan *vxlan;
|
|
} spec, mask;
|
|
union {
|
|
const struct rte_flow_action_port_id *port_id;
|
|
const struct rte_flow_action_jump *jump;
|
|
const struct rte_flow_action_of_push_vlan *of_push_vlan;
|
|
const struct rte_flow_action_of_set_vlan_vid *
|
|
of_set_vlan_vid;
|
|
const struct rte_flow_action_of_set_vlan_pcp *
|
|
of_set_vlan_pcp;
|
|
} conf;
|
|
union {
|
|
struct flow_tcf_tunnel_hdr *hdr;
|
|
struct flow_tcf_vxlan_decap *vxlan;
|
|
} decap = {
|
|
.hdr = NULL,
|
|
};
|
|
union {
|
|
struct flow_tcf_tunnel_hdr *hdr;
|
|
struct flow_tcf_vxlan_encap *vxlan;
|
|
} encap = {
|
|
.hdr = NULL,
|
|
};
|
|
struct flow_tcf_ptoi ptoi[PTOI_TABLE_SZ_MAX(dev)];
|
|
struct nlmsghdr *nlh = dev_flow->tcf.nlh;
|
|
struct tcmsg *tcm = dev_flow->tcf.tcm;
|
|
uint32_t na_act_index_cur;
|
|
rte_be16_t inner_etype = RTE_BE16(ETH_P_ALL);
|
|
rte_be16_t outer_etype = RTE_BE16(ETH_P_ALL);
|
|
rte_be16_t vlan_etype = RTE_BE16(ETH_P_ALL);
|
|
bool ip_proto_set = 0;
|
|
bool tunnel_outer = 0;
|
|
struct nlattr *na_flower;
|
|
struct nlattr *na_flower_act;
|
|
struct nlattr *na_vlan_id = NULL;
|
|
struct nlattr *na_vlan_priority = NULL;
|
|
uint64_t item_flags = 0;
|
|
int ret;
|
|
|
|
claim_nonzero(flow_tcf_build_ptoi_table(dev, ptoi,
|
|
PTOI_TABLE_SZ_MAX(dev)));
|
|
if (dev_flow->tcf.tunnel) {
|
|
switch (dev_flow->tcf.tunnel->type) {
|
|
case FLOW_TCF_TUNACT_VXLAN_DECAP:
|
|
decap.vxlan = dev_flow->tcf.vxlan_decap;
|
|
tunnel_outer = 1;
|
|
break;
|
|
case FLOW_TCF_TUNACT_VXLAN_ENCAP:
|
|
encap.vxlan = dev_flow->tcf.vxlan_encap;
|
|
break;
|
|
/* New tunnel actions can be added here. */
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
nlh = dev_flow->tcf.nlh;
|
|
tcm = dev_flow->tcf.tcm;
|
|
/* Prepare API must have been called beforehand. */
|
|
assert(nlh != NULL && tcm != NULL);
|
|
tcm->tcm_family = AF_UNSPEC;
|
|
tcm->tcm_ifindex = ptoi[0].ifindex;
|
|
tcm->tcm_parent = TC_H_MAKE(TC_H_INGRESS, TC_H_MIN_INGRESS);
|
|
/*
|
|
* Priority cannot be zero to prevent the kernel from picking one
|
|
* automatically.
|
|
*/
|
|
tcm->tcm_info = TC_H_MAKE((attr->priority + 1) << 16, outer_etype);
|
|
if (attr->group > 0)
|
|
mnl_attr_put_u32(nlh, TCA_CHAIN, attr->group);
|
|
mnl_attr_put_strz(nlh, TCA_KIND, "flower");
|
|
na_flower = mnl_attr_nest_start(nlh, TCA_OPTIONS);
|
|
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
|
|
unsigned int i;
|
|
|
|
switch (items->type) {
|
|
case RTE_FLOW_ITEM_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_PORT_ID:
|
|
mask.port_id = flow_tcf_item_mask
|
|
(items, &rte_flow_item_port_id_mask,
|
|
&flow_tcf_mask_supported.port_id,
|
|
&flow_tcf_mask_empty.port_id,
|
|
sizeof(flow_tcf_mask_supported.port_id),
|
|
error);
|
|
assert(mask.port_id);
|
|
if (mask.port_id == &flow_tcf_mask_empty.port_id)
|
|
break;
|
|
spec.port_id = items->spec;
|
|
if (!mask.port_id->id)
|
|
i = 0;
|
|
else
|
|
for (i = 0; ptoi[i].ifindex; ++i)
|
|
if (ptoi[i].port_id == spec.port_id->id)
|
|
break;
|
|
assert(ptoi[i].ifindex);
|
|
tcm->tcm_ifindex = ptoi[i].ifindex;
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_ETH:
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L2 :
|
|
MLX5_FLOW_LAYER_OUTER_L2;
|
|
mask.eth = flow_tcf_item_mask
|
|
(items, &rte_flow_item_eth_mask,
|
|
&flow_tcf_mask_supported.eth,
|
|
&flow_tcf_mask_empty.eth,
|
|
sizeof(flow_tcf_mask_supported.eth),
|
|
error);
|
|
assert(mask.eth);
|
|
if (mask.eth == &flow_tcf_mask_empty.eth)
|
|
break;
|
|
spec.eth = items->spec;
|
|
if (mask.eth->type) {
|
|
if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
|
|
inner_etype = spec.eth->type;
|
|
else
|
|
outer_etype = spec.eth->type;
|
|
}
|
|
if (tunnel_outer) {
|
|
DRV_LOG(WARNING,
|
|
"outer L2 addresses cannot be"
|
|
" forced is outer ones for tunnel,"
|
|
" parameter is ignored");
|
|
break;
|
|
}
|
|
if (!is_zero_ether_addr(&mask.eth->dst)) {
|
|
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_DST,
|
|
ETHER_ADDR_LEN,
|
|
spec.eth->dst.addr_bytes);
|
|
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_DST_MASK,
|
|
ETHER_ADDR_LEN,
|
|
mask.eth->dst.addr_bytes);
|
|
}
|
|
if (!is_zero_ether_addr(&mask.eth->src)) {
|
|
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_SRC,
|
|
ETHER_ADDR_LEN,
|
|
spec.eth->src.addr_bytes);
|
|
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_SRC_MASK,
|
|
ETHER_ADDR_LEN,
|
|
mask.eth->src.addr_bytes);
|
|
}
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_VLAN:
|
|
assert(!encap.hdr);
|
|
assert(!decap.hdr);
|
|
assert(!tunnel_outer);
|
|
item_flags |= MLX5_FLOW_LAYER_OUTER_VLAN;
|
|
mask.vlan = flow_tcf_item_mask
|
|
(items, &rte_flow_item_vlan_mask,
|
|
&flow_tcf_mask_supported.vlan,
|
|
&flow_tcf_mask_empty.vlan,
|
|
sizeof(flow_tcf_mask_supported.vlan),
|
|
error);
|
|
assert(mask.vlan);
|
|
if (mask.vlan == &flow_tcf_mask_empty.vlan)
|
|
break;
|
|
spec.vlan = items->spec;
|
|
assert(outer_etype == RTE_BE16(ETH_P_ALL) ||
|
|
outer_etype == RTE_BE16(ETH_P_8021Q));
|
|
outer_etype = RTE_BE16(ETH_P_8021Q);
|
|
if (mask.vlan->inner_type)
|
|
vlan_etype = spec.vlan->inner_type;
|
|
if (mask.vlan->tci & RTE_BE16(0xe000))
|
|
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_VLAN_PRIO,
|
|
(rte_be_to_cpu_16
|
|
(spec.vlan->tci) >> 13) & 0x7);
|
|
if (mask.vlan->tci & RTE_BE16(0x0fff))
|
|
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_VLAN_ID,
|
|
rte_be_to_cpu_16
|
|
(spec.vlan->tci &
|
|
RTE_BE16(0x0fff)));
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV4:
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L3_IPV4 :
|
|
MLX5_FLOW_LAYER_OUTER_L3_IPV4;
|
|
mask.ipv4 = flow_tcf_item_mask
|
|
(items, &rte_flow_item_ipv4_mask,
|
|
&flow_tcf_mask_supported.ipv4,
|
|
&flow_tcf_mask_empty.ipv4,
|
|
sizeof(flow_tcf_mask_supported.ipv4),
|
|
error);
|
|
assert(mask.ipv4);
|
|
if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
|
|
assert(inner_etype == RTE_BE16(ETH_P_ALL) ||
|
|
inner_etype == RTE_BE16(ETH_P_IP));
|
|
inner_etype = RTE_BE16(ETH_P_IP);
|
|
} else if (outer_etype == RTE_BE16(ETH_P_8021Q)) {
|
|
assert(vlan_etype == RTE_BE16(ETH_P_ALL) ||
|
|
vlan_etype == RTE_BE16(ETH_P_IP));
|
|
vlan_etype = RTE_BE16(ETH_P_IP);
|
|
} else {
|
|
assert(outer_etype == RTE_BE16(ETH_P_ALL) ||
|
|
outer_etype == RTE_BE16(ETH_P_IP));
|
|
outer_etype = RTE_BE16(ETH_P_IP);
|
|
}
|
|
spec.ipv4 = items->spec;
|
|
if (!tunnel_outer && mask.ipv4->hdr.next_proto_id) {
|
|
/*
|
|
* No way to set IP protocol for outer tunnel
|
|
* layers. Usually it is fixed, for example,
|
|
* to UDP for VXLAN/GPE.
|
|
*/
|
|
assert(spec.ipv4); /* Mask is not empty. */
|
|
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_IP_PROTO,
|
|
spec.ipv4->hdr.next_proto_id);
|
|
ip_proto_set = 1;
|
|
}
|
|
if (mask.ipv4 == &flow_tcf_mask_empty.ipv4 ||
|
|
(!mask.ipv4->hdr.src_addr &&
|
|
!mask.ipv4->hdr.dst_addr)) {
|
|
if (!tunnel_outer)
|
|
break;
|
|
/*
|
|
* For tunnel outer we must set outer IP key
|
|
* anyway, even if the specification/mask is
|
|
* empty. There is no another way to tell
|
|
* kernel about he outer layer protocol.
|
|
*/
|
|
mnl_attr_put_u32
|
|
(nlh, TCA_FLOWER_KEY_ENC_IPV4_SRC,
|
|
mask.ipv4->hdr.src_addr);
|
|
mnl_attr_put_u32
|
|
(nlh, TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
|
|
mask.ipv4->hdr.src_addr);
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
}
|
|
if (mask.ipv4->hdr.src_addr) {
|
|
mnl_attr_put_u32
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IPV4_SRC :
|
|
TCA_FLOWER_KEY_IPV4_SRC,
|
|
spec.ipv4->hdr.src_addr);
|
|
mnl_attr_put_u32
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK :
|
|
TCA_FLOWER_KEY_IPV4_SRC_MASK,
|
|
mask.ipv4->hdr.src_addr);
|
|
}
|
|
if (mask.ipv4->hdr.dst_addr) {
|
|
mnl_attr_put_u32
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IPV4_DST :
|
|
TCA_FLOWER_KEY_IPV4_DST,
|
|
spec.ipv4->hdr.dst_addr);
|
|
mnl_attr_put_u32
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IPV4_DST_MASK :
|
|
TCA_FLOWER_KEY_IPV4_DST_MASK,
|
|
mask.ipv4->hdr.dst_addr);
|
|
}
|
|
if (mask.ipv4->hdr.time_to_live) {
|
|
mnl_attr_put_u8
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IP_TTL :
|
|
TCA_FLOWER_KEY_IP_TTL,
|
|
spec.ipv4->hdr.time_to_live);
|
|
mnl_attr_put_u8
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IP_TTL_MASK :
|
|
TCA_FLOWER_KEY_IP_TTL_MASK,
|
|
mask.ipv4->hdr.time_to_live);
|
|
}
|
|
if (mask.ipv4->hdr.type_of_service) {
|
|
mnl_attr_put_u8
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IP_TOS :
|
|
TCA_FLOWER_KEY_IP_TOS,
|
|
spec.ipv4->hdr.type_of_service);
|
|
mnl_attr_put_u8
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IP_TOS_MASK :
|
|
TCA_FLOWER_KEY_IP_TOS_MASK,
|
|
mask.ipv4->hdr.type_of_service);
|
|
}
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_IPV6: {
|
|
bool ipv6_src, ipv6_dst;
|
|
uint8_t msk6, tos6;
|
|
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L3_IPV6 :
|
|
MLX5_FLOW_LAYER_OUTER_L3_IPV6;
|
|
mask.ipv6 = flow_tcf_item_mask
|
|
(items, &rte_flow_item_ipv6_mask,
|
|
&flow_tcf_mask_supported.ipv6,
|
|
&flow_tcf_mask_empty.ipv6,
|
|
sizeof(flow_tcf_mask_supported.ipv6),
|
|
error);
|
|
assert(mask.ipv6);
|
|
if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
|
|
assert(inner_etype == RTE_BE16(ETH_P_ALL) ||
|
|
inner_etype == RTE_BE16(ETH_P_IPV6));
|
|
inner_etype = RTE_BE16(ETH_P_IPV6);
|
|
} else if (outer_etype == RTE_BE16(ETH_P_8021Q)) {
|
|
assert(vlan_etype == RTE_BE16(ETH_P_ALL) ||
|
|
vlan_etype == RTE_BE16(ETH_P_IPV6));
|
|
vlan_etype = RTE_BE16(ETH_P_IPV6);
|
|
} else {
|
|
assert(outer_etype == RTE_BE16(ETH_P_ALL) ||
|
|
outer_etype == RTE_BE16(ETH_P_IPV6));
|
|
outer_etype = RTE_BE16(ETH_P_IPV6);
|
|
}
|
|
spec.ipv6 = items->spec;
|
|
if (!tunnel_outer && mask.ipv6->hdr.proto) {
|
|
/*
|
|
* No way to set IP protocol for outer tunnel
|
|
* layers. Usually it is fixed, for example,
|
|
* to UDP for VXLAN/GPE.
|
|
*/
|
|
assert(spec.ipv6); /* Mask is not empty. */
|
|
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_IP_PROTO,
|
|
spec.ipv6->hdr.proto);
|
|
ip_proto_set = 1;
|
|
}
|
|
ipv6_dst = !IN6_IS_ADDR_UNSPECIFIED
|
|
(mask.ipv6->hdr.dst_addr);
|
|
ipv6_src = !IN6_IS_ADDR_UNSPECIFIED
|
|
(mask.ipv6->hdr.src_addr);
|
|
if (mask.ipv6 == &flow_tcf_mask_empty.ipv6 ||
|
|
(!ipv6_dst && !ipv6_src)) {
|
|
if (!tunnel_outer)
|
|
break;
|
|
/*
|
|
* For tunnel outer we must set outer IP key
|
|
* anyway, even if the specification/mask is
|
|
* empty. There is no another way to tell
|
|
* kernel about he outer layer protocol.
|
|
*/
|
|
mnl_attr_put(nlh,
|
|
TCA_FLOWER_KEY_ENC_IPV6_SRC,
|
|
IPV6_ADDR_LEN,
|
|
mask.ipv6->hdr.src_addr);
|
|
mnl_attr_put(nlh,
|
|
TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
|
|
IPV6_ADDR_LEN,
|
|
mask.ipv6->hdr.src_addr);
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
}
|
|
if (ipv6_src) {
|
|
mnl_attr_put(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IPV6_SRC :
|
|
TCA_FLOWER_KEY_IPV6_SRC,
|
|
IPV6_ADDR_LEN,
|
|
spec.ipv6->hdr.src_addr);
|
|
mnl_attr_put(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK :
|
|
TCA_FLOWER_KEY_IPV6_SRC_MASK,
|
|
IPV6_ADDR_LEN,
|
|
mask.ipv6->hdr.src_addr);
|
|
}
|
|
if (ipv6_dst) {
|
|
mnl_attr_put(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IPV6_DST :
|
|
TCA_FLOWER_KEY_IPV6_DST,
|
|
IPV6_ADDR_LEN,
|
|
spec.ipv6->hdr.dst_addr);
|
|
mnl_attr_put(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IPV6_DST_MASK :
|
|
TCA_FLOWER_KEY_IPV6_DST_MASK,
|
|
IPV6_ADDR_LEN,
|
|
mask.ipv6->hdr.dst_addr);
|
|
}
|
|
if (mask.ipv6->hdr.hop_limits) {
|
|
mnl_attr_put_u8
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IP_TTL :
|
|
TCA_FLOWER_KEY_IP_TTL,
|
|
spec.ipv6->hdr.hop_limits);
|
|
mnl_attr_put_u8
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IP_TTL_MASK :
|
|
TCA_FLOWER_KEY_IP_TTL_MASK,
|
|
mask.ipv6->hdr.hop_limits);
|
|
}
|
|
msk6 = (rte_be_to_cpu_32(mask.ipv6->hdr.vtc_flow) >>
|
|
IPV6_HDR_TC_SHIFT) & 0xff;
|
|
if (msk6) {
|
|
tos6 = (rte_be_to_cpu_32
|
|
(spec.ipv6->hdr.vtc_flow) >>
|
|
IPV6_HDR_TC_SHIFT) & 0xff;
|
|
mnl_attr_put_u8
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IP_TOS :
|
|
TCA_FLOWER_KEY_IP_TOS, tos6);
|
|
mnl_attr_put_u8
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_IP_TOS_MASK :
|
|
TCA_FLOWER_KEY_IP_TOS_MASK, msk6);
|
|
}
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
}
|
|
case RTE_FLOW_ITEM_TYPE_UDP:
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L4_UDP :
|
|
MLX5_FLOW_LAYER_OUTER_L4_UDP;
|
|
mask.udp = flow_tcf_item_mask
|
|
(items, &rte_flow_item_udp_mask,
|
|
&flow_tcf_mask_supported.udp,
|
|
&flow_tcf_mask_empty.udp,
|
|
sizeof(flow_tcf_mask_supported.udp),
|
|
error);
|
|
assert(mask.udp);
|
|
spec.udp = items->spec;
|
|
if (!tunnel_outer) {
|
|
if (!ip_proto_set)
|
|
mnl_attr_put_u8
|
|
(nlh, TCA_FLOWER_KEY_IP_PROTO,
|
|
IPPROTO_UDP);
|
|
if (mask.udp == &flow_tcf_mask_empty.udp)
|
|
break;
|
|
} else {
|
|
assert(mask.udp != &flow_tcf_mask_empty.udp);
|
|
decap.vxlan->udp_port =
|
|
rte_be_to_cpu_16
|
|
(spec.udp->hdr.dst_port);
|
|
}
|
|
if (mask.udp->hdr.src_port) {
|
|
mnl_attr_put_u16
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT :
|
|
TCA_FLOWER_KEY_UDP_SRC,
|
|
spec.udp->hdr.src_port);
|
|
mnl_attr_put_u16
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK :
|
|
TCA_FLOWER_KEY_UDP_SRC_MASK,
|
|
mask.udp->hdr.src_port);
|
|
}
|
|
if (mask.udp->hdr.dst_port) {
|
|
mnl_attr_put_u16
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_UDP_DST_PORT :
|
|
TCA_FLOWER_KEY_UDP_DST,
|
|
spec.udp->hdr.dst_port);
|
|
mnl_attr_put_u16
|
|
(nlh, tunnel_outer ?
|
|
TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK :
|
|
TCA_FLOWER_KEY_UDP_DST_MASK,
|
|
mask.udp->hdr.dst_port);
|
|
}
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_TCP:
|
|
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
|
|
MLX5_FLOW_LAYER_INNER_L4_TCP :
|
|
MLX5_FLOW_LAYER_OUTER_L4_TCP;
|
|
mask.tcp = flow_tcf_item_mask
|
|
(items, &rte_flow_item_tcp_mask,
|
|
&flow_tcf_mask_supported.tcp,
|
|
&flow_tcf_mask_empty.tcp,
|
|
sizeof(flow_tcf_mask_supported.tcp),
|
|
error);
|
|
assert(mask.tcp);
|
|
if (!ip_proto_set)
|
|
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_IP_PROTO,
|
|
IPPROTO_TCP);
|
|
if (mask.tcp == &flow_tcf_mask_empty.tcp)
|
|
break;
|
|
spec.tcp = items->spec;
|
|
if (mask.tcp->hdr.src_port) {
|
|
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_TCP_SRC,
|
|
spec.tcp->hdr.src_port);
|
|
mnl_attr_put_u16(nlh,
|
|
TCA_FLOWER_KEY_TCP_SRC_MASK,
|
|
mask.tcp->hdr.src_port);
|
|
}
|
|
if (mask.tcp->hdr.dst_port) {
|
|
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_TCP_DST,
|
|
spec.tcp->hdr.dst_port);
|
|
mnl_attr_put_u16(nlh,
|
|
TCA_FLOWER_KEY_TCP_DST_MASK,
|
|
mask.tcp->hdr.dst_port);
|
|
}
|
|
if (mask.tcp->hdr.tcp_flags) {
|
|
mnl_attr_put_u16
|
|
(nlh,
|
|
TCA_FLOWER_KEY_TCP_FLAGS,
|
|
rte_cpu_to_be_16
|
|
(spec.tcp->hdr.tcp_flags));
|
|
mnl_attr_put_u16
|
|
(nlh,
|
|
TCA_FLOWER_KEY_TCP_FLAGS_MASK,
|
|
rte_cpu_to_be_16
|
|
(mask.tcp->hdr.tcp_flags));
|
|
}
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_VXLAN:
|
|
assert(decap.vxlan);
|
|
tunnel_outer = 0;
|
|
item_flags |= MLX5_FLOW_LAYER_VXLAN;
|
|
spec.vxlan = items->spec;
|
|
mnl_attr_put_u32(nlh,
|
|
TCA_FLOWER_KEY_ENC_KEY_ID,
|
|
vxlan_vni_as_be32(spec.vxlan->vni));
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
default:
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
NULL, "item not supported");
|
|
}
|
|
}
|
|
/*
|
|
* Set the ether_type flower key and tc rule protocol:
|
|
* - if there is nor VLAN neither VXLAN the key is taken from
|
|
* eth item directly or deduced from L3 items.
|
|
* - if there is vlan item then key is fixed to 802.1q.
|
|
* - if there is vxlan item then key is set to inner tunnel type.
|
|
* - simultaneous vlan and vxlan items are prohibited.
|
|
*/
|
|
if (outer_etype != RTE_BE16(ETH_P_ALL)) {
|
|
tcm->tcm_info = TC_H_MAKE((attr->priority + 1) << 16,
|
|
outer_etype);
|
|
if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
|
|
if (inner_etype != RTE_BE16(ETH_P_ALL))
|
|
mnl_attr_put_u16(nlh,
|
|
TCA_FLOWER_KEY_ETH_TYPE,
|
|
inner_etype);
|
|
} else {
|
|
mnl_attr_put_u16(nlh,
|
|
TCA_FLOWER_KEY_ETH_TYPE,
|
|
outer_etype);
|
|
if (outer_etype == RTE_BE16(ETH_P_8021Q) &&
|
|
vlan_etype != RTE_BE16(ETH_P_ALL))
|
|
mnl_attr_put_u16(nlh,
|
|
TCA_FLOWER_KEY_VLAN_ETH_TYPE,
|
|
vlan_etype);
|
|
}
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
}
|
|
na_flower_act = mnl_attr_nest_start(nlh, TCA_FLOWER_ACT);
|
|
na_act_index_cur = 1;
|
|
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
|
|
struct nlattr *na_act_index;
|
|
struct nlattr *na_act;
|
|
unsigned int vlan_act;
|
|
unsigned int i;
|
|
|
|
switch (actions->type) {
|
|
case RTE_FLOW_ACTION_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_PORT_ID:
|
|
conf.port_id = actions->conf;
|
|
if (conf.port_id->original)
|
|
i = 0;
|
|
else
|
|
for (i = 0; ptoi[i].ifindex; ++i)
|
|
if (ptoi[i].port_id == conf.port_id->id)
|
|
break;
|
|
assert(ptoi[i].ifindex);
|
|
na_act_index =
|
|
mnl_attr_nest_start(nlh, na_act_index_cur++);
|
|
assert(na_act_index);
|
|
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "mirred");
|
|
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
|
|
assert(na_act);
|
|
if (encap.hdr) {
|
|
assert(dev_flow->tcf.tunnel);
|
|
dev_flow->tcf.tunnel->ifindex_ptr =
|
|
&((struct tc_mirred *)
|
|
mnl_attr_get_payload
|
|
(mnl_nlmsg_get_payload_tail
|
|
(nlh)))->ifindex;
|
|
} else if (decap.hdr) {
|
|
assert(dev_flow->tcf.tunnel);
|
|
dev_flow->tcf.tunnel->ifindex_ptr =
|
|
(unsigned int *)&tcm->tcm_ifindex;
|
|
}
|
|
mnl_attr_put(nlh, TCA_MIRRED_PARMS,
|
|
sizeof(struct tc_mirred),
|
|
&(struct tc_mirred){
|
|
.action = TC_ACT_STOLEN,
|
|
.eaction = TCA_EGRESS_REDIR,
|
|
.ifindex = ptoi[i].ifindex,
|
|
});
|
|
mnl_attr_nest_end(nlh, na_act);
|
|
mnl_attr_nest_end(nlh, na_act_index);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_JUMP:
|
|
conf.jump = actions->conf;
|
|
na_act_index =
|
|
mnl_attr_nest_start(nlh, na_act_index_cur++);
|
|
assert(na_act_index);
|
|
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "gact");
|
|
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
|
|
assert(na_act);
|
|
mnl_attr_put(nlh, TCA_GACT_PARMS,
|
|
sizeof(struct tc_gact),
|
|
&(struct tc_gact){
|
|
.action = TC_ACT_GOTO_CHAIN |
|
|
conf.jump->group,
|
|
});
|
|
mnl_attr_nest_end(nlh, na_act);
|
|
mnl_attr_nest_end(nlh, na_act_index);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_DROP:
|
|
na_act_index =
|
|
mnl_attr_nest_start(nlh, na_act_index_cur++);
|
|
assert(na_act_index);
|
|
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "gact");
|
|
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
|
|
assert(na_act);
|
|
mnl_attr_put(nlh, TCA_GACT_PARMS,
|
|
sizeof(struct tc_gact),
|
|
&(struct tc_gact){
|
|
.action = TC_ACT_SHOT,
|
|
});
|
|
mnl_attr_nest_end(nlh, na_act);
|
|
mnl_attr_nest_end(nlh, na_act_index);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_COUNT:
|
|
/*
|
|
* Driver adds the count action implicitly for
|
|
* each rule it creates.
|
|
*/
|
|
ret = flow_tcf_translate_action_count(dev,
|
|
dev_flow, error);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
|
|
conf.of_push_vlan = NULL;
|
|
vlan_act = TCA_VLAN_ACT_POP;
|
|
goto action_of_vlan;
|
|
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
|
|
conf.of_push_vlan = actions->conf;
|
|
vlan_act = TCA_VLAN_ACT_PUSH;
|
|
goto action_of_vlan;
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
|
|
conf.of_set_vlan_vid = actions->conf;
|
|
if (na_vlan_id)
|
|
goto override_na_vlan_id;
|
|
vlan_act = TCA_VLAN_ACT_MODIFY;
|
|
goto action_of_vlan;
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
|
|
conf.of_set_vlan_pcp = actions->conf;
|
|
if (na_vlan_priority)
|
|
goto override_na_vlan_priority;
|
|
vlan_act = TCA_VLAN_ACT_MODIFY;
|
|
goto action_of_vlan;
|
|
action_of_vlan:
|
|
na_act_index =
|
|
mnl_attr_nest_start(nlh, na_act_index_cur++);
|
|
assert(na_act_index);
|
|
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "vlan");
|
|
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
|
|
assert(na_act);
|
|
mnl_attr_put(nlh, TCA_VLAN_PARMS,
|
|
sizeof(struct tc_vlan),
|
|
&(struct tc_vlan){
|
|
.action = TC_ACT_PIPE,
|
|
.v_action = vlan_act,
|
|
});
|
|
if (vlan_act == TCA_VLAN_ACT_POP) {
|
|
mnl_attr_nest_end(nlh, na_act);
|
|
mnl_attr_nest_end(nlh, na_act_index);
|
|
break;
|
|
}
|
|
if (vlan_act == TCA_VLAN_ACT_PUSH)
|
|
mnl_attr_put_u16(nlh,
|
|
TCA_VLAN_PUSH_VLAN_PROTOCOL,
|
|
conf.of_push_vlan->ethertype);
|
|
na_vlan_id = mnl_nlmsg_get_payload_tail(nlh);
|
|
mnl_attr_put_u16(nlh, TCA_VLAN_PAD, 0);
|
|
na_vlan_priority = mnl_nlmsg_get_payload_tail(nlh);
|
|
mnl_attr_put_u8(nlh, TCA_VLAN_PAD, 0);
|
|
mnl_attr_nest_end(nlh, na_act);
|
|
mnl_attr_nest_end(nlh, na_act_index);
|
|
if (actions->type ==
|
|
RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID) {
|
|
override_na_vlan_id:
|
|
na_vlan_id->nla_type = TCA_VLAN_PUSH_VLAN_ID;
|
|
*(uint16_t *)mnl_attr_get_payload(na_vlan_id) =
|
|
rte_be_to_cpu_16
|
|
(conf.of_set_vlan_vid->vlan_vid);
|
|
} else if (actions->type ==
|
|
RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP) {
|
|
override_na_vlan_priority:
|
|
na_vlan_priority->nla_type =
|
|
TCA_VLAN_PUSH_VLAN_PRIORITY;
|
|
*(uint8_t *)mnl_attr_get_payload
|
|
(na_vlan_priority) =
|
|
conf.of_set_vlan_pcp->vlan_pcp;
|
|
}
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
|
|
assert(decap.vxlan);
|
|
assert(dev_flow->tcf.tunnel);
|
|
dev_flow->tcf.tunnel->ifindex_ptr =
|
|
(unsigned int *)&tcm->tcm_ifindex;
|
|
na_act_index =
|
|
mnl_attr_nest_start(nlh, na_act_index_cur++);
|
|
assert(na_act_index);
|
|
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "tunnel_key");
|
|
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
|
|
assert(na_act);
|
|
mnl_attr_put(nlh, TCA_TUNNEL_KEY_PARMS,
|
|
sizeof(struct tc_tunnel_key),
|
|
&(struct tc_tunnel_key){
|
|
.action = TC_ACT_PIPE,
|
|
.t_action = TCA_TUNNEL_KEY_ACT_RELEASE,
|
|
});
|
|
mnl_attr_nest_end(nlh, na_act);
|
|
mnl_attr_nest_end(nlh, na_act_index);
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
|
|
assert(encap.vxlan);
|
|
flow_tcf_vxlan_encap_parse(actions, encap.vxlan);
|
|
na_act_index =
|
|
mnl_attr_nest_start(nlh, na_act_index_cur++);
|
|
assert(na_act_index);
|
|
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "tunnel_key");
|
|
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
|
|
assert(na_act);
|
|
mnl_attr_put(nlh, TCA_TUNNEL_KEY_PARMS,
|
|
sizeof(struct tc_tunnel_key),
|
|
&(struct tc_tunnel_key){
|
|
.action = TC_ACT_PIPE,
|
|
.t_action = TCA_TUNNEL_KEY_ACT_SET,
|
|
});
|
|
if (encap.vxlan->mask & FLOW_TCF_ENCAP_UDP_DST)
|
|
mnl_attr_put_u16(nlh,
|
|
TCA_TUNNEL_KEY_ENC_DST_PORT,
|
|
encap.vxlan->udp.dst);
|
|
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IPV4_SRC)
|
|
mnl_attr_put_u32(nlh,
|
|
TCA_TUNNEL_KEY_ENC_IPV4_SRC,
|
|
encap.vxlan->ipv4.src);
|
|
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IPV4_DST)
|
|
mnl_attr_put_u32(nlh,
|
|
TCA_TUNNEL_KEY_ENC_IPV4_DST,
|
|
encap.vxlan->ipv4.dst);
|
|
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IPV6_SRC)
|
|
mnl_attr_put(nlh,
|
|
TCA_TUNNEL_KEY_ENC_IPV6_SRC,
|
|
sizeof(encap.vxlan->ipv6.src),
|
|
&encap.vxlan->ipv6.src);
|
|
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IPV6_DST)
|
|
mnl_attr_put(nlh,
|
|
TCA_TUNNEL_KEY_ENC_IPV6_DST,
|
|
sizeof(encap.vxlan->ipv6.dst),
|
|
&encap.vxlan->ipv6.dst);
|
|
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IP_TTL)
|
|
mnl_attr_put_u8(nlh,
|
|
TCA_TUNNEL_KEY_ENC_TTL,
|
|
encap.vxlan->ip_ttl_hop);
|
|
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IP_TOS)
|
|
mnl_attr_put_u8(nlh,
|
|
TCA_TUNNEL_KEY_ENC_TOS,
|
|
encap.vxlan->ip_tos);
|
|
if (encap.vxlan->mask & FLOW_TCF_ENCAP_VXLAN_VNI)
|
|
mnl_attr_put_u32(nlh,
|
|
TCA_TUNNEL_KEY_ENC_KEY_ID,
|
|
vxlan_vni_as_be32
|
|
(encap.vxlan->vxlan.vni));
|
|
mnl_attr_put_u8(nlh, TCA_TUNNEL_KEY_NO_CSUM, 0);
|
|
mnl_attr_nest_end(nlh, na_act);
|
|
mnl_attr_nest_end(nlh, na_act_index);
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
|
|
case RTE_FLOW_ACTION_TYPE_SET_TTL:
|
|
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
|
|
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
|
|
na_act_index =
|
|
mnl_attr_nest_start(nlh, na_act_index_cur++);
|
|
flow_tcf_create_pedit_mnl_msg(nlh,
|
|
&actions, item_flags);
|
|
mnl_attr_nest_end(nlh, na_act_index);
|
|
break;
|
|
default:
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"action not supported");
|
|
}
|
|
}
|
|
assert(na_flower);
|
|
assert(na_flower_act);
|
|
mnl_attr_nest_end(nlh, na_flower_act);
|
|
dev_flow->tcf.ptc_flags = mnl_attr_get_payload
|
|
(mnl_nlmsg_get_payload_tail(nlh));
|
|
mnl_attr_put_u32(nlh, TCA_FLOWER_FLAGS, decap.vxlan ?
|
|
0 : TCA_CLS_FLAGS_SKIP_SW);
|
|
mnl_attr_nest_end(nlh, na_flower);
|
|
if (dev_flow->tcf.tunnel && dev_flow->tcf.tunnel->ifindex_ptr)
|
|
dev_flow->tcf.tunnel->ifindex_org =
|
|
*dev_flow->tcf.tunnel->ifindex_ptr;
|
|
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Send Netlink message with acknowledgment.
|
|
*
|
|
* @param tcf
|
|
* Flow context to use.
|
|
* @param nlh
|
|
* Message to send. This function always raises the NLM_F_ACK flag before
|
|
* sending.
|
|
* @param[in] cb
|
|
* Callback handler for received message.
|
|
* @param[in] arg
|
|
* Context pointer for callback handler.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_nl_ack(struct mlx5_flow_tcf_context *tcf,
|
|
struct nlmsghdr *nlh,
|
|
mnl_cb_t cb, void *arg)
|
|
{
|
|
unsigned int portid = mnl_socket_get_portid(tcf->nl);
|
|
uint32_t seq = tcf->seq++;
|
|
int ret, err = 0;
|
|
|
|
assert(tcf->nl);
|
|
assert(tcf->buf);
|
|
if (!seq) {
|
|
/* seq 0 is reserved for kernel event-driven notifications. */
|
|
seq = tcf->seq++;
|
|
}
|
|
nlh->nlmsg_seq = seq;
|
|
nlh->nlmsg_flags |= NLM_F_ACK;
|
|
ret = mnl_socket_sendto(tcf->nl, nlh, nlh->nlmsg_len);
|
|
if (ret <= 0) {
|
|
/* Message send error occurres. */
|
|
rte_errno = errno;
|
|
return -rte_errno;
|
|
}
|
|
nlh = (struct nlmsghdr *)(tcf->buf);
|
|
/*
|
|
* The following loop postpones non-fatal errors until multipart
|
|
* messages are complete.
|
|
*/
|
|
while (true) {
|
|
ret = mnl_socket_recvfrom(tcf->nl, tcf->buf, tcf->buf_size);
|
|
if (ret < 0) {
|
|
err = errno;
|
|
/*
|
|
* In case of overflow Will receive till
|
|
* end of multipart message. We may lost part
|
|
* of reply messages but mark and return an error.
|
|
*/
|
|
if (err != ENOSPC ||
|
|
!(nlh->nlmsg_flags & NLM_F_MULTI) ||
|
|
nlh->nlmsg_type == NLMSG_DONE)
|
|
break;
|
|
} else {
|
|
ret = mnl_cb_run(nlh, ret, seq, portid, cb, arg);
|
|
if (!ret) {
|
|
/*
|
|
* libmnl returns 0 if DONE or
|
|
* success ACK message found.
|
|
*/
|
|
break;
|
|
}
|
|
if (ret < 0) {
|
|
/*
|
|
* ACK message with error found
|
|
* or some error occurred.
|
|
*/
|
|
err = errno;
|
|
break;
|
|
}
|
|
/* We should continue receiving. */
|
|
}
|
|
}
|
|
if (!err)
|
|
return 0;
|
|
rte_errno = err;
|
|
return -err;
|
|
}
|
|
|
|
#define MNL_BUF_EXTRA_SPACE 16
|
|
#define MNL_REQUEST_SIZE_MIN 256
|
|
#define MNL_REQUEST_SIZE_MAX 2048
|
|
#define MNL_REQUEST_SIZE RTE_MIN(RTE_MAX(sysconf(_SC_PAGESIZE), \
|
|
MNL_REQUEST_SIZE_MIN), MNL_REQUEST_SIZE_MAX)
|
|
|
|
/* Data structures used by flow_tcf_xxx_cb() routines. */
|
|
struct tcf_nlcb_buf {
|
|
LIST_ENTRY(tcf_nlcb_buf) next;
|
|
uint32_t size;
|
|
alignas(struct nlmsghdr)
|
|
uint8_t msg[]; /**< Netlink message data. */
|
|
};
|
|
|
|
struct tcf_nlcb_context {
|
|
unsigned int ifindex; /**< Base interface index. */
|
|
uint32_t bufsize;
|
|
LIST_HEAD(, tcf_nlcb_buf) nlbuf;
|
|
};
|
|
|
|
/**
|
|
* Allocate space for netlink command in buffer list
|
|
*
|
|
* @param[in, out] ctx
|
|
* Pointer to callback context with command buffers list.
|
|
* @param[in] size
|
|
* Required size of data buffer to be allocated.
|
|
*
|
|
* @return
|
|
* Pointer to allocated memory, aligned as message header.
|
|
* NULL if some error occurred.
|
|
*/
|
|
static struct nlmsghdr *
|
|
flow_tcf_alloc_nlcmd(struct tcf_nlcb_context *ctx, uint32_t size)
|
|
{
|
|
struct tcf_nlcb_buf *buf;
|
|
struct nlmsghdr *nlh;
|
|
|
|
size = NLMSG_ALIGN(size);
|
|
buf = LIST_FIRST(&ctx->nlbuf);
|
|
if (buf && (buf->size + size) <= ctx->bufsize) {
|
|
nlh = (struct nlmsghdr *)&buf->msg[buf->size];
|
|
buf->size += size;
|
|
return nlh;
|
|
}
|
|
if (size > ctx->bufsize) {
|
|
DRV_LOG(WARNING, "netlink: too long command buffer requested");
|
|
return NULL;
|
|
}
|
|
buf = rte_malloc(__func__,
|
|
ctx->bufsize + sizeof(struct tcf_nlcb_buf),
|
|
alignof(struct tcf_nlcb_buf));
|
|
if (!buf) {
|
|
DRV_LOG(WARNING, "netlink: no memory for command buffer");
|
|
return NULL;
|
|
}
|
|
LIST_INSERT_HEAD(&ctx->nlbuf, buf, next);
|
|
buf->size = size;
|
|
nlh = (struct nlmsghdr *)&buf->msg[0];
|
|
return nlh;
|
|
}
|
|
|
|
/**
|
|
* Send the buffers with prepared netlink commands. Scans the list and
|
|
* sends all found buffers. Buffers are sent and freed anyway in order
|
|
* to prevent memory leakage if some every message in received packet.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in, out] ctx
|
|
* Pointer to callback context with command buffers list.
|
|
*
|
|
* @return
|
|
* Zero value on success, negative errno value otherwise
|
|
* and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_send_nlcmd(struct mlx5_flow_tcf_context *tcf,
|
|
struct tcf_nlcb_context *ctx)
|
|
{
|
|
struct tcf_nlcb_buf *bc = LIST_FIRST(&ctx->nlbuf);
|
|
int ret = 0;
|
|
|
|
while (bc) {
|
|
struct tcf_nlcb_buf *bn = LIST_NEXT(bc, next);
|
|
struct nlmsghdr *nlh;
|
|
uint32_t msg = 0;
|
|
int rc;
|
|
|
|
while (msg < bc->size) {
|
|
/*
|
|
* Send Netlink commands from buffer in one by one
|
|
* fashion. If we send multiple rule deletion commands
|
|
* in one Netlink message and some error occurs it may
|
|
* cause multiple ACK error messages and break sequence
|
|
* numbers of Netlink communication, because we expect
|
|
* the only one ACK reply.
|
|
*/
|
|
assert((bc->size - msg) >= sizeof(struct nlmsghdr));
|
|
nlh = (struct nlmsghdr *)&bc->msg[msg];
|
|
assert((bc->size - msg) >= nlh->nlmsg_len);
|
|
msg += nlh->nlmsg_len;
|
|
rc = flow_tcf_nl_ack(tcf, nlh, NULL, NULL);
|
|
if (rc) {
|
|
DRV_LOG(WARNING,
|
|
"netlink: cleanup error %d", rc);
|
|
if (!ret)
|
|
ret = rc;
|
|
}
|
|
}
|
|
rte_free(bc);
|
|
bc = bn;
|
|
}
|
|
LIST_INIT(&ctx->nlbuf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Collect local IP address rules with scope link attribute on specified
|
|
* network device. This is callback routine called by libmnl mnl_cb_run()
|
|
* in loop for every message in received packet.
|
|
*
|
|
* @param[in] nlh
|
|
* Pointer to reply header.
|
|
* @param[in, out] arg
|
|
* Opaque data pointer for this callback.
|
|
*
|
|
* @return
|
|
* A positive, nonzero value on success, negative errno value otherwise
|
|
* and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_collect_local_cb(const struct nlmsghdr *nlh, void *arg)
|
|
{
|
|
struct tcf_nlcb_context *ctx = arg;
|
|
struct nlmsghdr *cmd;
|
|
struct ifaddrmsg *ifa;
|
|
struct nlattr *na;
|
|
struct nlattr *na_local = NULL;
|
|
struct nlattr *na_peer = NULL;
|
|
unsigned char family;
|
|
uint32_t size;
|
|
|
|
if (nlh->nlmsg_type != RTM_NEWADDR) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
ifa = mnl_nlmsg_get_payload(nlh);
|
|
family = ifa->ifa_family;
|
|
if (ifa->ifa_index != ctx->ifindex ||
|
|
ifa->ifa_scope != RT_SCOPE_LINK ||
|
|
!(ifa->ifa_flags & IFA_F_PERMANENT) ||
|
|
(family != AF_INET && family != AF_INET6))
|
|
return 1;
|
|
mnl_attr_for_each(na, nlh, sizeof(*ifa)) {
|
|
switch (mnl_attr_get_type(na)) {
|
|
case IFA_LOCAL:
|
|
na_local = na;
|
|
break;
|
|
case IFA_ADDRESS:
|
|
na_peer = na;
|
|
break;
|
|
}
|
|
if (na_local && na_peer)
|
|
break;
|
|
}
|
|
if (!na_local || !na_peer)
|
|
return 1;
|
|
/* Local rule found with scope link, permanent and assigned peer. */
|
|
size = MNL_ALIGN(sizeof(struct nlmsghdr)) +
|
|
MNL_ALIGN(sizeof(struct ifaddrmsg)) +
|
|
(family == AF_INET6 ? 2 * SZ_NLATTR_DATA_OF(IPV6_ADDR_LEN)
|
|
: 2 * SZ_NLATTR_TYPE_OF(uint32_t));
|
|
cmd = flow_tcf_alloc_nlcmd(ctx, size);
|
|
if (!cmd) {
|
|
rte_errno = ENOMEM;
|
|
return -rte_errno;
|
|
}
|
|
cmd = mnl_nlmsg_put_header(cmd);
|
|
cmd->nlmsg_type = RTM_DELADDR;
|
|
cmd->nlmsg_flags = NLM_F_REQUEST;
|
|
ifa = mnl_nlmsg_put_extra_header(cmd, sizeof(*ifa));
|
|
ifa->ifa_flags = IFA_F_PERMANENT;
|
|
ifa->ifa_scope = RT_SCOPE_LINK;
|
|
ifa->ifa_index = ctx->ifindex;
|
|
if (family == AF_INET) {
|
|
ifa->ifa_family = AF_INET;
|
|
ifa->ifa_prefixlen = 32;
|
|
mnl_attr_put_u32(cmd, IFA_LOCAL, mnl_attr_get_u32(na_local));
|
|
mnl_attr_put_u32(cmd, IFA_ADDRESS, mnl_attr_get_u32(na_peer));
|
|
} else {
|
|
ifa->ifa_family = AF_INET6;
|
|
ifa->ifa_prefixlen = 128;
|
|
mnl_attr_put(cmd, IFA_LOCAL, IPV6_ADDR_LEN,
|
|
mnl_attr_get_payload(na_local));
|
|
mnl_attr_put(cmd, IFA_ADDRESS, IPV6_ADDR_LEN,
|
|
mnl_attr_get_payload(na_peer));
|
|
}
|
|
assert(size == cmd->nlmsg_len);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Cleanup the local IP addresses on outer interface.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] ifindex
|
|
* Network inferface index to perform cleanup.
|
|
*/
|
|
static void
|
|
flow_tcf_encap_local_cleanup(struct mlx5_flow_tcf_context *tcf,
|
|
unsigned int ifindex)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct ifaddrmsg *ifa;
|
|
struct tcf_nlcb_context ctx = {
|
|
.ifindex = ifindex,
|
|
.bufsize = MNL_REQUEST_SIZE,
|
|
.nlbuf = LIST_HEAD_INITIALIZER(),
|
|
};
|
|
int ret;
|
|
|
|
assert(ifindex);
|
|
/*
|
|
* Seek and destroy leftovers of local IP addresses with
|
|
* matching properties "scope link".
|
|
*/
|
|
nlh = mnl_nlmsg_put_header(tcf->buf);
|
|
nlh->nlmsg_type = RTM_GETADDR;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
|
|
ifa = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifa));
|
|
ifa->ifa_family = AF_UNSPEC;
|
|
ifa->ifa_index = ifindex;
|
|
ifa->ifa_scope = RT_SCOPE_LINK;
|
|
ret = flow_tcf_nl_ack(tcf, nlh, flow_tcf_collect_local_cb, &ctx);
|
|
if (ret)
|
|
DRV_LOG(WARNING, "netlink: query device list error %d", ret);
|
|
ret = flow_tcf_send_nlcmd(tcf, &ctx);
|
|
if (ret)
|
|
DRV_LOG(WARNING, "netlink: device delete error %d", ret);
|
|
}
|
|
|
|
/**
|
|
* Collect neigh permament rules on specified network device.
|
|
* This is callback routine called by libmnl mnl_cb_run() in loop for
|
|
* every message in received packet.
|
|
*
|
|
* @param[in] nlh
|
|
* Pointer to reply header.
|
|
* @param[in, out] arg
|
|
* Opaque data pointer for this callback.
|
|
*
|
|
* @return
|
|
* A positive, nonzero value on success, negative errno value otherwise
|
|
* and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_collect_neigh_cb(const struct nlmsghdr *nlh, void *arg)
|
|
{
|
|
struct tcf_nlcb_context *ctx = arg;
|
|
struct nlmsghdr *cmd;
|
|
struct ndmsg *ndm;
|
|
struct nlattr *na;
|
|
struct nlattr *na_ip = NULL;
|
|
struct nlattr *na_mac = NULL;
|
|
unsigned char family;
|
|
uint32_t size;
|
|
|
|
if (nlh->nlmsg_type != RTM_NEWNEIGH) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
ndm = mnl_nlmsg_get_payload(nlh);
|
|
family = ndm->ndm_family;
|
|
if (ndm->ndm_ifindex != (int)ctx->ifindex ||
|
|
!(ndm->ndm_state & NUD_PERMANENT) ||
|
|
(family != AF_INET && family != AF_INET6))
|
|
return 1;
|
|
mnl_attr_for_each(na, nlh, sizeof(*ndm)) {
|
|
switch (mnl_attr_get_type(na)) {
|
|
case NDA_DST:
|
|
na_ip = na;
|
|
break;
|
|
case NDA_LLADDR:
|
|
na_mac = na;
|
|
break;
|
|
}
|
|
if (na_mac && na_ip)
|
|
break;
|
|
}
|
|
if (!na_mac || !na_ip)
|
|
return 1;
|
|
/* Neigh rule with permenent attribute found. */
|
|
size = MNL_ALIGN(sizeof(struct nlmsghdr)) +
|
|
MNL_ALIGN(sizeof(struct ndmsg)) +
|
|
SZ_NLATTR_DATA_OF(ETHER_ADDR_LEN) +
|
|
(family == AF_INET6 ? SZ_NLATTR_DATA_OF(IPV6_ADDR_LEN)
|
|
: SZ_NLATTR_TYPE_OF(uint32_t));
|
|
cmd = flow_tcf_alloc_nlcmd(ctx, size);
|
|
if (!cmd) {
|
|
rte_errno = ENOMEM;
|
|
return -rte_errno;
|
|
}
|
|
cmd = mnl_nlmsg_put_header(cmd);
|
|
cmd->nlmsg_type = RTM_DELNEIGH;
|
|
cmd->nlmsg_flags = NLM_F_REQUEST;
|
|
ndm = mnl_nlmsg_put_extra_header(cmd, sizeof(*ndm));
|
|
ndm->ndm_ifindex = ctx->ifindex;
|
|
ndm->ndm_state = NUD_PERMANENT;
|
|
ndm->ndm_flags = 0;
|
|
ndm->ndm_type = 0;
|
|
if (family == AF_INET) {
|
|
ndm->ndm_family = AF_INET;
|
|
mnl_attr_put_u32(cmd, NDA_DST, mnl_attr_get_u32(na_ip));
|
|
} else {
|
|
ndm->ndm_family = AF_INET6;
|
|
mnl_attr_put(cmd, NDA_DST, IPV6_ADDR_LEN,
|
|
mnl_attr_get_payload(na_ip));
|
|
}
|
|
mnl_attr_put(cmd, NDA_LLADDR, ETHER_ADDR_LEN,
|
|
mnl_attr_get_payload(na_mac));
|
|
assert(size == cmd->nlmsg_len);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Cleanup the neigh rules on outer interface.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] ifindex
|
|
* Network inferface index to perform cleanup.
|
|
*/
|
|
static void
|
|
flow_tcf_encap_neigh_cleanup(struct mlx5_flow_tcf_context *tcf,
|
|
unsigned int ifindex)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct ndmsg *ndm;
|
|
struct tcf_nlcb_context ctx = {
|
|
.ifindex = ifindex,
|
|
.bufsize = MNL_REQUEST_SIZE,
|
|
.nlbuf = LIST_HEAD_INITIALIZER(),
|
|
};
|
|
int ret;
|
|
|
|
assert(ifindex);
|
|
/* Seek and destroy leftovers of neigh rules. */
|
|
nlh = mnl_nlmsg_put_header(tcf->buf);
|
|
nlh->nlmsg_type = RTM_GETNEIGH;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
|
|
ndm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ndm));
|
|
ndm->ndm_family = AF_UNSPEC;
|
|
ndm->ndm_ifindex = ifindex;
|
|
ndm->ndm_state = NUD_PERMANENT;
|
|
ret = flow_tcf_nl_ack(tcf, nlh, flow_tcf_collect_neigh_cb, &ctx);
|
|
if (ret)
|
|
DRV_LOG(WARNING, "netlink: query device list error %d", ret);
|
|
ret = flow_tcf_send_nlcmd(tcf, &ctx);
|
|
if (ret)
|
|
DRV_LOG(WARNING, "netlink: device delete error %d", ret);
|
|
}
|
|
|
|
/**
|
|
* Collect indices of VXLAN encap/decap interfaces associated with device.
|
|
* This is callback routine called by libmnl mnl_cb_run() in loop for
|
|
* every message in received packet.
|
|
*
|
|
* @param[in] nlh
|
|
* Pointer to reply header.
|
|
* @param[in, out] arg
|
|
* Opaque data pointer for this callback.
|
|
*
|
|
* @return
|
|
* A positive, nonzero value on success, negative errno value otherwise
|
|
* and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_collect_vxlan_cb(const struct nlmsghdr *nlh, void *arg)
|
|
{
|
|
struct tcf_nlcb_context *ctx = arg;
|
|
struct nlmsghdr *cmd;
|
|
struct ifinfomsg *ifm;
|
|
struct nlattr *na;
|
|
struct nlattr *na_info = NULL;
|
|
struct nlattr *na_vxlan = NULL;
|
|
bool found = false;
|
|
unsigned int vxindex;
|
|
uint32_t size;
|
|
|
|
if (nlh->nlmsg_type != RTM_NEWLINK) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
ifm = mnl_nlmsg_get_payload(nlh);
|
|
if (!ifm->ifi_index) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
mnl_attr_for_each(na, nlh, sizeof(*ifm))
|
|
if (mnl_attr_get_type(na) == IFLA_LINKINFO) {
|
|
na_info = na;
|
|
break;
|
|
}
|
|
if (!na_info)
|
|
return 1;
|
|
mnl_attr_for_each_nested(na, na_info) {
|
|
switch (mnl_attr_get_type(na)) {
|
|
case IFLA_INFO_KIND:
|
|
if (!strncmp("vxlan", mnl_attr_get_str(na),
|
|
mnl_attr_get_len(na)))
|
|
found = true;
|
|
break;
|
|
case IFLA_INFO_DATA:
|
|
na_vxlan = na;
|
|
break;
|
|
}
|
|
if (found && na_vxlan)
|
|
break;
|
|
}
|
|
if (!found || !na_vxlan)
|
|
return 1;
|
|
found = false;
|
|
mnl_attr_for_each_nested(na, na_vxlan) {
|
|
if (mnl_attr_get_type(na) == IFLA_VXLAN_LINK &&
|
|
mnl_attr_get_u32(na) == ctx->ifindex) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return 1;
|
|
/* Attached VXLAN device found, store the command to delete. */
|
|
vxindex = ifm->ifi_index;
|
|
size = MNL_ALIGN(sizeof(struct nlmsghdr)) +
|
|
MNL_ALIGN(sizeof(struct ifinfomsg));
|
|
cmd = flow_tcf_alloc_nlcmd(ctx, size);
|
|
if (!cmd) {
|
|
rte_errno = ENOMEM;
|
|
return -rte_errno;
|
|
}
|
|
cmd = mnl_nlmsg_put_header(cmd);
|
|
cmd->nlmsg_type = RTM_DELLINK;
|
|
cmd->nlmsg_flags = NLM_F_REQUEST;
|
|
ifm = mnl_nlmsg_put_extra_header(cmd, sizeof(*ifm));
|
|
ifm->ifi_family = AF_UNSPEC;
|
|
ifm->ifi_index = vxindex;
|
|
assert(size == cmd->nlmsg_len);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Cleanup the outer interface. Removes all found vxlan devices
|
|
* attached to specified index, flushes the neigh and local IP
|
|
* database.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] ifindex
|
|
* Network inferface index to perform cleanup.
|
|
*/
|
|
static void
|
|
flow_tcf_encap_iface_cleanup(struct mlx5_flow_tcf_context *tcf,
|
|
unsigned int ifindex)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct ifinfomsg *ifm;
|
|
struct tcf_nlcb_context ctx = {
|
|
.ifindex = ifindex,
|
|
.bufsize = MNL_REQUEST_SIZE,
|
|
.nlbuf = LIST_HEAD_INITIALIZER(),
|
|
};
|
|
int ret;
|
|
|
|
assert(ifindex);
|
|
/*
|
|
* Seek and destroy leftover VXLAN encap/decap interfaces with
|
|
* matching properties.
|
|
*/
|
|
nlh = mnl_nlmsg_put_header(tcf->buf);
|
|
nlh->nlmsg_type = RTM_GETLINK;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
|
|
ifm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifm));
|
|
ifm->ifi_family = AF_UNSPEC;
|
|
ret = flow_tcf_nl_ack(tcf, nlh, flow_tcf_collect_vxlan_cb, &ctx);
|
|
if (ret)
|
|
DRV_LOG(WARNING, "netlink: query device list error %d", ret);
|
|
ret = flow_tcf_send_nlcmd(tcf, &ctx);
|
|
if (ret)
|
|
DRV_LOG(WARNING, "netlink: device delete error %d", ret);
|
|
}
|
|
|
|
/**
|
|
* Emit Netlink message to add/remove local address to the outer device.
|
|
* The address being added is visible within the link only (scope link).
|
|
*
|
|
* Note that an implicit route is maintained by the kernel due to the
|
|
* presence of a peer address (IFA_ADDRESS).
|
|
*
|
|
* These rules are used for encapsultion only and allow to assign
|
|
* the outer tunnel source IP address.
|
|
*
|
|
* @param[in] tcf
|
|
* Libmnl socket context object.
|
|
* @param[in] encap
|
|
* Encapsulation properties (source address and its peer).
|
|
* @param[in] ifindex
|
|
* Network interface to apply rule.
|
|
* @param[in] enable
|
|
* Toggle between add and remove.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_rule_local(struct mlx5_flow_tcf_context *tcf,
|
|
const struct flow_tcf_vxlan_encap *encap,
|
|
unsigned int ifindex,
|
|
bool enable,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct ifaddrmsg *ifa;
|
|
alignas(struct nlmsghdr)
|
|
uint8_t buf[mnl_nlmsg_size(sizeof(*ifa) + 128)];
|
|
|
|
nlh = mnl_nlmsg_put_header(buf);
|
|
nlh->nlmsg_type = enable ? RTM_NEWADDR : RTM_DELADDR;
|
|
nlh->nlmsg_flags =
|
|
NLM_F_REQUEST | (enable ? NLM_F_CREATE | NLM_F_REPLACE : 0);
|
|
nlh->nlmsg_seq = 0;
|
|
ifa = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifa));
|
|
ifa->ifa_flags = IFA_F_PERMANENT;
|
|
ifa->ifa_scope = RT_SCOPE_LINK;
|
|
ifa->ifa_index = ifindex;
|
|
if (encap->mask & FLOW_TCF_ENCAP_IPV4_SRC) {
|
|
ifa->ifa_family = AF_INET;
|
|
ifa->ifa_prefixlen = 32;
|
|
mnl_attr_put_u32(nlh, IFA_LOCAL, encap->ipv4.src);
|
|
if (encap->mask & FLOW_TCF_ENCAP_IPV4_DST)
|
|
mnl_attr_put_u32(nlh, IFA_ADDRESS,
|
|
encap->ipv4.dst);
|
|
} else {
|
|
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_SRC);
|
|
ifa->ifa_family = AF_INET6;
|
|
ifa->ifa_prefixlen = 128;
|
|
mnl_attr_put(nlh, IFA_LOCAL,
|
|
sizeof(encap->ipv6.src),
|
|
&encap->ipv6.src);
|
|
if (encap->mask & FLOW_TCF_ENCAP_IPV6_DST)
|
|
mnl_attr_put(nlh, IFA_ADDRESS,
|
|
sizeof(encap->ipv6.dst),
|
|
&encap->ipv6.dst);
|
|
}
|
|
if (!flow_tcf_nl_ack(tcf, nlh, NULL, NULL))
|
|
return 0;
|
|
return rte_flow_error_set(error, rte_errno,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"netlink: cannot complete IFA request"
|
|
" (ip addr add)");
|
|
}
|
|
|
|
/**
|
|
* Emit Netlink message to add/remove neighbor.
|
|
*
|
|
* @param[in] tcf
|
|
* Libmnl socket context object.
|
|
* @param[in] encap
|
|
* Encapsulation properties (destination address).
|
|
* @param[in] ifindex
|
|
* Network interface.
|
|
* @param[in] enable
|
|
* Toggle between add and remove.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_rule_neigh(struct mlx5_flow_tcf_context *tcf,
|
|
const struct flow_tcf_vxlan_encap *encap,
|
|
unsigned int ifindex,
|
|
bool enable,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct ndmsg *ndm;
|
|
alignas(struct nlmsghdr)
|
|
uint8_t buf[mnl_nlmsg_size(sizeof(*ndm) + 128)];
|
|
|
|
nlh = mnl_nlmsg_put_header(buf);
|
|
nlh->nlmsg_type = enable ? RTM_NEWNEIGH : RTM_DELNEIGH;
|
|
nlh->nlmsg_flags =
|
|
NLM_F_REQUEST | (enable ? NLM_F_CREATE | NLM_F_REPLACE : 0);
|
|
nlh->nlmsg_seq = 0;
|
|
ndm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ndm));
|
|
ndm->ndm_ifindex = ifindex;
|
|
ndm->ndm_state = NUD_PERMANENT;
|
|
ndm->ndm_flags = 0;
|
|
ndm->ndm_type = 0;
|
|
if (encap->mask & FLOW_TCF_ENCAP_IPV4_DST) {
|
|
ndm->ndm_family = AF_INET;
|
|
mnl_attr_put_u32(nlh, NDA_DST, encap->ipv4.dst);
|
|
} else {
|
|
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_DST);
|
|
ndm->ndm_family = AF_INET6;
|
|
mnl_attr_put(nlh, NDA_DST, sizeof(encap->ipv6.dst),
|
|
&encap->ipv6.dst);
|
|
}
|
|
if (encap->mask & FLOW_TCF_ENCAP_ETH_SRC && enable)
|
|
DRV_LOG(WARNING,
|
|
"outer ethernet source address cannot be "
|
|
"forced for VXLAN encapsulation");
|
|
if (encap->mask & FLOW_TCF_ENCAP_ETH_DST)
|
|
mnl_attr_put(nlh, NDA_LLADDR, sizeof(encap->eth.dst),
|
|
&encap->eth.dst);
|
|
if (!flow_tcf_nl_ack(tcf, nlh, NULL, NULL))
|
|
return 0;
|
|
return rte_flow_error_set(error, rte_errno,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"netlink: cannot complete ND request"
|
|
" (ip neigh)");
|
|
}
|
|
|
|
/**
|
|
* Manage the local IP addresses and their peers IP addresses on the
|
|
* outer interface for encapsulation purposes. The kernel searches the
|
|
* appropriate device for tunnel egress traffic using the outer source
|
|
* IP, this IP should be assigned to the outer network device, otherwise
|
|
* kernel rejects the rule.
|
|
*
|
|
* Adds or removes the addresses using the Netlink command like this:
|
|
* ip addr add <src_ip> peer <dst_ip> scope link dev <ifouter>
|
|
*
|
|
* The addresses are local to the netdev ("scope link"), this reduces
|
|
* the risk of conflicts. Note that an implicit route is maintained by
|
|
* the kernel due to the presence of a peer address (IFA_ADDRESS).
|
|
*
|
|
* @param[in] tcf
|
|
* Libmnl socket context object.
|
|
* @param[in] iface
|
|
* Object, contains rule database and ifouter index.
|
|
* @param[in] dev_flow
|
|
* Flow object, contains the tunnel parameters (for encap only).
|
|
* @param[in] enable
|
|
* Toggle between add and remove.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_encap_local(struct mlx5_flow_tcf_context *tcf,
|
|
struct tcf_irule *iface,
|
|
struct mlx5_flow *dev_flow,
|
|
bool enable,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct flow_tcf_vxlan_encap *encap = dev_flow->tcf.vxlan_encap;
|
|
struct tcf_local_rule *rule = NULL;
|
|
int ret;
|
|
|
|
assert(encap);
|
|
assert(encap->hdr.type == FLOW_TCF_TUNACT_VXLAN_ENCAP);
|
|
if (encap->mask & FLOW_TCF_ENCAP_IPV4_SRC) {
|
|
assert(encap->mask & FLOW_TCF_ENCAP_IPV4_DST);
|
|
LIST_FOREACH(rule, &iface->local, next) {
|
|
if (rule->mask & FLOW_TCF_ENCAP_IPV4_SRC &&
|
|
encap->ipv4.src == rule->ipv4.src &&
|
|
encap->ipv4.dst == rule->ipv4.dst) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_SRC);
|
|
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_DST);
|
|
LIST_FOREACH(rule, &iface->local, next) {
|
|
if (rule->mask & FLOW_TCF_ENCAP_IPV6_SRC &&
|
|
!memcmp(&encap->ipv6.src, &rule->ipv6.src,
|
|
sizeof(encap->ipv6.src)) &&
|
|
!memcmp(&encap->ipv6.dst, &rule->ipv6.dst,
|
|
sizeof(encap->ipv6.dst))) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (rule) {
|
|
if (enable) {
|
|
rule->refcnt++;
|
|
return 0;
|
|
}
|
|
if (!rule->refcnt || !--rule->refcnt) {
|
|
LIST_REMOVE(rule, next);
|
|
return flow_tcf_rule_local(tcf, encap,
|
|
iface->ifouter, false, error);
|
|
}
|
|
return 0;
|
|
}
|
|
if (!enable) {
|
|
DRV_LOG(WARNING, "disabling not existing local rule");
|
|
rte_flow_error_set(error, ENOENT,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"disabling not existing local rule");
|
|
return -ENOENT;
|
|
}
|
|
rule = rte_zmalloc(__func__, sizeof(struct tcf_local_rule),
|
|
alignof(struct tcf_local_rule));
|
|
if (!rule) {
|
|
rte_flow_error_set(error, ENOMEM,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"unable to allocate memory for local rule");
|
|
return -rte_errno;
|
|
}
|
|
*rule = (struct tcf_local_rule){.refcnt = 0,
|
|
.mask = 0,
|
|
};
|
|
if (encap->mask & FLOW_TCF_ENCAP_IPV4_SRC) {
|
|
rule->mask = FLOW_TCF_ENCAP_IPV4_SRC
|
|
| FLOW_TCF_ENCAP_IPV4_DST;
|
|
rule->ipv4.src = encap->ipv4.src;
|
|
rule->ipv4.dst = encap->ipv4.dst;
|
|
} else {
|
|
rule->mask = FLOW_TCF_ENCAP_IPV6_SRC
|
|
| FLOW_TCF_ENCAP_IPV6_DST;
|
|
memcpy(&rule->ipv6.src, &encap->ipv6.src, IPV6_ADDR_LEN);
|
|
memcpy(&rule->ipv6.dst, &encap->ipv6.dst, IPV6_ADDR_LEN);
|
|
}
|
|
ret = flow_tcf_rule_local(tcf, encap, iface->ifouter, true, error);
|
|
if (ret) {
|
|
rte_free(rule);
|
|
return ret;
|
|
}
|
|
rule->refcnt++;
|
|
LIST_INSERT_HEAD(&iface->local, rule, next);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Manage the destination MAC/IP addresses neigh database, kernel uses
|
|
* this one to determine the destination MAC address within encapsulation
|
|
* header. Adds or removes the entries using the Netlink command like this:
|
|
* ip neigh add dev <ifouter> lladdr <dst_mac> to <dst_ip> nud permanent
|
|
*
|
|
* @param[in] tcf
|
|
* Libmnl socket context object.
|
|
* @param[in] iface
|
|
* Object, contains rule database and ifouter index.
|
|
* @param[in] dev_flow
|
|
* Flow object, contains the tunnel parameters (for encap only).
|
|
* @param[in] enable
|
|
* Toggle between add and remove.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_encap_neigh(struct mlx5_flow_tcf_context *tcf,
|
|
struct tcf_irule *iface,
|
|
struct mlx5_flow *dev_flow,
|
|
bool enable,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct flow_tcf_vxlan_encap *encap = dev_flow->tcf.vxlan_encap;
|
|
struct tcf_neigh_rule *rule = NULL;
|
|
int ret;
|
|
|
|
assert(encap);
|
|
assert(encap->hdr.type == FLOW_TCF_TUNACT_VXLAN_ENCAP);
|
|
if (encap->mask & FLOW_TCF_ENCAP_IPV4_DST) {
|
|
assert(encap->mask & FLOW_TCF_ENCAP_IPV4_SRC);
|
|
LIST_FOREACH(rule, &iface->neigh, next) {
|
|
if (rule->mask & FLOW_TCF_ENCAP_IPV4_DST &&
|
|
encap->ipv4.dst == rule->ipv4.dst) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_SRC);
|
|
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_DST);
|
|
LIST_FOREACH(rule, &iface->neigh, next) {
|
|
if (rule->mask & FLOW_TCF_ENCAP_IPV6_DST &&
|
|
!memcmp(&encap->ipv6.dst, &rule->ipv6.dst,
|
|
sizeof(encap->ipv6.dst))) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (rule) {
|
|
if (memcmp(&encap->eth.dst, &rule->eth,
|
|
sizeof(encap->eth.dst))) {
|
|
DRV_LOG(WARNING, "Destination MAC differs"
|
|
" in neigh rule");
|
|
rte_flow_error_set(error, EEXIST,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, "Different MAC address"
|
|
" neigh rule for the same"
|
|
" destination IP");
|
|
return -EEXIST;
|
|
}
|
|
if (enable) {
|
|
rule->refcnt++;
|
|
return 0;
|
|
}
|
|
if (!rule->refcnt || !--rule->refcnt) {
|
|
LIST_REMOVE(rule, next);
|
|
return flow_tcf_rule_neigh(tcf, encap,
|
|
iface->ifouter,
|
|
false, error);
|
|
}
|
|
return 0;
|
|
}
|
|
if (!enable) {
|
|
DRV_LOG(WARNING, "Disabling not existing neigh rule");
|
|
rte_flow_error_set(error, ENOENT,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"unable to allocate memory for neigh rule");
|
|
return -ENOENT;
|
|
}
|
|
rule = rte_zmalloc(__func__, sizeof(struct tcf_neigh_rule),
|
|
alignof(struct tcf_neigh_rule));
|
|
if (!rule) {
|
|
rte_flow_error_set(error, ENOMEM,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"unable to allocate memory for neigh rule");
|
|
return -rte_errno;
|
|
}
|
|
*rule = (struct tcf_neigh_rule){.refcnt = 0,
|
|
.mask = 0,
|
|
};
|
|
if (encap->mask & FLOW_TCF_ENCAP_IPV4_DST) {
|
|
rule->mask = FLOW_TCF_ENCAP_IPV4_DST;
|
|
rule->ipv4.dst = encap->ipv4.dst;
|
|
} else {
|
|
rule->mask = FLOW_TCF_ENCAP_IPV6_DST;
|
|
memcpy(&rule->ipv6.dst, &encap->ipv6.dst, IPV6_ADDR_LEN);
|
|
}
|
|
memcpy(&rule->eth, &encap->eth.dst, sizeof(rule->eth));
|
|
ret = flow_tcf_rule_neigh(tcf, encap, iface->ifouter, true, error);
|
|
if (ret) {
|
|
rte_free(rule);
|
|
return ret;
|
|
}
|
|
rule->refcnt++;
|
|
LIST_INSERT_HEAD(&iface->neigh, rule, next);
|
|
return 0;
|
|
}
|
|
|
|
/* VXLAN encap rule database for outer interfaces. */
|
|
static LIST_HEAD(, tcf_irule) iface_list_vxlan = LIST_HEAD_INITIALIZER();
|
|
|
|
/* VTEP device list is shared between PMD port instances. */
|
|
static LIST_HEAD(, tcf_vtep) vtep_list_vxlan = LIST_HEAD_INITIALIZER();
|
|
static pthread_mutex_t vtep_list_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
/**
|
|
* Acquire the VXLAN encap rules container for specified interface.
|
|
* First looks for the container in the existing ones list, creates
|
|
* and initializes the new container if existing not found.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] ifouter
|
|
* Network interface index to create VXLAN encap rules on.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
* @return
|
|
* Rule container pointer on success,
|
|
* NULL otherwise and rte_errno is set.
|
|
*/
|
|
static struct tcf_irule*
|
|
flow_tcf_encap_irule_acquire(struct mlx5_flow_tcf_context *tcf,
|
|
unsigned int ifouter,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct tcf_irule *iface;
|
|
|
|
/* Look whether the container for encap rules is created. */
|
|
assert(ifouter);
|
|
LIST_FOREACH(iface, &iface_list_vxlan, next) {
|
|
if (iface->ifouter == ifouter)
|
|
break;
|
|
}
|
|
if (iface) {
|
|
/* Container already exists, just increment the reference. */
|
|
iface->refcnt++;
|
|
return iface;
|
|
}
|
|
/* Not found, we should create the new container. */
|
|
iface = rte_zmalloc(__func__, sizeof(*iface),
|
|
alignof(struct tcf_irule));
|
|
if (!iface) {
|
|
rte_flow_error_set(error, ENOMEM,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"unable to allocate memory for container");
|
|
return NULL;
|
|
}
|
|
*iface = (struct tcf_irule){
|
|
.local = LIST_HEAD_INITIALIZER(),
|
|
.neigh = LIST_HEAD_INITIALIZER(),
|
|
.ifouter = ifouter,
|
|
.refcnt = 1,
|
|
};
|
|
/* Interface cleanup for new container created. */
|
|
flow_tcf_encap_iface_cleanup(tcf, ifouter);
|
|
flow_tcf_encap_local_cleanup(tcf, ifouter);
|
|
flow_tcf_encap_neigh_cleanup(tcf, ifouter);
|
|
LIST_INSERT_HEAD(&iface_list_vxlan, iface, next);
|
|
return iface;
|
|
}
|
|
|
|
/**
|
|
* Releases VXLAN encap rules container by pointer. Decrements the
|
|
* reference cointer and deletes the container if counter is zero.
|
|
*
|
|
* @param[in] irule
|
|
* VXLAN rule container pointer to release.
|
|
*/
|
|
static void
|
|
flow_tcf_encap_irule_release(struct tcf_irule *iface)
|
|
{
|
|
assert(iface->refcnt);
|
|
if (--iface->refcnt == 0) {
|
|
/* Reference counter is zero, delete the container. */
|
|
assert(LIST_EMPTY(&iface->local));
|
|
assert(LIST_EMPTY(&iface->neigh));
|
|
LIST_REMOVE(iface, next);
|
|
rte_free(iface);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Deletes VTEP network device.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] vtep
|
|
* Object represinting the network device to delete. Memory
|
|
* allocated for this object is freed by routine.
|
|
*/
|
|
static void
|
|
flow_tcf_vtep_delete(struct mlx5_flow_tcf_context *tcf,
|
|
struct tcf_vtep *vtep)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct ifinfomsg *ifm;
|
|
alignas(struct nlmsghdr)
|
|
uint8_t buf[mnl_nlmsg_size(MNL_ALIGN(sizeof(*ifm))) +
|
|
MNL_BUF_EXTRA_SPACE];
|
|
int ret;
|
|
|
|
assert(!vtep->refcnt);
|
|
/* Delete only ifaces those we actually created. */
|
|
if (vtep->created && vtep->ifindex) {
|
|
DRV_LOG(INFO, "VTEP delete (%d)", vtep->ifindex);
|
|
nlh = mnl_nlmsg_put_header(buf);
|
|
nlh->nlmsg_type = RTM_DELLINK;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST;
|
|
ifm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifm));
|
|
ifm->ifi_family = AF_UNSPEC;
|
|
ifm->ifi_index = vtep->ifindex;
|
|
assert(sizeof(buf) >= nlh->nlmsg_len);
|
|
ret = flow_tcf_nl_ack(tcf, nlh, NULL, NULL);
|
|
if (ret)
|
|
DRV_LOG(WARNING, "netlink: error deleting vxlan"
|
|
" encap/decap ifindex %u",
|
|
ifm->ifi_index);
|
|
}
|
|
rte_free(vtep);
|
|
}
|
|
|
|
/**
|
|
* Creates VTEP network device.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] port
|
|
* UDP port of created VTEP device.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* Pointer to created device structure on success,
|
|
* NULL otherwise and rte_errno is set.
|
|
*/
|
|
static struct tcf_vtep*
|
|
flow_tcf_vtep_create(struct mlx5_flow_tcf_context *tcf,
|
|
uint16_t port, struct rte_flow_error *error)
|
|
{
|
|
struct tcf_vtep *vtep;
|
|
struct nlmsghdr *nlh;
|
|
struct ifinfomsg *ifm;
|
|
char name[sizeof(MLX5_VXLAN_DEVICE_PFX) + 24];
|
|
alignas(struct nlmsghdr)
|
|
uint8_t buf[mnl_nlmsg_size(sizeof(*ifm)) +
|
|
SZ_NLATTR_DATA_OF(sizeof(name)) +
|
|
SZ_NLATTR_NEST * 2 +
|
|
SZ_NLATTR_STRZ_OF("vxlan") +
|
|
SZ_NLATTR_DATA_OF(sizeof(uint32_t)) +
|
|
SZ_NLATTR_DATA_OF(sizeof(uint16_t)) +
|
|
SZ_NLATTR_DATA_OF(sizeof(uint8_t)) * 3 +
|
|
MNL_BUF_EXTRA_SPACE];
|
|
struct nlattr *na_info;
|
|
struct nlattr *na_vxlan;
|
|
rte_be16_t vxlan_port = rte_cpu_to_be_16(port);
|
|
int ret;
|
|
|
|
vtep = rte_zmalloc(__func__, sizeof(*vtep), alignof(struct tcf_vtep));
|
|
if (!vtep) {
|
|
rte_flow_error_set(error, ENOMEM,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"unable to allocate memory for VTEP");
|
|
return NULL;
|
|
}
|
|
*vtep = (struct tcf_vtep){
|
|
.port = port,
|
|
};
|
|
memset(buf, 0, sizeof(buf));
|
|
nlh = mnl_nlmsg_put_header(buf);
|
|
nlh->nlmsg_type = RTM_NEWLINK;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL;
|
|
ifm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifm));
|
|
ifm->ifi_family = AF_UNSPEC;
|
|
ifm->ifi_type = 0;
|
|
ifm->ifi_index = 0;
|
|
ifm->ifi_flags = IFF_UP;
|
|
ifm->ifi_change = 0xffffffff;
|
|
snprintf(name, sizeof(name), "%s%u", MLX5_VXLAN_DEVICE_PFX, port);
|
|
mnl_attr_put_strz(nlh, IFLA_IFNAME, name);
|
|
na_info = mnl_attr_nest_start(nlh, IFLA_LINKINFO);
|
|
assert(na_info);
|
|
mnl_attr_put_strz(nlh, IFLA_INFO_KIND, "vxlan");
|
|
na_vxlan = mnl_attr_nest_start(nlh, IFLA_INFO_DATA);
|
|
assert(na_vxlan);
|
|
#ifdef HAVE_IFLA_VXLAN_COLLECT_METADATA
|
|
/*
|
|
* RH 7.2 does not support metadata for tunnel device.
|
|
* It does not matter because we are going to use the
|
|
* hardware offload by mlx5 driver.
|
|
*/
|
|
mnl_attr_put_u8(nlh, IFLA_VXLAN_COLLECT_METADATA, 1);
|
|
#endif
|
|
mnl_attr_put_u8(nlh, IFLA_VXLAN_UDP_ZERO_CSUM6_RX, 1);
|
|
mnl_attr_put_u8(nlh, IFLA_VXLAN_LEARNING, 0);
|
|
mnl_attr_put_u16(nlh, IFLA_VXLAN_PORT, vxlan_port);
|
|
#ifndef HAVE_IFLA_VXLAN_COLLECT_METADATA
|
|
/*
|
|
* We must specify VNI explicitly if metadata not supported.
|
|
* Note, VNI is transferred with native endianness format.
|
|
*/
|
|
mnl_attr_put_u16(nlh, IFLA_VXLAN_ID, MLX5_VXLAN_DEFAULT_VNI);
|
|
#endif
|
|
mnl_attr_nest_end(nlh, na_vxlan);
|
|
mnl_attr_nest_end(nlh, na_info);
|
|
assert(sizeof(buf) >= nlh->nlmsg_len);
|
|
ret = flow_tcf_nl_ack(tcf, nlh, NULL, NULL);
|
|
if (ret) {
|
|
DRV_LOG(WARNING,
|
|
"netlink: VTEP %s create failure (%d)",
|
|
name, rte_errno);
|
|
if (rte_errno != EEXIST)
|
|
/*
|
|
* Some unhandled error occurred or device is
|
|
* for encapsulation and cannot be shared.
|
|
*/
|
|
goto error;
|
|
} else {
|
|
/*
|
|
* Mark device we actually created.
|
|
* We should explicitly delete
|
|
* when we do not need it anymore.
|
|
*/
|
|
vtep->created = 1;
|
|
vtep->waitreg = 1;
|
|
}
|
|
/* Try to get ifindex of created of pre-existing device. */
|
|
ret = if_nametoindex(name);
|
|
if (!ret) {
|
|
DRV_LOG(WARNING,
|
|
"VTEP %s failed to get index (%d)", name, errno);
|
|
rte_flow_error_set
|
|
(error, -errno,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"netlink: failed to retrieve VTEP ifindex");
|
|
goto error;
|
|
}
|
|
vtep->ifindex = ret;
|
|
memset(buf, 0, sizeof(buf));
|
|
nlh = mnl_nlmsg_put_header(buf);
|
|
nlh->nlmsg_type = RTM_NEWLINK;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST;
|
|
ifm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifm));
|
|
ifm->ifi_family = AF_UNSPEC;
|
|
ifm->ifi_type = 0;
|
|
ifm->ifi_index = vtep->ifindex;
|
|
ifm->ifi_flags = IFF_UP;
|
|
ifm->ifi_change = IFF_UP;
|
|
ret = flow_tcf_nl_ack(tcf, nlh, NULL, NULL);
|
|
if (ret) {
|
|
rte_flow_error_set(error, -errno,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"netlink: failed to set VTEP link up");
|
|
DRV_LOG(WARNING, "netlink: VTEP %s set link up failure (%d)",
|
|
name, rte_errno);
|
|
goto clean;
|
|
}
|
|
ret = mlx5_flow_tcf_init(tcf, vtep->ifindex, error);
|
|
if (ret) {
|
|
DRV_LOG(WARNING, "VTEP %s init failure (%d)", name, rte_errno);
|
|
goto clean;
|
|
}
|
|
DRV_LOG(INFO, "VTEP create (%d, %d)", vtep->port, vtep->ifindex);
|
|
vtep->refcnt = 1;
|
|
return vtep;
|
|
clean:
|
|
flow_tcf_vtep_delete(tcf, vtep);
|
|
return NULL;
|
|
error:
|
|
rte_free(vtep);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Acquire target interface index for VXLAN tunneling decapsulation.
|
|
* In order to share the UDP port within the other interfaces the
|
|
* VXLAN device created as not attached to any interface (if created).
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] dev_flow
|
|
* Flow tcf object with tunnel structure pointer set.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
* @return
|
|
* Interface descriptor pointer on success,
|
|
* NULL otherwise and rte_errno is set.
|
|
*/
|
|
static struct tcf_vtep*
|
|
flow_tcf_decap_vtep_acquire(struct mlx5_flow_tcf_context *tcf,
|
|
struct mlx5_flow *dev_flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct tcf_vtep *vtep;
|
|
uint16_t port = dev_flow->tcf.vxlan_decap->udp_port;
|
|
|
|
LIST_FOREACH(vtep, &vtep_list_vxlan, next) {
|
|
if (vtep->port == port)
|
|
break;
|
|
}
|
|
if (vtep) {
|
|
/* Device exists, just increment the reference counter. */
|
|
vtep->refcnt++;
|
|
assert(vtep->ifindex);
|
|
return vtep;
|
|
}
|
|
/* No decapsulation device exists, try to create the new one. */
|
|
vtep = flow_tcf_vtep_create(tcf, port, error);
|
|
if (vtep)
|
|
LIST_INSERT_HEAD(&vtep_list_vxlan, vtep, next);
|
|
return vtep;
|
|
}
|
|
|
|
/**
|
|
* Aqcuire target interface index for VXLAN tunneling encapsulation.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] ifouter
|
|
* Network interface index to attach VXLAN encap device to.
|
|
* @param[in] dev_flow
|
|
* Flow tcf object with tunnel structure pointer set.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
* @return
|
|
* Interface descriptor pointer on success,
|
|
* NULL otherwise and rte_errno is set.
|
|
*/
|
|
static struct tcf_vtep*
|
|
flow_tcf_encap_vtep_acquire(struct mlx5_flow_tcf_context *tcf,
|
|
unsigned int ifouter,
|
|
struct mlx5_flow *dev_flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
static uint16_t port;
|
|
struct tcf_vtep *vtep;
|
|
struct tcf_irule *iface;
|
|
int ret;
|
|
|
|
assert(ifouter);
|
|
/* Look whether the VTEP for specified port is created. */
|
|
port = rte_be_to_cpu_16(dev_flow->tcf.vxlan_encap->udp.dst);
|
|
LIST_FOREACH(vtep, &vtep_list_vxlan, next) {
|
|
if (vtep->port == port)
|
|
break;
|
|
}
|
|
if (vtep) {
|
|
/* VTEP already exists, just increment the reference. */
|
|
vtep->refcnt++;
|
|
} else {
|
|
/* Not found, we should create the new VTEP. */
|
|
vtep = flow_tcf_vtep_create(tcf, port, error);
|
|
if (!vtep)
|
|
return NULL;
|
|
LIST_INSERT_HEAD(&vtep_list_vxlan, vtep, next);
|
|
}
|
|
assert(vtep->ifindex);
|
|
iface = flow_tcf_encap_irule_acquire(tcf, ifouter, error);
|
|
if (!iface) {
|
|
if (--vtep->refcnt == 0)
|
|
flow_tcf_vtep_delete(tcf, vtep);
|
|
return NULL;
|
|
}
|
|
dev_flow->tcf.vxlan_encap->iface = iface;
|
|
/* Create local ipaddr with peer to specify the outer IPs. */
|
|
ret = flow_tcf_encap_local(tcf, iface, dev_flow, true, error);
|
|
if (!ret) {
|
|
/* Create neigh rule to specify outer destination MAC. */
|
|
ret = flow_tcf_encap_neigh(tcf, iface, dev_flow, true, error);
|
|
if (ret)
|
|
flow_tcf_encap_local(tcf, iface,
|
|
dev_flow, false, error);
|
|
}
|
|
if (ret) {
|
|
dev_flow->tcf.vxlan_encap->iface = NULL;
|
|
flow_tcf_encap_irule_release(iface);
|
|
if (--vtep->refcnt == 0)
|
|
flow_tcf_vtep_delete(tcf, vtep);
|
|
return NULL;
|
|
}
|
|
return vtep;
|
|
}
|
|
|
|
/**
|
|
* Acquires target interface index for tunneling of any type.
|
|
* Creates the new VTEP if needed.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] ifouter
|
|
* Network interface index to create VXLAN encap rules on.
|
|
* @param[in] dev_flow
|
|
* Flow tcf object with tunnel structure pointer set.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
* @return
|
|
* Interface descriptor pointer on success,
|
|
* NULL otherwise and rte_errno is set.
|
|
*/
|
|
static struct tcf_vtep*
|
|
flow_tcf_vtep_acquire(struct mlx5_flow_tcf_context *tcf,
|
|
unsigned int ifouter,
|
|
struct mlx5_flow *dev_flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct tcf_vtep *vtep = NULL;
|
|
|
|
assert(dev_flow->tcf.tunnel);
|
|
pthread_mutex_lock(&vtep_list_mutex);
|
|
switch (dev_flow->tcf.tunnel->type) {
|
|
case FLOW_TCF_TUNACT_VXLAN_ENCAP:
|
|
vtep = flow_tcf_encap_vtep_acquire(tcf, ifouter,
|
|
dev_flow, error);
|
|
break;
|
|
case FLOW_TCF_TUNACT_VXLAN_DECAP:
|
|
vtep = flow_tcf_decap_vtep_acquire(tcf, dev_flow, error);
|
|
break;
|
|
default:
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"unsupported tunnel type");
|
|
break;
|
|
}
|
|
pthread_mutex_unlock(&vtep_list_mutex);
|
|
return vtep;
|
|
}
|
|
|
|
/**
|
|
* Release tunneling interface by ifindex. Decrements reference
|
|
* counter and actually removes the device if counter is zero.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] vtep
|
|
* VTEP device descriptor structure.
|
|
* @param[in] dev_flow
|
|
* Flow tcf object with tunnel structure pointer set.
|
|
*/
|
|
static void
|
|
flow_tcf_vtep_release(struct mlx5_flow_tcf_context *tcf,
|
|
struct tcf_vtep *vtep,
|
|
struct mlx5_flow *dev_flow)
|
|
{
|
|
assert(dev_flow->tcf.tunnel);
|
|
pthread_mutex_lock(&vtep_list_mutex);
|
|
switch (dev_flow->tcf.tunnel->type) {
|
|
case FLOW_TCF_TUNACT_VXLAN_DECAP:
|
|
break;
|
|
case FLOW_TCF_TUNACT_VXLAN_ENCAP: {
|
|
struct tcf_irule *iface;
|
|
|
|
/* Remove the encap ancillary rules first. */
|
|
iface = dev_flow->tcf.vxlan_encap->iface;
|
|
assert(iface);
|
|
flow_tcf_encap_neigh(tcf, iface, dev_flow, false, NULL);
|
|
flow_tcf_encap_local(tcf, iface, dev_flow, false, NULL);
|
|
flow_tcf_encap_irule_release(iface);
|
|
dev_flow->tcf.vxlan_encap->iface = NULL;
|
|
break;
|
|
}
|
|
default:
|
|
assert(false);
|
|
DRV_LOG(WARNING, "Unsupported tunnel type");
|
|
break;
|
|
}
|
|
assert(vtep->refcnt);
|
|
if (--vtep->refcnt == 0) {
|
|
LIST_REMOVE(vtep, next);
|
|
flow_tcf_vtep_delete(tcf, vtep);
|
|
}
|
|
pthread_mutex_unlock(&vtep_list_mutex);
|
|
}
|
|
|
|
struct tcf_nlcb_query {
|
|
uint32_t handle;
|
|
uint32_t tc_flags;
|
|
uint32_t flags_valid:1;
|
|
};
|
|
|
|
/**
|
|
* Collect queried rule attributes. This is callback routine called by
|
|
* libmnl mnl_cb_run() in loop for every message in received packet.
|
|
* Current implementation collects the flower flags only.
|
|
*
|
|
* @param[in] nlh
|
|
* Pointer to reply header.
|
|
* @param[in, out] arg
|
|
* Context pointer for this callback.
|
|
*
|
|
* @return
|
|
* A positive, nonzero value on success (required by libmnl
|
|
* to continue messages processing).
|
|
*/
|
|
static int
|
|
flow_tcf_collect_query_cb(const struct nlmsghdr *nlh, void *arg)
|
|
{
|
|
struct tcf_nlcb_query *query = arg;
|
|
struct tcmsg *tcm = mnl_nlmsg_get_payload(nlh);
|
|
struct nlattr *na, *na_opt;
|
|
bool flower = false;
|
|
|
|
if (nlh->nlmsg_type != RTM_NEWTFILTER ||
|
|
tcm->tcm_handle != query->handle)
|
|
return 1;
|
|
mnl_attr_for_each(na, nlh, sizeof(*tcm)) {
|
|
switch (mnl_attr_get_type(na)) {
|
|
case TCA_KIND:
|
|
if (strcmp(mnl_attr_get_payload(na), "flower")) {
|
|
/* Not flower filter, drop entire message. */
|
|
return 1;
|
|
}
|
|
flower = true;
|
|
break;
|
|
case TCA_OPTIONS:
|
|
if (!flower) {
|
|
/* Not flower options, drop entire message. */
|
|
return 1;
|
|
}
|
|
/* Check nested flower options. */
|
|
mnl_attr_for_each_nested(na_opt, na) {
|
|
switch (mnl_attr_get_type(na_opt)) {
|
|
case TCA_FLOWER_FLAGS:
|
|
query->flags_valid = 1;
|
|
query->tc_flags =
|
|
mnl_attr_get_u32(na_opt);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Query a TC flower rule flags via netlink.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] dev_flow
|
|
* Pointer to the flow.
|
|
* @param[out] pflags
|
|
* pointer to the data retrieved by the query.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise.
|
|
*/
|
|
static int
|
|
flow_tcf_query_flags(struct mlx5_flow_tcf_context *tcf,
|
|
struct mlx5_flow *dev_flow,
|
|
uint32_t *pflags)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct tcmsg *tcm;
|
|
struct tcf_nlcb_query query = {
|
|
.handle = dev_flow->tcf.tcm->tcm_handle,
|
|
};
|
|
|
|
nlh = mnl_nlmsg_put_header(tcf->buf);
|
|
nlh->nlmsg_type = RTM_GETTFILTER;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST;
|
|
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
|
|
memcpy(tcm, dev_flow->tcf.tcm, sizeof(*tcm));
|
|
/*
|
|
* Ignore Netlink error for filter query operations.
|
|
* The reply length is sent by kernel as errno.
|
|
* Just check we got the flags option.
|
|
*/
|
|
flow_tcf_nl_ack(tcf, nlh, flow_tcf_collect_query_cb, &query);
|
|
if (!query.flags_valid) {
|
|
*pflags = 0;
|
|
return -ENOENT;
|
|
}
|
|
*pflags = query.tc_flags;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Query and check the in_hw set for specified rule.
|
|
*
|
|
* @param[in] tcf
|
|
* Context object initialized by mlx5_flow_tcf_context_create().
|
|
* @param[in] dev_flow
|
|
* Pointer to the flow to check.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise.
|
|
*/
|
|
static int
|
|
flow_tcf_check_inhw(struct mlx5_flow_tcf_context *tcf,
|
|
struct mlx5_flow *dev_flow)
|
|
{
|
|
uint32_t flags;
|
|
int ret;
|
|
|
|
ret = flow_tcf_query_flags(tcf, dev_flow, &flags);
|
|
if (ret)
|
|
return ret;
|
|
return (flags & TCA_CLS_FLAGS_IN_HW) ? 0 : -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* Remove flow from E-Switch by sending Netlink message.
|
|
*
|
|
* @param[in] dev
|
|
* Pointer to Ethernet device.
|
|
* @param[in, out] flow
|
|
* Pointer to the sub flow.
|
|
*/
|
|
static void
|
|
flow_tcf_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
|
|
{
|
|
struct mlx5_priv *priv = dev->data->dev_private;
|
|
struct mlx5_flow_tcf_context *ctx = priv->tcf_context;
|
|
struct mlx5_flow *dev_flow;
|
|
struct nlmsghdr *nlh;
|
|
struct tcmsg *tcm;
|
|
|
|
if (!flow)
|
|
return;
|
|
dev_flow = LIST_FIRST(&flow->dev_flows);
|
|
if (!dev_flow)
|
|
return;
|
|
/* E-Switch flow can't be expanded. */
|
|
assert(!LIST_NEXT(dev_flow, next));
|
|
if (dev_flow->tcf.applied) {
|
|
nlh = dev_flow->tcf.nlh;
|
|
nlh->nlmsg_type = RTM_DELTFILTER;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST;
|
|
flow_tcf_nl_ack(ctx, nlh, NULL, NULL);
|
|
if (dev_flow->tcf.tunnel) {
|
|
assert(dev_flow->tcf.tunnel->vtep);
|
|
flow_tcf_vtep_release(ctx,
|
|
dev_flow->tcf.tunnel->vtep,
|
|
dev_flow);
|
|
dev_flow->tcf.tunnel->vtep = NULL;
|
|
}
|
|
/* Cleanup the rule handle value. */
|
|
tcm = mnl_nlmsg_get_payload(nlh);
|
|
tcm->tcm_handle = 0;
|
|
dev_flow->tcf.applied = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fetch the applied rule handle. This is callback routine called by
|
|
* libmnl mnl_cb_run() in loop for every message in received packet.
|
|
* When the NLM_F_ECHO flag i sspecified the kernel sends the created
|
|
* rule descriptor back to the application and we can retrieve the
|
|
* actual rule handle from updated descriptor.
|
|
*
|
|
* @param[in] nlh
|
|
* Pointer to reply header.
|
|
* @param[in, out] arg
|
|
* Context pointer for this callback.
|
|
*
|
|
* @return
|
|
* A positive, nonzero value on success (required by libmnl
|
|
* to continue messages processing).
|
|
*/
|
|
static int
|
|
flow_tcf_collect_apply_cb(const struct nlmsghdr *nlh, void *arg)
|
|
{
|
|
struct nlmsghdr *nlhrq = arg;
|
|
struct tcmsg *tcmrq = mnl_nlmsg_get_payload(nlhrq);
|
|
struct tcmsg *tcm = mnl_nlmsg_get_payload(nlh);
|
|
struct nlattr *na;
|
|
|
|
if (nlh->nlmsg_type != RTM_NEWTFILTER ||
|
|
nlh->nlmsg_seq != nlhrq->nlmsg_seq)
|
|
return 1;
|
|
mnl_attr_for_each(na, nlh, sizeof(*tcm)) {
|
|
switch (mnl_attr_get_type(na)) {
|
|
case TCA_KIND:
|
|
if (strcmp(mnl_attr_get_payload(na), "flower")) {
|
|
/* Not flower filter, drop entire message. */
|
|
return 1;
|
|
}
|
|
tcmrq->tcm_handle = tcm->tcm_handle;
|
|
return 1;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
/**
|
|
* Apply flow to E-Switch by sending Netlink message.
|
|
*
|
|
* @param[in] dev
|
|
* Pointer to Ethernet device.
|
|
* @param[in, out] flow
|
|
* Pointer to the sub flow.
|
|
* @param[out] error
|
|
* Pointer to the error structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct mlx5_priv *priv = dev->data->dev_private;
|
|
struct mlx5_flow_tcf_context *ctx = priv->tcf_context;
|
|
struct mlx5_flow *dev_flow;
|
|
struct nlmsghdr *nlh;
|
|
struct tcmsg *tcm;
|
|
uint64_t start = 0;
|
|
uint64_t twait = 0;
|
|
int ret;
|
|
|
|
dev_flow = LIST_FIRST(&flow->dev_flows);
|
|
/* E-Switch flow can't be expanded. */
|
|
assert(!LIST_NEXT(dev_flow, next));
|
|
if (dev_flow->tcf.applied)
|
|
return 0;
|
|
nlh = dev_flow->tcf.nlh;
|
|
nlh->nlmsg_type = RTM_NEWTFILTER;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE |
|
|
NLM_F_EXCL | NLM_F_ECHO;
|
|
tcm = mnl_nlmsg_get_payload(nlh);
|
|
/* Allow kernel to assign handle on its own. */
|
|
tcm->tcm_handle = 0;
|
|
if (dev_flow->tcf.tunnel) {
|
|
/*
|
|
* Replace the interface index, target for
|
|
* encapsulation, source for decapsulation.
|
|
*/
|
|
assert(!dev_flow->tcf.tunnel->vtep);
|
|
assert(dev_flow->tcf.tunnel->ifindex_ptr);
|
|
/* Acquire actual VTEP device when rule is being applied. */
|
|
dev_flow->tcf.tunnel->vtep =
|
|
flow_tcf_vtep_acquire(ctx,
|
|
dev_flow->tcf.tunnel->ifindex_org,
|
|
dev_flow, error);
|
|
if (!dev_flow->tcf.tunnel->vtep)
|
|
return -rte_errno;
|
|
DRV_LOG(INFO, "Replace ifindex: %d->%d",
|
|
dev_flow->tcf.tunnel->vtep->ifindex,
|
|
dev_flow->tcf.tunnel->ifindex_org);
|
|
*dev_flow->tcf.tunnel->ifindex_ptr =
|
|
dev_flow->tcf.tunnel->vtep->ifindex;
|
|
if (dev_flow->tcf.tunnel->vtep->waitreg) {
|
|
/* Clear wait flag for VXLAN port registration. */
|
|
dev_flow->tcf.tunnel->vtep->waitreg = 0;
|
|
twait = rte_get_timer_hz();
|
|
assert(twait > MS_PER_S);
|
|
twait = twait * MLX5_VXLAN_WAIT_PORT_REG_MS;
|
|
twait = twait / MS_PER_S;
|
|
start = rte_get_timer_cycles();
|
|
}
|
|
}
|
|
/*
|
|
* Kernel creates the VXLAN devices and registers UDP ports to
|
|
* be hardware offloaded within the NIC kernel drivers. The
|
|
* registration process is being performed into context of
|
|
* working kernel thread and the race conditions might happen.
|
|
* The VXLAN device is created and success is returned to
|
|
* calling application, but the UDP port registration process
|
|
* is not completed yet. The next applied rule may be rejected
|
|
* by the driver with ENOSUP code. We are going to wait a bit,
|
|
* allowing registration process to be completed. The waiting
|
|
* is performed once after device been created.
|
|
*/
|
|
do {
|
|
struct timespec onems;
|
|
|
|
ret = flow_tcf_nl_ack(ctx, nlh,
|
|
flow_tcf_collect_apply_cb, nlh);
|
|
if (!ret || ret != -ENOTSUP || !twait)
|
|
break;
|
|
/* Wait one millisecond and try again till timeout. */
|
|
onems.tv_sec = 0;
|
|
onems.tv_nsec = NS_PER_S / MS_PER_S;
|
|
nanosleep(&onems, 0);
|
|
if ((rte_get_timer_cycles() - start) > twait) {
|
|
/* Timeout elapsed, try once more and exit. */
|
|
twait = 0;
|
|
}
|
|
} while (true);
|
|
if (!ret) {
|
|
if (!tcm->tcm_handle) {
|
|
flow_tcf_remove(dev, flow);
|
|
return rte_flow_error_set
|
|
(error, ENOENT,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"netlink: rule zero handle returned");
|
|
}
|
|
dev_flow->tcf.applied = 1;
|
|
if (*dev_flow->tcf.ptc_flags & TCA_CLS_FLAGS_SKIP_SW)
|
|
return 0;
|
|
/*
|
|
* Rule was applied without skip_sw flag set.
|
|
* We should check whether the rule was acctually
|
|
* accepted by hardware (have look at in_hw flag).
|
|
*/
|
|
if (flow_tcf_check_inhw(ctx, dev_flow)) {
|
|
flow_tcf_remove(dev, flow);
|
|
return rte_flow_error_set
|
|
(error, ENOENT,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"netlink: rule has no in_hw flag set");
|
|
}
|
|
return 0;
|
|
}
|
|
if (dev_flow->tcf.tunnel) {
|
|
/* Rollback the VTEP configuration if rule apply failed. */
|
|
assert(dev_flow->tcf.tunnel->vtep);
|
|
flow_tcf_vtep_release(ctx, dev_flow->tcf.tunnel->vtep,
|
|
dev_flow);
|
|
dev_flow->tcf.tunnel->vtep = NULL;
|
|
}
|
|
return rte_flow_error_set(error, rte_errno,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"netlink: failed to create TC flow rule");
|
|
}
|
|
|
|
/**
|
|
* Remove flow from E-Switch and release resources of the device flow.
|
|
*
|
|
* @param[in] dev
|
|
* Pointer to Ethernet device.
|
|
* @param[in, out] flow
|
|
* Pointer to the sub flow.
|
|
*/
|
|
static void
|
|
flow_tcf_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
|
|
{
|
|
struct mlx5_flow *dev_flow;
|
|
|
|
if (!flow)
|
|
return;
|
|
flow_tcf_remove(dev, flow);
|
|
if (flow->counter) {
|
|
if (--flow->counter->ref_cnt == 0) {
|
|
rte_free(flow->counter);
|
|
flow->counter = NULL;
|
|
}
|
|
}
|
|
dev_flow = LIST_FIRST(&flow->dev_flows);
|
|
if (!dev_flow)
|
|
return;
|
|
/* E-Switch flow can't be expanded. */
|
|
assert(!LIST_NEXT(dev_flow, next));
|
|
LIST_REMOVE(dev_flow, next);
|
|
rte_free(dev_flow);
|
|
}
|
|
|
|
/**
|
|
* Helper routine for figuring the space size required for a parse buffer.
|
|
*
|
|
* @param array
|
|
* array of values to use.
|
|
* @param idx
|
|
* Current location in array.
|
|
* @param value
|
|
* Value to compare with.
|
|
*
|
|
* @return
|
|
* The maximum between the given value and the array value on index.
|
|
*/
|
|
static uint16_t
|
|
flow_tcf_arr_val_max(uint16_t array[], int idx, uint16_t value)
|
|
{
|
|
return idx < 0 ? (value) : RTE_MAX((array)[idx], value);
|
|
}
|
|
|
|
/**
|
|
* Parse rtnetlink message attributes filling the attribute table with the info
|
|
* retrieved.
|
|
*
|
|
* @param tb
|
|
* Attribute table to be filled.
|
|
* @param[out] max
|
|
* Maxinum entry in the attribute table.
|
|
* @param rte
|
|
* The attributes section in the message to be parsed.
|
|
* @param len
|
|
* The length of the attributes section in the message.
|
|
*/
|
|
static void
|
|
flow_tcf_nl_parse_rtattr(struct rtattr *tb[], int max,
|
|
struct rtattr *rta, int len)
|
|
{
|
|
unsigned short type;
|
|
memset(tb, 0, sizeof(struct rtattr *) * (max + 1));
|
|
while (RTA_OK(rta, len)) {
|
|
type = rta->rta_type;
|
|
if (type <= max && !tb[type])
|
|
tb[type] = rta;
|
|
rta = RTA_NEXT(rta, len);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Extract flow counters from flower action.
|
|
*
|
|
* @param rta
|
|
* flower action stats properties in the Netlink message received.
|
|
* @param rta_type
|
|
* The backward sequence of rta_types, as written in the attribute table,
|
|
* we need to traverse in order to get to the requested object.
|
|
* @param idx
|
|
* Current location in rta_type table.
|
|
* @param[out] data
|
|
* data holding the count statistics of the rte_flow retrieved from
|
|
* the message.
|
|
*
|
|
* @return
|
|
* 0 if data was found and retrieved, -1 otherwise.
|
|
*/
|
|
static int
|
|
flow_tcf_nl_action_stats_parse_and_get(struct rtattr *rta,
|
|
uint16_t rta_type[], int idx,
|
|
struct gnet_stats_basic *data)
|
|
{
|
|
int tca_stats_max = flow_tcf_arr_val_max(rta_type, idx,
|
|
TCA_STATS_BASIC);
|
|
struct rtattr *tbs[tca_stats_max + 1];
|
|
|
|
if (rta == NULL || idx < 0)
|
|
return -1;
|
|
flow_tcf_nl_parse_rtattr(tbs, tca_stats_max,
|
|
RTA_DATA(rta), RTA_PAYLOAD(rta));
|
|
switch (rta_type[idx]) {
|
|
case TCA_STATS_BASIC:
|
|
if (tbs[TCA_STATS_BASIC]) {
|
|
memcpy(data, RTA_DATA(tbs[TCA_STATS_BASIC]),
|
|
RTE_MIN(RTA_PAYLOAD(tbs[TCA_STATS_BASIC]),
|
|
sizeof(*data)));
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Parse flower single action retrieving the requested action attribute,
|
|
* if found.
|
|
*
|
|
* @param arg
|
|
* flower action properties in the Netlink message received.
|
|
* @param rta_type
|
|
* The backward sequence of rta_types, as written in the attribute table,
|
|
* we need to traverse in order to get to the requested object.
|
|
* @param idx
|
|
* Current location in rta_type table.
|
|
* @param[out] data
|
|
* Count statistics retrieved from the message query.
|
|
*
|
|
* @return
|
|
* 0 if data was found and retrieved, -1 otherwise.
|
|
*/
|
|
static int
|
|
flow_tcf_nl_parse_one_action_and_get(struct rtattr *arg,
|
|
uint16_t rta_type[], int idx, void *data)
|
|
{
|
|
int tca_act_max = flow_tcf_arr_val_max(rta_type, idx, TCA_ACT_STATS);
|
|
struct rtattr *tb[tca_act_max + 1];
|
|
|
|
if (arg == NULL || idx < 0)
|
|
return -1;
|
|
flow_tcf_nl_parse_rtattr(tb, tca_act_max,
|
|
RTA_DATA(arg), RTA_PAYLOAD(arg));
|
|
if (tb[TCA_ACT_KIND] == NULL)
|
|
return -1;
|
|
switch (rta_type[idx]) {
|
|
case TCA_ACT_STATS:
|
|
if (tb[TCA_ACT_STATS])
|
|
return flow_tcf_nl_action_stats_parse_and_get
|
|
(tb[TCA_ACT_STATS],
|
|
rta_type, --idx,
|
|
(struct gnet_stats_basic *)data);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Parse flower action section in the message retrieving the requested
|
|
* attribute from the first action that provides it.
|
|
*
|
|
* @param opt
|
|
* flower section in the Netlink message received.
|
|
* @param rta_type
|
|
* The backward sequence of rta_types, as written in the attribute table,
|
|
* we need to traverse in order to get to the requested object.
|
|
* @param idx
|
|
* Current location in rta_type table.
|
|
* @param[out] data
|
|
* data retrieved from the message query.
|
|
*
|
|
* @return
|
|
* 0 if data was found and retrieved, -1 otherwise.
|
|
*/
|
|
static int
|
|
flow_tcf_nl_action_parse_and_get(struct rtattr *arg,
|
|
uint16_t rta_type[], int idx, void *data)
|
|
{
|
|
struct rtattr *tb[TCA_ACT_MAX_PRIO + 1];
|
|
int i;
|
|
|
|
if (arg == NULL || idx < 0)
|
|
return -1;
|
|
flow_tcf_nl_parse_rtattr(tb, TCA_ACT_MAX_PRIO,
|
|
RTA_DATA(arg), RTA_PAYLOAD(arg));
|
|
switch (rta_type[idx]) {
|
|
/*
|
|
* flow counters are stored in the actions defined by the flow
|
|
* and not in the flow itself, therefore we need to traverse the
|
|
* flower chain of actions in search for them.
|
|
*
|
|
* Note that the index is not decremented here.
|
|
*/
|
|
case TCA_ACT_STATS:
|
|
for (i = 0; i <= TCA_ACT_MAX_PRIO; i++) {
|
|
if (tb[i] &&
|
|
!flow_tcf_nl_parse_one_action_and_get(tb[i],
|
|
rta_type,
|
|
idx, data))
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Parse flower classifier options in the message, retrieving the requested
|
|
* attribute if found.
|
|
*
|
|
* @param opt
|
|
* flower section in the Netlink message received.
|
|
* @param rta_type
|
|
* The backward sequence of rta_types, as written in the attribute table,
|
|
* we need to traverse in order to get to the requested object.
|
|
* @param idx
|
|
* Current location in rta_type table.
|
|
* @param[out] data
|
|
* data retrieved from the message query.
|
|
*
|
|
* @return
|
|
* 0 if data was found and retrieved, -1 otherwise.
|
|
*/
|
|
static int
|
|
flow_tcf_nl_opts_parse_and_get(struct rtattr *opt,
|
|
uint16_t rta_type[], int idx, void *data)
|
|
{
|
|
int tca_flower_max = flow_tcf_arr_val_max(rta_type, idx,
|
|
TCA_FLOWER_ACT);
|
|
struct rtattr *tb[tca_flower_max + 1];
|
|
|
|
if (!opt || idx < 0)
|
|
return -1;
|
|
flow_tcf_nl_parse_rtattr(tb, tca_flower_max,
|
|
RTA_DATA(opt), RTA_PAYLOAD(opt));
|
|
switch (rta_type[idx]) {
|
|
case TCA_FLOWER_ACT:
|
|
if (tb[TCA_FLOWER_ACT])
|
|
return flow_tcf_nl_action_parse_and_get
|
|
(tb[TCA_FLOWER_ACT],
|
|
rta_type, --idx, data);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Parse Netlink reply on filter query, retrieving the flow counters.
|
|
*
|
|
* @param nlh
|
|
* Message received from Netlink.
|
|
* @param rta_type
|
|
* The backward sequence of rta_types, as written in the attribute table,
|
|
* we need to traverse in order to get to the requested object.
|
|
* @param idx
|
|
* Current location in rta_type table.
|
|
* @param[out] data
|
|
* data retrieved from the message query.
|
|
*
|
|
* @return
|
|
* 0 if data was found and retrieved, -1 otherwise.
|
|
*/
|
|
static int
|
|
flow_tcf_nl_filter_parse_and_get(struct nlmsghdr *cnlh,
|
|
uint16_t rta_type[], int idx, void *data)
|
|
{
|
|
struct nlmsghdr *nlh = cnlh;
|
|
struct tcmsg *t = NLMSG_DATA(nlh);
|
|
int len = nlh->nlmsg_len;
|
|
int tca_max = flow_tcf_arr_val_max(rta_type, idx, TCA_OPTIONS);
|
|
struct rtattr *tb[tca_max + 1];
|
|
|
|
if (idx < 0)
|
|
return -1;
|
|
if (nlh->nlmsg_type != RTM_NEWTFILTER &&
|
|
nlh->nlmsg_type != RTM_GETTFILTER &&
|
|
nlh->nlmsg_type != RTM_DELTFILTER)
|
|
return -1;
|
|
len -= NLMSG_LENGTH(sizeof(*t));
|
|
if (len < 0)
|
|
return -1;
|
|
flow_tcf_nl_parse_rtattr(tb, tca_max, TCA_RTA(t), len);
|
|
/* Not a TC flower flow - bail out */
|
|
if (!tb[TCA_KIND] ||
|
|
strcmp(RTA_DATA(tb[TCA_KIND]), "flower"))
|
|
return -1;
|
|
switch (rta_type[idx]) {
|
|
case TCA_OPTIONS:
|
|
if (tb[TCA_OPTIONS])
|
|
return flow_tcf_nl_opts_parse_and_get(tb[TCA_OPTIONS],
|
|
rta_type,
|
|
--idx, data);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* A callback to parse Netlink reply on TC flower query.
|
|
*
|
|
* @param nlh
|
|
* Message received from Netlink.
|
|
* @param[out] data
|
|
* Pointer to data area to be filled by the parsing routine.
|
|
* assumed to be a pointer to struct flow_tcf_stats_basic.
|
|
*
|
|
* @return
|
|
* MNL_CB_OK value.
|
|
*/
|
|
static int
|
|
flow_tcf_nl_message_get_stats_basic(const struct nlmsghdr *nlh, void *data)
|
|
{
|
|
/*
|
|
* The backward sequence of rta_types to pass in order to get
|
|
* to the counters.
|
|
*/
|
|
uint16_t rta_type[] = { TCA_STATS_BASIC, TCA_ACT_STATS,
|
|
TCA_FLOWER_ACT, TCA_OPTIONS };
|
|
struct flow_tcf_stats_basic *sb_data = data;
|
|
union {
|
|
const struct nlmsghdr *c;
|
|
struct nlmsghdr *nc;
|
|
} tnlh = { .c = nlh };
|
|
|
|
if (!flow_tcf_nl_filter_parse_and_get(tnlh.nc, rta_type,
|
|
RTE_DIM(rta_type) - 1,
|
|
(void *)&sb_data->counters))
|
|
sb_data->valid = true;
|
|
return MNL_CB_OK;
|
|
}
|
|
|
|
/**
|
|
* Query a TC flower rule for its statistics via netlink.
|
|
*
|
|
* @param[in] dev
|
|
* Pointer to Ethernet device.
|
|
* @param[in] flow
|
|
* Pointer to the sub flow.
|
|
* @param[out] data
|
|
* data retrieved by the query.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
flow_tcf_query_count(struct rte_eth_dev *dev,
|
|
struct rte_flow *flow,
|
|
void *data,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct flow_tcf_stats_basic sb_data;
|
|
struct rte_flow_query_count *qc = data;
|
|
struct mlx5_priv *priv = dev->data->dev_private;
|
|
struct mlx5_flow_tcf_context *ctx = priv->tcf_context;
|
|
struct mnl_socket *nl = ctx->nl;
|
|
struct mlx5_flow *dev_flow;
|
|
struct nlmsghdr *nlh;
|
|
uint32_t seq = priv->tcf_context->seq++;
|
|
ssize_t ret;
|
|
assert(qc);
|
|
|
|
memset(&sb_data, 0, sizeof(sb_data));
|
|
dev_flow = LIST_FIRST(&flow->dev_flows);
|
|
/* E-Switch flow can't be expanded. */
|
|
assert(!LIST_NEXT(dev_flow, next));
|
|
if (!dev_flow->flow->counter)
|
|
goto notsup_exit;
|
|
nlh = dev_flow->tcf.nlh;
|
|
nlh->nlmsg_type = RTM_GETTFILTER;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_ECHO;
|
|
nlh->nlmsg_seq = seq;
|
|
if (mnl_socket_sendto(nl, nlh, nlh->nlmsg_len) == -1)
|
|
goto error_exit;
|
|
do {
|
|
ret = mnl_socket_recvfrom(nl, ctx->buf, ctx->buf_size);
|
|
if (ret <= 0)
|
|
break;
|
|
ret = mnl_cb_run(ctx->buf, ret, seq,
|
|
mnl_socket_get_portid(nl),
|
|
flow_tcf_nl_message_get_stats_basic,
|
|
(void *)&sb_data);
|
|
} while (ret > 0);
|
|
/* Return the delta from last reset. */
|
|
if (sb_data.valid) {
|
|
/* Return the delta from last reset. */
|
|
qc->hits_set = 1;
|
|
qc->bytes_set = 1;
|
|
qc->hits = sb_data.counters.packets - flow->counter->hits;
|
|
qc->bytes = sb_data.counters.bytes - flow->counter->bytes;
|
|
if (qc->reset) {
|
|
flow->counter->hits = sb_data.counters.packets;
|
|
flow->counter->bytes = sb_data.counters.bytes;
|
|
}
|
|
return 0;
|
|
}
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL,
|
|
"flow does not have counter");
|
|
error_exit:
|
|
return rte_flow_error_set
|
|
(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, "netlink: failed to read flow rule counters");
|
|
notsup_exit:
|
|
return rte_flow_error_set
|
|
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, "counters are not available.");
|
|
}
|
|
|
|
/**
|
|
* Query a flow.
|
|
*
|
|
* @see rte_flow_query()
|
|
* @see rte_flow_ops
|
|
*/
|
|
static int
|
|
flow_tcf_query(struct rte_eth_dev *dev,
|
|
struct rte_flow *flow,
|
|
const struct rte_flow_action *actions,
|
|
void *data,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
|
|
switch (actions->type) {
|
|
case RTE_FLOW_ACTION_TYPE_VOID:
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_COUNT:
|
|
ret = flow_tcf_query_count(dev, flow, data, error);
|
|
break;
|
|
default:
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION,
|
|
actions,
|
|
"action not supported");
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops = {
|
|
.validate = flow_tcf_validate,
|
|
.prepare = flow_tcf_prepare,
|
|
.translate = flow_tcf_translate,
|
|
.apply = flow_tcf_apply,
|
|
.remove = flow_tcf_remove,
|
|
.destroy = flow_tcf_destroy,
|
|
.query = flow_tcf_query,
|
|
};
|
|
|
|
/**
|
|
* Create and configure a libmnl socket for Netlink flow rules.
|
|
*
|
|
* @return
|
|
* A valid libmnl socket object pointer on success, NULL otherwise and
|
|
* rte_errno is set.
|
|
*/
|
|
static struct mnl_socket *
|
|
flow_tcf_mnl_socket_create(void)
|
|
{
|
|
struct mnl_socket *nl = mnl_socket_open(NETLINK_ROUTE);
|
|
|
|
if (nl) {
|
|
mnl_socket_setsockopt(nl, NETLINK_CAP_ACK, &(int){ 1 },
|
|
sizeof(int));
|
|
if (!mnl_socket_bind(nl, 0, MNL_SOCKET_AUTOPID))
|
|
return nl;
|
|
}
|
|
rte_errno = errno;
|
|
if (nl)
|
|
mnl_socket_close(nl);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Destroy a libmnl socket.
|
|
*
|
|
* @param nl
|
|
* Libmnl socket of the @p NETLINK_ROUTE kind.
|
|
*/
|
|
static void
|
|
flow_tcf_mnl_socket_destroy(struct mnl_socket *nl)
|
|
{
|
|
if (nl)
|
|
mnl_socket_close(nl);
|
|
}
|
|
|
|
/**
|
|
* Initialize ingress qdisc of a given network interface.
|
|
*
|
|
* @param ctx
|
|
* Pointer to tc-flower context to use.
|
|
* @param ifindex
|
|
* Index of network interface to initialize.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx5_flow_tcf_init(struct mlx5_flow_tcf_context *ctx,
|
|
unsigned int ifindex, struct rte_flow_error *error)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct tcmsg *tcm;
|
|
alignas(struct nlmsghdr)
|
|
uint8_t buf[mnl_nlmsg_size(sizeof(*tcm)) +
|
|
SZ_NLATTR_STRZ_OF("ingress") +
|
|
MNL_BUF_EXTRA_SPACE];
|
|
|
|
/* Destroy existing ingress qdisc and everything attached to it. */
|
|
nlh = mnl_nlmsg_put_header(buf);
|
|
nlh->nlmsg_type = RTM_DELQDISC;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST;
|
|
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
|
|
tcm->tcm_family = AF_UNSPEC;
|
|
tcm->tcm_ifindex = ifindex;
|
|
tcm->tcm_handle = TC_H_MAKE(TC_H_INGRESS, 0);
|
|
tcm->tcm_parent = TC_H_INGRESS;
|
|
assert(sizeof(buf) >= nlh->nlmsg_len);
|
|
/* Ignore errors when qdisc is already absent. */
|
|
if (flow_tcf_nl_ack(ctx, nlh, NULL, NULL) &&
|
|
rte_errno != EINVAL && rte_errno != ENOENT)
|
|
return rte_flow_error_set(error, rte_errno,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"netlink: failed to remove ingress"
|
|
" qdisc");
|
|
/* Create fresh ingress qdisc. */
|
|
nlh = mnl_nlmsg_put_header(buf);
|
|
nlh->nlmsg_type = RTM_NEWQDISC;
|
|
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL;
|
|
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
|
|
tcm->tcm_family = AF_UNSPEC;
|
|
tcm->tcm_ifindex = ifindex;
|
|
tcm->tcm_handle = TC_H_MAKE(TC_H_INGRESS, 0);
|
|
tcm->tcm_parent = TC_H_INGRESS;
|
|
mnl_attr_put_strz_check(nlh, sizeof(buf), TCA_KIND, "ingress");
|
|
assert(sizeof(buf) >= nlh->nlmsg_len);
|
|
if (flow_tcf_nl_ack(ctx, nlh, NULL, NULL))
|
|
return rte_flow_error_set(error, rte_errno,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"netlink: failed to create ingress"
|
|
" qdisc");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Create libmnl context for Netlink flow rules.
|
|
*
|
|
* @return
|
|
* A valid libmnl socket object pointer on success, NULL otherwise and
|
|
* rte_errno is set.
|
|
*/
|
|
struct mlx5_flow_tcf_context *
|
|
mlx5_flow_tcf_context_create(void)
|
|
{
|
|
struct mlx5_flow_tcf_context *ctx = rte_zmalloc(__func__,
|
|
sizeof(*ctx),
|
|
sizeof(uint32_t));
|
|
if (!ctx)
|
|
goto error;
|
|
ctx->nl = flow_tcf_mnl_socket_create();
|
|
if (!ctx->nl)
|
|
goto error;
|
|
ctx->buf_size = MNL_SOCKET_BUFFER_SIZE;
|
|
ctx->buf = rte_zmalloc(__func__,
|
|
ctx->buf_size, sizeof(uint32_t));
|
|
if (!ctx->buf)
|
|
goto error;
|
|
ctx->seq = random();
|
|
return ctx;
|
|
error:
|
|
mlx5_flow_tcf_context_destroy(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Destroy a libmnl context.
|
|
*
|
|
* @param ctx
|
|
* Libmnl socket of the @p NETLINK_ROUTE kind.
|
|
*/
|
|
void
|
|
mlx5_flow_tcf_context_destroy(struct mlx5_flow_tcf_context *ctx)
|
|
{
|
|
if (!ctx)
|
|
return;
|
|
flow_tcf_mnl_socket_destroy(ctx->nl);
|
|
rte_free(ctx->buf);
|
|
rte_free(ctx);
|
|
}
|